
1746
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

PAPER

Bounded Strong Satisfiability Checking of Reactive System
Specifications∗

Masaya SHIMAKAWA†a), Shigeki HAGIHARA†, Nonmembers, and Naoki YONEZAKI†, Member

SUMMARY Many fatal accidents involving safety-critical reactive sys-
tems have occurred in unexpected situations that were not considered dur-
ing the design and test phases of development. To prevent such accidents,
reactive systems should be designed to respond appropriately to any re-
quest from an environment at any time. Verifying this property during the
specification phase reduces development reworking. This property of a
specification is commonly known as realizability. Realizability checking
for reactive system specifications involves complex and intricate analysis.
The complexity of realizability problems is 2EXPTIME-complete. To de-
tect typical simple deficiencies in specifications efficiently, we introduce
the notion of bounded strong satisfiability (a necessary condition for realiz-
ability), and present a method for checking this property. Bounded strong
satisfiability is the property that, for all input patterns represented by loop
structures of a given size k, there is a response that satisfies a given speci-
fication. We report a checking method based on a satisfiability solver, and
show that the complexity of the bounded strong satisfiability problem is co-
NEXPTIME-complete. Moreover, we report experimental results showing
that our method is more efficient than existing approaches.
key words: reactive system, bounded analysis, SAT solver, realizability,
LTL specification

1. Introduction

A reactive system is one that responds to requests from
an environment in a timely fashion. The systems used to
control elevators or vending machines are typical examples
of reactive systems. Many safety-critical systems, such as
those that control nuclear power plants or air traffic control
systems, are also considered reactive systems. In designing
a system of this kind, the requirements should be analyzed
and then described as specifications for the system. If a
specification has a flaw, such as inappropriate case-splitting,
the developed system may encounter unintended situations.
Indeed, fatal accidents involving safety-critical reactive sys-
tems have occurred as a result of unexpected situations that
were not considered during the design and test phases of de-
velopment. Therefore, it is important to ensure that a speci-
fication does not contain this kind of flaw [1].

More precisely, a reactive system specification must
have a model that can respond in a timely fashion to any
request at any time. This property, called realizability, was

Manuscript received December 25, 2013.
†The authors are with the Department of Computer Science,

Tokyo Institute of Technology, Tokyo, 152–8552 Japan.
∗This work is based on “SAT-Based Bounded Strong Sat-

isfiability Checking of Reactive System Specifications”, by M.
Shimakawa, S. Hagihara, and N. Yonezaki which appeared in the
proceeding of International Conference on Information and Com-
munication Technology, ICT-EurAsia 2013.

a) E-mail: masaya@fmx.cs.titech.ac.jp
DOI: 10.1587/transinf.E97.D.1746

introduced in [2], [3]. It has been demonstrated that a re-
active system can be synthesized from a realizable specifi-
cation [3]; however, realizability checking for reactive sys-
tem specifications involves complex and intricate analysis.
Therefore, the size of specifications that can be checked in a
practical application is strongly limited.

Here we present a bounded checking method to detect
typical simple deficiencies in specifications. In bounded
checking, we verify the existence of a counterexample (or
witness) of a given size k. Such methods have been applied
successfully in other fields; for example, bounded model
checking [4] and the software tool Alloy Analyzer [1]. The
principle advantage of bounded checking is the ability to ef-
ficiently detect a small counterexample (or witness).

We propose the notion of a bounded property for
strong satisfiability [5] (a necessary condition for realizabil-
ity), termed bounded strong satisfiability, together with a
method for checking this property. Strong satisfiability is
the property that for any input sequence there is a response
that satisfies a given specification. Strong satisfiability can
be checked with less complexity than realizability [6]. Al-
though this property is a necessary condition, many prac-
tical unrealizable specifications are also strongly unsatisfi-
able [7]. Bounded strong satisfiability restricts the input se-
quences of strong satisfiability to those represented by loop
structures of size k. It follows that, for simple input patterns,
there is a response that satisfies the specification. Our expe-
rience has shown that, in many instances, strongly unsatis-
fiable specifications have small counterexamples (which are
input sequences that can be represented by small loop struc-
tures). Thus, we anticipate that many deficiencies can be
detected by checking for this property.

In our method for checking bounded strong satisfiabil-
ity, we use a SAT solver. Specifically, we first construct a
non-deterministic Büchi automaton (NBA) that accepts in-
put sequences for which there is a response that satisfies a
specification. We then check whether the NBA accepts all
loop structures of size k (k-universally acceptable), using
a SAT solver. To accomplish this, checking the existence
of a loop structure that is not accepted by NBA is reduced
to a SAT problem. This reduction is based on the follow-
ing characterization of non-accepted loop structures: a loop
structure σ of bounded size is not accepted by NBA if and
only if, for any run on σ, final states occur not more than
d times for some d. This characterization is valid because
only bounded loop structures are considered.

Moreover, we show that the complexity of bounded

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

SHIMAKAWA et al.: BOUNDED STRONG SATISFIABILITY CHECKING OF REACTIVE SYSTEM SPECIFICATIONS
1747

strong satisfiability for a specification written in linear tem-
poral logic (LTL) is co-NEXPTIME-complete. Because
the complexity of the realizability problem is 2EXPTIME-
complete [8], and that of the strong satisfiability problem is
EXPSPACE-complete [6], bounded strong satisfiability of-
fers the advantage of less complex analysis compared with
realizability and strong satisfiability.

We implemented our method, and found that it can han-
dle larger specifications than existing techniques based on
other properties, and can detect deficiencies efficiently.

The remainder of this paper is organized as follows.
In Sect. 2, we introduce the concepts of reactive systems,
LTL as a specification language, and strong satisfiability. In
Sect. 3, we give the notion of bounded strong satisfiability.
In Sect. 4, we describe a procedure for checking bounded
strong satisfiability. In Sect. 5, we present a SAT-based
method for checking the bounded universality of an NBA. In
Sect. 6, we show that the complexity of the bounded strong
satisfiability for a specification in LTL is co-NEXPTIME-
complete. In Sect. 7, we describe experimental results. In
Sect. 8, we compare our method with existing approaches.
We present our conclusion in Sect. 9.

2. Preliminaries

2.1 Reactive Systems

A reactive system is one that responds to requests from an
environment in a timely fashion.

Definition 1 (Reactive system): A reactive system RS is a
triple 〈X,Y, r〉, where X is a set of events caused by an en-
vironment, Y is a set of events caused by the system, and
r : (2X)+ → 2Y is a reaction function.

We refer to events caused by the environment as ‘input
events,’ and those caused by the system as ‘output events.’
The set (2X)+ is the set of all finite sequences of sets of in-
put events. A reaction function r relates sequences of sets
of previously occurring input events with a set of current
output events.

2.2 A Language for Describing Reactive System Specifi-
cations

The timing of input and output events is an essential ele-
ment of reactive systems, which can be described using lin-
ear temporal logic (LTL). We use LTL to describe the speci-
fications of reactive systems here, and treat input and output
events as atomic propositions.

2.2.1 Syntax

Formulae in LTL are inductively defined as follows:

• Atomic propositions (i.e., input events and output
events) are formulae.
• f ∧ g, ¬ f , X f , f Ug are formulae if f and g are formu-

lae.

The notation X f means that ‘ f holds the next time,’ while
f Ug means that ‘ f always holds until g holds.’ The nota-
tions f ∨ g, f → g, f ↔ g, f ⊕ g, �, F f , and G f are abbre-
viations for ¬(¬ f ∧¬g), ¬(f ∧¬g), ¬(f ∧¬g)∧¬(¬ f ∧ g),
¬(f ↔ g), ¬⊥, �U f , and ¬F¬ f respectively, where ⊥ is an
atomic proposition representing ‘falsity.’

2.2.2 Semantics

A behavior is an infinite sequence of sets of events. Let i
be an index such that i ≥ 0. The i-th set of a behavior σ is
denoted by σ[i]. The i-th suffix of a behavior σ is denoted
by σ[i . . .]. When a behavior σ satisfies a formula f , we
write σ |= f , and inductively define this relation as follows:

• σ |= p iff p ∈ σ[0]
• σ �|= ⊥
• σ |= f ∧ g iff σ |= f and σ |= g
• σ |= ¬ f iff σ �|= f
• σ |= X f iff σ[1 . . .] |= f
• σ |= f Ug iff ∃ j ≥ 0.((σ[j . . .] |= g) and ∀k(0 ≤ k <

j. σ[k . . .] |= f))

We say that f is satisfiable if there exists a σ that satisfies f .

2.3 Properties of Reactive System Specifications

It is important for reactive system specifications to satisfy
realizability. Realizability requires the existence of a reac-
tive system such that, for any input events with any timing,
the system produces output events such that the specification
holds.

Definition 2 (Realizability): A specification Spec is realiz-
able if the following holds:

∃RS∀ã(behaveRS(ã) |= Spec),

where ã is an infinite sequence of sets of input events, i.e.,
ã ∈ (2X)ω. behaveRS(ã) is the infinite behavior of ã caused
by RS, defined as follows. If ã = a0a1. . . , behaveRS(ã) =
(a0∪b0)(a1∪b1). . . , where bi is a set of output events caused
by RS, i.e., bi = r(a0 . . . ai).

The following property was shown to be a necessary
condition for realizability in [5].

Definition 3 (Strong satisfiability): A specification Spec is
strongly satisfiable if the following holds:

∀ã∃b̃(〈ã, b̃〉 |= Spec),

where b̃ is an infinite sequence of sets of output events, i.e.,
b̃ ∈ (2Y)ω. If ã = a0a1 . . . and b̃ = b0b1. . . , then 〈ã, b̃〉 is
defined by 〈ã, b̃〉 = (a0 ∪ b0)(a1 ∪ b1). . . .

Intuitively, strong satisfiability is the property that, if a
reactive system is given an infinite sequence of sets of future
input events, the system can determine an infinite sequence
of sets of future output events. Strong satisfiability is a nec-
essary condition for realizability, i.e., all realizable specifi-
cations are strongly satisfiable. Conversely, many practical

1748
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

strongly satisfiable specifications are also realizable.

Example 1: The following is a specification of a control
system for a door. Let us consider a simple example of a
door control system. The initial specification is as follows.

1. The door has two buttons: an open button and a close
button.

2. If the open button is pushed, the door eventually opens.
3. While the close button is pushed, the door remains shut.

The events ‘the open button is pushed’ and ‘the close button
is pushed’ are both input events. We denote these events by
x1 and x2, respectively. The event ‘the door is open (closed)’
is an output event. We denote this event by y (resp., ¬y). The
initial specification is then represented by Spec1 : G((x1 →
Fy) ∧ (x2 → ¬y)) in LTL. This specification is not strongly
satisfiable, and consequently unrealizable, due to the fact
that there is no response that satisfies Spec1 for the envi-
ronmental behavior in which the close button is still being
pushed after the open button has been pushed. Formally, for
ã = {x1, x2}{x2}{x2}. . . , ∃b̃(〈ã, b̃〉 |= Spec1) does not hold.
Hence ∀ã∃b̃(〈ã, b̃〉 |= Spec1) does not hold.

However, suppose that constraint 3 in the initial speci-
fication can be weakened to 3’:

3’. If the close button is pushed, the door eventually closes.

Then the modified specification is represented by G((x1 →
Fy) ∧ (x2 → F¬y)), and this is both strongly satisfiable and
realizable.

3. Bounded Strong Satisfiability

In this section, we describe the notion of bounded strong
satisfiability. This property is a restricted version of strong
satisfiability, in which only input sequences represented by
loop structures of size k are considered, as in the case of
bounded model checking (e.g., [4]).

Definition 4 (k-loop): Let k, l ∈ N and l ≤ k. An infinite
sequence σ is a (k, l)-loop if there exists u = s0s1 . . . sl−1 and
v = slsl+1 . . . sk such that σ = u · vω. An infinite sequence σ
is a k-loop if there exists an l such that σ is a (k, l)-loop.

Definition 5 (Bounded strong satisfiability): Let k ∈ N. A
specification Spec is k-strongly satisfiable if the following
holds:

∀ã(ã is k-loop =⇒ ∃b̃(〈ã, b̃〉 |= Spec)).

If an infinite sequence is a k-loop and k < k′, then the
sequence is a k′-loop. Therefore, the following holds:

Theorem 1: Let k < k′. If a specification Spec is k′-
strongly satisfiable, then Spec is also k-strongly satisfiable.

It is clear from this definition that, if a specification
Spec is strongly satisfiable, then Spec is also k-strongly sat-
isfiable. Moreover, if Spec is described in LTL and the
bound k is sufficiently large, then the converse is also true†.

†This is derived from the fact that Spec can be represented by
a finite state Büchi automaton.

Theorem 2: For all k ∈ N, if a specification Spec is
strongly satisfiable, then Spec is also k-strongly satisfiable.

Theorem 3: If a specification Spec described in LTL is not
strongly satisfiable, then Spec is not k-strongly satisfiable
for some k.

Proof. There exists a non-deterministic Büchi automaton
(NBA) A′ such that L(A′) = {ã | ∃b̃(〈ã, b̃〉 |= Spec)} [6],
[9]††. Moreover, we can obtain an NBA A′ such that
L(A′) = {ã | ¬∃b̃(〈ã, b̃〉 |= Spec)}, because the class of
NBA-recognizable languages is closed under complementa-
tion [10]. Assume that Spec is not strongly satisfiable. Then
A′ is non-empty. If an NBA is non-empty, then there exists
a sequence σ = u · vω (where u, v are finite sequences) such
that σ is accepted by the NBA [10]. Hence, there exists a
k-loop ã for some k such that ã ∈ L(A′). That is, Spec is not
k-strongly satisfiable for some k. �

Example 2: The specification Spec1 in Example 1 is not
1-strongly satisfiable, and consequently not k-strongly sat-
isfiable for all k > 1 because ã = {x1, x2} {x2} {x2} . . . is
a 1-loop({x1, x2}{x2}ω), which does not satisfy ∃b̃(〈ã, b̃〉 |=
Spec1).

By checking whether a specification satisfies bounded
strong satisfiability, we can know whether the specification
has simple input patterns (represented by small loops) that
cannot satisfy the specification. As the experiment in Sect. 7
shows, many practical defective specifications have such
simple input patterns. Thus, we anticipate that checking
bounded strong satisfiability will find many practical defi-
ciencies in reactive system specifications.

4. Procedure for Checking Bounded Strong Satisfiabil-
ity

In this section, we describe a procedure for checking
bounded strong satisfiability using non-deterministic Büchi
automata. This procedure is based on the procedure for (un-
bounded) strong satisfiability described in [9].

A non-deterministic Büchi automaton (NBA) is a tuple
A = 〈Σ,Q, qI , δ, F〉, where Σ is an alphabet, Q is a finite set
of states, qI is an initial state, δ ⊆ Q × Σ × Q is a transition
relation, and F ⊆ Q is a set of final states. A run of A
on an ω-word σ = σ[0]σ[1] . . . is an infinite sequence � =
�[0]�[1] . . . of states, where �[0] = qI and (�[i], σ[i], �[i +
1]) ∈ δ for all i ≥ 0. We say that A accepts σ, if there is a
run � on σ such that Inf (�) ∩ F � ∅ holds, where Inf (�) is
the set of states that occurs infinitely often in �. The set of
ω-words accepted by A is called the language accepted by
A, and is denoted by L(A).

Let Spec be a specification written in LTL. We can
check the bounded strong satisfiability of Spec via the fol-
lowing procedure.

1. We obtain an NBA A = 〈2X∪Y ,Q, qI , δ, F〉 s.t. L(A) =

††In next section, we give the construction method.

SHIMAKAWA et al.: BOUNDED STRONG SATISFIABILITY CHECKING OF REACTIVE SYSTEM SPECIFICATIONS
1749

{σ | σ |= Spec} holds.
2. Let A′ = 〈2X ,Q, qI , δ

′, F〉 be the NBA obtained by re-
strictingA to only input events, where δ′ = {(q, a, q′) |
∃b (q, a ∪ b, q′) ∈ δ}. Note that L(A′) = {ã | ∃b̃〈ã, b̃〉 ∈
L(A)} holds due to the definition of δ′.

3. We check whether A′ accepts all k-loops (i.e., is k-
universally acceptable). If it is k-universally accept-
able, we conclude that Spec is k-strongly satisfiable.
Otherwise, we conclude that Spec is not k-strongly sat-
isfiable.

The construction of the NBA in step 1 can be found in [11].
For bounded universality checking in step 3, we take a SAT-
based approach.

5. SAT-Based Bounded Universality Checking for NBA

Here we describe a SAT-based method for checking the
bounded universality of an NBA. In this method, the com-
plement of the bounded universality checking problem is re-
duced to a SAT problem.

5.1 Characterization of Non-Accepted k-Loops

As a preliminary to the reduction, we characterize the k-
loops that are not accepted by NBA, based on the notion of
a run graph. This characterization is similar to that of the
sequence that is not accepted by NBA [12] (which may not
be a k-loop), and to that of the transition system accepted by
universal co-Büchi automaton [13].

Definition 6 (run graph): Let A = 〈Σ,Q, qI , δ, F〉 be an
NBA and σ = s0 . . . sl−1 (sl . . . sk)ω be a (k, l)-loop. The run
graph forA and σ is G = (V, vI , E,C): V := Q×{0, 1, . . . , k}
(the set of nodes). vI := (qI , 0) (the initial node). E :=
{((q, i), (q′, suc(i))) | (q, si, q′) ∈ δ}, where suc(i) = l if
i = k, and suc(i) = i + 1 otherwise (the set of edges).
C := {(q, i) | q ∈ F, 0 ≤ i ≤ k} (the set of final nodes).

An NBA does not accept a (k, l)-loop σ if and only if
there does not exist a run � on σ such that Inf (�) ∩ F � ∅
holds; i.e., for all runs, the number of occurrences of final
states in the run is finite. For i ≤ k, a run on σ[i . . .] from
a state q corresponds to a path in the run graph from (q, i).
Therefore the following holds:

Theorem 4: An NBA A does not accept a (k, l)-loop σ if
and only if, for all paths from the initial node in the run
graph forA and σ, the number of occurrences of final nodes
in the path is finite.

The number of final nodes in a run graph is bounded.
From this, we obtain the following result:

Lemma 1: Let d ≥ |C|. If for all paths ṽ in a run graph G
from a node v, the number of occurrences of final nodes in
ṽ is finite, then for all paths ṽ from v in G, final nodes occur
at most d times in ṽ.

Proof. We prove the contraposition. Assume that the num-
ber of occurrences of final nodes in a path is more than d.

Because d ≥ |C|, there exists a final state qc that occurs at
least twice in the path. This means that there exists a path
from qc to qc, from which it follows that there is a path on
which the final state qc occurs infinitely often. �

The property that “for all paths ṽ from v, the num-
ber of occurrences of final nodes is at most j” (denoted by
AtMost(v, j)) is characterized as follows: For v ∈ V \ C (for
v ∈ C), AtMost(v, j) holds if and only if for all successors
v′ ∈ vE, AtMost(v′, j) holds (AtMost(v′, j − 1) holds). In
addition, for all v ∈ C, AtMost(v, 0) does not hold. Based on
this idea, the following result can be proved:

Theorem 5: Let G = (V, vI , E,C) be a run graph and d ∈
N. For all paths ṽ from vI in G, final nodes occur at most d
times if and only if there exist a sequence V0,V1, . . . ,Vd of
sets of nodes such that the following are true:

1. The following condition (denoted by I(V0)) holds:

v ∈ V0 ⇐⇒
⎧⎪⎪⎨⎪⎪⎩
∀v′ ∈ vE. v′ ∈ V0 if v ∈ V \C

⊥ if v ∈ C

2. For all 0 ≤ j < d, the following condition (denoted by
T (Vj,Vj+1)) holds:

v ∈ Vj+1 ⇐⇒
⎧⎪⎪⎨⎪⎪⎩
∀v′ ∈ vE. v′ ∈ Vj+1 if v ∈ V \C

∀v′ ∈ vE. v′ ∈ Vj if v ∈ C

3. vI ∈ Vd holds (denoted by F(Vd)).

Proof. (⇒) Assume that final nodes occur at most d times
for all paths ṽ from vI in G. Let Vj be {v | final nodes occur
at most j times for all paths from v} for 0 ≤ j ≤ d. Then,
I(V0) ∧∧0≤ j<d T (Vj,Vj+1) ∧ F(Vd) holds.
(⇐) Assume that there exists a sequence V0,V1, . . . ,Vd of
sets of nodes such that I(V0) ∧ ∧0≤ j<d T (Vj,Vj+1) ∧ F(Vd)
holds, and assume that there exists a path ṽ = v0v1 . . . from
vI in G such that final nodes occur more than d times for ṽ.
Let vix be the x-th node that is in C for 1 ≤ x ≤ d+1. Because
F(Vd) and

∧
0≤ j<d T (Vj,Vj+1) hold, vi ∈ Vd for 0 ≤ i ≤ i1,

and if 1 ≤ x ≤ d, then vi ∈ Vd−x for all ix < i ≤ ix+1 holds.
Hence vid+1 ∈ V0. Because I(V0) holds, vid+1 � C should be
satisfied. This contradicts vid+1 ∈ C. �

We can summarize the characterization of non-
accepted k-loops by the following:

Theorem 6: LetA = 〈Σ,Q, qI , δ, F〉 be an NBA and k ∈ N.
For all d ∈ N, (2) implies (1), and for d ≥ (k + 1) · |F|, (1)
implies (2), where (1) and (2) are as follows:

(1) There exists a k-loop that is not accepted byA.
(2) There exists a k-loop σ such that for some sequence

V0,V1, . . . ,Vd of sets of nodes of the run graph G for
A and σ, I(V0) ∧∧0≤ j<d T (Vj,Vj+1) ∧ F(Vd) holds.

Example 3: Consider an NBA Aex illustrated in Fig. 1,
and a (1, 0)-loop σex = (ab)ω. Note thatAex does not accept
σex. The run graph for Aex and σex is illustrated in Fig. 2.

1750
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 1 NBAAex.

Fig. 2 Run graph forAex and σex.

For d = 2 (AtMost(vI , d) holds), the sequence V0,V1,V2,
which consists of the following sets, satisfies the condition
I(V0) ∧∧0≤ j<d T (Vj,Vj+1) ∧ F(Vd).

V0 = {(q2, 0), (q2, 1)}
V1 = {(q1, 0), (q2, 0), (q2, 1)}
V2 = {(q0, 0), (q0, 1), (q1, 1), (q1, 0), (q2, 0), (q2, 1)}

For d = 1 (AtMost(vI , d) does not hold), there is no sequence
V0, V1 such that the condition holds.

5.2 Reduction to SAT

We describe a reduction to SAT based on Theorem 6. That
is, for an NBA A and k, we construct a propositional for-
mula |[notAcc(A, k, d)]| such that condition (2) of Theo-
rem 6 holds if and only if |[notAcc(A, k, d)]| is satisfiable.

5.2.1 Variables

To represent a (k, l)-loop and V0,V1, . . . ,Vd, we introduce
the following variables (assuming that Σ = 2P): (a) pi for
each p ∈ P, 0 ≤ i ≤ k, which indicate whether the i-th
element si of a k-loop satisfies p ∈ si; (b) li for 0 ≤ i ≤
k, which indicate whether the i-th element follows the k-th
element; and (c) v j

(q,i) for q ∈ Q, 0 ≤ i ≤ k, 0 ≤ j ≤ d, which
indicate whether (q, i) ∈ Vj holds.

5.2.2 Constraint

To represent the concept “be a k-loop correctly”, we de-
fine the formula |[loop(k)]| :=

∨
0≤i≤k li ∧ ∧0≤i≤k(li →∧

0≤i′≤k,i′�i ¬li′).
To represent I(V0) ∧ ∧0≤ j<d T (Vj,Vj+1) ∧ F(Vd),

we define the formulae |[I(A, k)]|0, |[T (A, k)]| j, j+1 and
|[F(A, k)]|d, which indicate that I(V0), T (Vi,Vi+1) and F(Vd)
hold, respectively. Let A = 〈2P,Q, qI , δ, F〉 be an NBA and
k ∈ N. These formulae are defined in Table 1, where |[a]|i
is the formula

∧
p∈a pi ∧ ∧p�a ¬pi, indicating that the i-th

element of σ is a, and |[suc]| j(q,i) is the formula
∧

0≤i′≤k li′ →
v j

(q,i′) if i = k, v j
(q,i+1) otherwise.

The formula |[notAcc(A, k, d)]| is defined by
|[notAcc(A, k, d)]| := |[loop(k)]| ∧ |[I(A, k)]|0 ∧∧

0≤ j<d |[T (A, k)]| j, j+1 ∧ |[F(A, k)]|d.

Theorem 7: Let A = 〈Σ,Q, qI , δ, F〉 and k ∈ N. For all
d ∈ N, (2) implies (1), and for d ≥ (k + 1) · |F|, (1) implies
(2), where (1) and (2) are as follows:

(1) There exists a k-loop which is not accepted byA.
(2) |[notAcc(A, k, d)]| is satisfiable.

Theorem 8: Let A = 〈Σ,Q, qI , δ, F〉 and k, d ∈ N. The
size of |[notAcc(A, k, d)]| is O(k2 + k · d · |δ|). Checking that
A is not k-universally acceptable can be reduced to the SAT
problem for a formula of size O(k2 · |F| · |δ|).

5.3 Improvement

5.3.1 Incremental Checking

Even for small d, if |[notAcc(A, k, d)]| is satisfiable, then
there exists a k-loop that is not accepted by A (by Theo-
rems 6 and 7). The smaller the value of d, the smaller the
size of |[notAcc(A, k, d)]| and the lower the checking cost.
Therefore, it is effective to check whether |[notAcc(A, k, d)]|
is satisfiable incrementally for d = 0, 1, . . . , (k + 1) · |F|. An
incremental approach reduces the cost of finding a k-loop
that is not accepted byA.

Moreover, by using the induction technique for incre-
mental SAT-based unbounded reachability checking in [14],
[15], at the stage whereby d is less than (k + 1) · |F|, we
judge that A is k-universally acceptable. The condition of
Theorem 6 can be regarded as the reachability problem of
a transition system for which the initial condition is I, the
transition relation is T , and the final condition is F. It is
relatively straightforward to apply the induction technique
described in [14], [15] to our method.

5.3.2 Reduction Based on a Modified Run Graph

Checking that an NBA is not k-universally acceptable can
be also reduced to the SAT problem for a formula of size
O(k2 + k · |Q| · |δ|) by modifying the construction of the run
graph as follows.

We add a check bit to each node: V ′ := Q ×
{0, 1, . . . , k} × {�,⊥}. The check bit indicates whether fi-
nal nodes occurred before the node was reached in each
iteration. Then, the set of edges is as follows: E′ :=
{((q, i, b), (q′, suc(i), sucb(i, b, q′))) | (q, si, q′) ∈ δ}, where
sucb(i, b, q′) = b ∨ (q′ ∈ F) if i < k, and sucb(i, b, q′) =

SHIMAKAWA et al.: BOUNDED STRONG SATISFIABILITY CHECKING OF REACTIVE SYSTEM SPECIFICATIONS
1751

Table 1 The definitions of |[I(A, k)]|0, |[T (A, k)]| j, j+1 and |[T (A, k)]| j, j+1.

|[I(A, k)]|0
∧

q∈Q\F,
0≤i≤k

⎛⎜⎜⎜⎜⎜⎜⎜⎝v
0
(q,i) ↔

∧

(q,a,q′)∈δ
(|[a]|i → |[suc]|0(q′ ,i))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∧
∧

q∈F,
0≤i≤k

(
¬v0

(q,i)

)

|[T (A, k)]| j, j+1

∧

q∈Q\F,
0≤i≤k

⎛⎜⎜⎜⎜⎜⎜⎜⎝v
j+1
(q,i) ↔

∧

(q,a,q′)∈δ
(|[a]|i → |[suc]| j+1

(q′ ,i))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∧

∧

q∈F,
0≤i≤k

⎛⎜⎜⎜⎜⎜⎜⎜⎝v
j+1
(q,i) ↔

∧

(q,a,q′)∈δ
(|[a]|i → |[suc]| j(q′ ,i))

⎞⎟⎟⎟⎟⎟⎟⎟⎠

|[F(A, k)]|d vd
(qI ,0)

(q′ ∈ F) otherwise. We set C′ := {(q, k,�) | q ∈ Q}.
The modified run graph has the same features as the

normal run graph. The size |V ′| is also O(k · |Q|). But the
size |C′| is |Q|, while the size |C| is (k + 1) · |F|. Thus O(k2 +

k · |Q| · |δ|)-encoding is possible.

6. Complexity

In this section, we show that the bounded strong satisfi-
ability problem for a specification written in LTL and a
non-negative integer k encoded in binary (i.e., we con-
sider the size of k to be �log k� + 1) is co-NEXPTIME-
complete. In other words, (1) the complement problem
of the bounded strong satisfiability problem is in the class
NEXPTIME (the class of problems solvable in O(2p(n)) time
by a non-deterministic Turing machine, where p(n) is a
polynomial function of the input size n), and (2) all prob-
lems in NEXPTIME are reducible to the complement of the
bounded strong satisfiability problem.

6.1 Upper Bound

Theorem 9: The bounded strong satisfiability problem for
a specification written in LTL and a non-negative inte-
ger k encoded in binary is in the complexity class co-
NEXPTIME.

Proof. We prove that the complement version of the proce-
dure in Sect. 4 is accomplished in O(2p(n)) time by a non-
deterministic Turing machine. A can be constructed within
O(2|Spec|) time, even by a deterministic Turing machine, and
the size of A is also O(2|Spec|) [11], where |Spec| is the
length of Spec. Since A′ is obtained by projection, A′ can
be constructed within O(|A|) time, even by a deterministic
Turing machine, and the size of A′ is O(|A|), where |A|
is the size of A. From Theorem 8, the complement prob-
lem of the bounded universality problem for a Büchi au-
tomaton and a non-negative integer k encoded in unary is
in NP. The complement version of Step 3 is then accom-
plished within O(p(|A′| + k)) time by a non-deterministic
Turing machine. Therefore, we can solve the complement
problem of the bounded strong satisfiability problem in
O(2p(|Spec|+(�log k�+1))) time by a non-deterministic Turing ma-
chine, and we can conclude that the bounded strong satisfi-
ability problem is in the class co-NEXPTIME. �

Fig. 3 The EXP-square tiling problem.

6.2 Lower Bound

In this subsection, we show that the bounded strong sat-
isfiability problem is co-NEXPTIME-hard, by providing
polynomial time reduction from the EXP-square tiling
problem (see, e.g., [16], [17]) to the complement of the
bounded strong satisfiability problem. The tiling problem
is NEXPTIME-complete.

Definition 7 (EXP-square tiling problem): The EXP-
square tiling problem is as follows: For a given (T,H,V,
tinit, tfinal,m), where T is a finite set of tile types, H,V ⊆ T×T
are horizontal and vertical adjacency constraints, tinit ∈ T is
the initial tile type, tfinal ∈ T is the final tile type, and m is a
natural number encoded in unary, determine whether there
exists an assignment function f : [0, (2m − 1)] × [0, (2m −
1)]→ T such that the following conditions are satisfied:

1. f (0, 0) = tinit

2. f ((2m − 1), (2m − 1)) = tfinal

3. for any 0 ≤ j ≤ 2m − 1, 0 ≤ i < 2m − 1, (f (i, j), f (i +
1, j)) ∈ H holds.

4. for any 0 ≤ i ≤ 2m − 1, 0 ≤ j < 2m − 1, (f (i, j), f (i, j +
1)) ∈ V holds.

As shown in Fig. 3, the tiling grid has 2m × 2m points.
Intuitively, this leads to the following question: “For a given
tiling grid, can a tile be assigned to each point (i, j) for which
0 ≤ i < 2m and 0 ≤ j < 2m, satisfying conditions 1–4?”

1752
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Condition 1 is the condition for the initial tile, and states that
the tile of type tinit is assigned to the leftmost, uppermost
point. Condition 2 is the condition for the final tile, and
states that a tile of type tfinal is assigned to the rightmost,
lowermost point. Condition 3 is the condition for horizontal
lines, and states that horizontally neighboring tiles satisfy
the horizontal adjacency constraint H. Condition 4 is the
analogous condition for vertical lines.

We provide a polynomial time reduction from the EXP-
square tiling problem to the complement of the bounded
strong satisfiability problem. That is, for the EXP-square
tiling problem (T,H,V, tinit, tfinal,m), we construct a for-
mula ϕtiling and a non-negative integer ktiling such that
∃ã(ã is ktiling-loop and ∀b̃(〈ã, b̃〉 |= ¬ϕtiling)) holds if and
only if the answer to the tiling problem (T,H,V, tfinal, tfinal,
m) is affirmative.

In this reduction, we relate “there exists a tiling assign-
ment” in the tiling problem to “there exists a sequence of
sets of input events that is ktiling-loop.” Furthermore, “the
tiling assignment satisfies the conditions” is translated to
“the corresponding sequence of sets of input events does
not satisfy ϕtiling for any infinite sequence of sets of out-
put events”. That is, a tiling assignment is represented by
a sequence ã of sets of input events, and the conditions in
the tiling problem are represented by ∀b̃(〈ã, b̃〉 |= ¬ϕtiling),
universally quantified on infinite sequences of sets of output
events.

In the representation of conditions 1–3, we do not re-
quire meta-level universal quantification; i.e., conditions 1–
3 are represented by pure LTL formulae over input events
only. To represent condition 4, however, we do require
meta-level universal quantification. The representation of
the conditions is based on that of the reduction from another
tiling problem (which is EXPSPACE-complete) to the (un-
bounded) strong satisfiability problem in [6].

(a) Input events

To relate a sequence of sets of input events to a tiling assign-
ment, we introduce the following input events.

• xt for each t ∈ T : “the tile of type t is placed on the
point (i, j)” is translated to “the input events xt occur at
time i + (2m) · j.”
• end: “tiling is finished at the point (i, j)” is related to

“end occurs at time i + (2m) · j.”
• c0, . . . , c2m−1: We let these events function as a 2m bit

counter, which keeps track of the amount of time that
has passed. The lower (higher) m bits represent a col-
umn (row) of the tiling grid.

(b) Output events

We introduce the following output events.

• y0, . . . , ym−1: These are used to identify a column.

(c) The formula ϕtiling

The formula ϕtiling is the negation of the conjunction of the

formulae (1)–(6) listed below. Here we use the following
abbreviations:

c̄ = 22m − 1 ≡
∧

0≤i<2m

ci

c̄low = 2m − 1 ≡
∧

0≤i<m

ci

c̄high = 2m − 1 ≡
∧

m≤i<2m

ci

c̄low = ȳ ≡
∧

0≤i<m

(ci ↔ yi)

• The constraint for 2m bit counters c0, . . . , c2m−1.
⎛⎜⎜⎜⎜⎜⎜⎝
∧

0≤i<2m

¬ci

⎞⎟⎟⎟⎟⎟⎟⎠

∧G

⎛⎜⎜⎜⎜⎜⎜⎝¬end →
∧

0≤i<2m

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝ci ⊕
∧

0≤ j<i

c j

⎞⎟⎟⎟⎟⎟⎟⎠↔ Xci

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

This represents the statement “the value of c̄ is initially
0, and is incremented at each time step if tiling is not
finished”, which means that the value of c̄low (c̄high) rep-
resents the current column (row) number.
• Single assignment of tile types.

∧

t∈T
G

⎛⎜⎜⎜⎜⎜⎝xt →
∧

t′�t

¬xt′

⎞⎟⎟⎟⎟⎟⎠ ∧G

⎛⎜⎜⎜⎜⎜⎝¬end →
∨

t∈T
xt

⎞⎟⎟⎟⎟⎟⎠ (2)

This represents the statement “at most one tile type is
assigned to each grid point, and if tiling is not finished,
some tile type must be assigned.”
• The constraint for condition 1.

xtinit (3)

This represents the statement “the initial tile of type tinit

is placed on the point (0, 0).”
• The constraint for condition 2.

¬endU(¬end ∧ c̄ = 22m − 1 ∧ xtfinal ∧ XGend) (4)

This represents the statement “the final tile of type tfinal

is placed on the point (2m − 1, 2m − 1) (which corre-
sponds to the 22m − 1-th time point), and tiling is fin-
ished”.
• The constraint for condition 3.

G

⎛⎜⎜⎜⎜⎜⎜⎝c̄low � 2m − 1 ∧ ¬end →
∨

(t,t′)∈H
(xt ∧ Xxt′)

⎞⎟⎟⎟⎟⎟⎟⎠

(5)

This represents the statement “if tiling is not finished
and the current point is not in the (2m − 1)-th column
(i.e., a point exists to the right of it), then the tile at
the current point and the tile at the point to the right
of it (which corresponds to the next time point) satisfy
condition H”.

SHIMAKAWA et al.: BOUNDED STRONG SATISFIABILITY CHECKING OF REACTIVE SYSTEM SPECIFICATIONS
1753

• The constraint for condition 4.
⎛⎜⎜⎜⎜⎜⎜⎝
∧

0≤i<m

G(yi ↔ Xyi)

⎞⎟⎟⎟⎟⎟⎟⎠→

G

⎛⎜⎜⎜⎜⎜⎜⎝(c̄low = ȳ ∧ c̄high � 2m − 1 ∧ ¬end)→

∨

(t,t′)∈V
(xt ∧ X((c̄low � ȳ)U(c̄low = ȳ ∧ xt′)))

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

This represents the statement “if the value of ȳ behaves
as a constant, for any current point in the column indi-
cated by ȳ, if the current point is not in the 2m−1-th row
and tiling is not finished, the tile at the current point
and the tile at the point beneath it (which corresponds
to the time point after 2m time units) satisfy condition
V”. The point beneath the current one is characterized
by the phrase “the first time point after the current point
at which the value of c̄low (the column number) again
becomes ȳ”. Because y0, y1, . . . , ym−1 are output events,
∀b̃(〈ã, b̃〉 |= (6)) represents the statement “for any col-
umn, tiles in the column satisfy condition V”, which
means “any tiles satisfy condition V”.

(d) ktiling

We define ktiling = 22m (encoded as 2m + 1 bits). From the
formulae (1) and (4), only input sequences that are (22m,
22m)-loops are allowed. The elements from the 0-th to the
22m − 1-th correspond to the points of the tiling grid, and
only the 22m-th element contains the event end.

Theorem 10: The bounded strong satisfiability problem
for a specification written in LTL and a non-negative inte-
ger k encoded in binary is co-NEXPTIME-hard.

Proof. As described above, we can construct a formula
ϕtiling and an integer ktiling such that the answer to the EXP-
square tiling problem is affirmative if and only if the cor-
responding ϕtiling is not ktiling-strongly satisfiable. The size
of ktiling encoded in binary is linear and the size of ϕtiling is
polynomial in the size of the problem (T,H,V, tinit, tfinal,m).
Then, ktiling and ϕtiling can be constructed in polynomial time.
Therefore, the EXP-square tiling problem is reducible to the
complement of the bounded strong satisfiability problem.
Because the EXP-square tiling problem is NEXPTIME-
complete, the bounded strong satisfiability problem is co-
NEXPTIME-hard. �

6.3 Discussion

We discuss the complexity of the bounded strong satisfia-
bility problem in relation to that of the satisfiability prob-
lem, the (unbounded) strong satisfiability problem, and the
realizability problem. The complexity of the satisfiabil-
ity problem for specifications written in LTL is PSPACE-
complete [18], the complexity of the (unbounded) strong

satisfiability problem for such specifications is EXPSPACE-
complete [8], and the complexity of the realizability prob-
lem for such specifications is 2EXPTIME-complete [8].
PSPACE (EXPSPACE) is the complexity class of problems
solvable in O(p(n)) space (O(2p(n)) space) by a deterministic
Turing machine, and 2EXPTIME is the complexity class of
problems solvable in O(22p(n)

) time by a deterministic Turing
machine. The relationship between these classes is as fol-
lows:

PSPACE ⊆ co-NEXPTIME

⊆ EXPSPACE ⊆ 2EXPTIME

Therefore, the bounded strong satisfiability problem is more
difficult than the satisfiability problem, and is easier than, or
of equal difficulty to, the strong satisfiability problem and
the realizability problem.

7. Experiments

We implemented our method and compared the execution
time with that of (unbounded) strong satisfiability†.

Our implementation (denoted by BSS) is as follows.
Steps 1 and 2 in the procedure described in Sect. 4 are
based on [19]. The k-universality checking of Step 3 is
accomplished incrementally for d = 0, 1 . . . , as described
in Sect. 5.3.1. We use MiniSat 2.2 [20] as the SAT solver.
To check for (unbounded) strong satisfiability, denoted by
SS, we check for (unbounded) universality. Universality
is checked using the antichain-based technique reported in
[21].

Table 2 lists the total checking times and the checking
times of bounded universality or universality for the n-floors
elevator specification Elen in [22], and Elea

n includes the fair-
ness assumption††.

In all tests of Elea
n, the result was “yes”. This indicates

that our method can handle larger specifications, and show
that for any simple input pattern (represented by a k-loop)
there is a response that satisfies the specification in a rea-
sonable period of time.

In all tests of Elen, the result was “no”. This indicates
that our method can handle larger specifications more ef-
ficiently, and can obtain the simple input pattern of a de-
ficiency in Elen. Because bounded strong satisfiability is a
necessary condition for strong satisfiability, our method also
shows that Elen is not strongly satisfiable for n > 5, which
the strong satisfiability checker failed to indicate. Moreover,
bounded strong satisfiability is a necessary condition for re-
alizability, and a counterexample of bounded strong satisfi-
ability (i.e., an input pattern that cannot satisfy the specifi-
cation) can be considered a counterexample of realizability.
Hence, our method also successfully shows that Elen (n ≤ 7)

†All experiments were performed on a machine with an In-
tel(R) Core(TM) i7-3820 3.60 GHz processor and 32 GB of RAM.
††The specifications Elen and Elea

n have 3n + 6 atomic proposi-
tions (|X| = n+ 2, |Y | = 2n+ 4). The number of temporal operators
in Elen and Elea

n are 6n − 1 and 7n, respectively.

1754
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Table 2 The checking times (in seconds) for Elen and Elea
n. The total checking times are given in the

column denoted “total”, and the checking times for bounded universality or universality are given in the
column denoted by “(b).u”. The notation “T/O” corresponds to a calculation that required more than
1000 seconds, and “T/O/A” corresponds to time out while constructing NBA.

2 3 4 5 6 7 8
k judgment (b).u total (b).u total (b).u total (b).u total (b).u total (b).u total (b).u total

Elea
n BSS 0 “Yes” 0.00 0.02 0.01 0.03 0.11 0.15 1.37 1.66 23.01 27.98 453.20 533.35 T/O/A

BSS 2 “Yes” 0.02 0.04 0.24 0.26 5.20 5.27 125.23 125.54 T/O
BSS 4 “Yes” 0.16 0.18 4.26 4.27 245.24 245.30 T/O
SS - “Yes” 0.90 0.91 201.65 201.67 T/O

Elen BSS 0 “No” 0.00 0.01 0.01 0.02 0.06 0.09 0.52 0.83 7.62 13.08 251.20 341.19 T/O/A
SS - “No” 0.00 0.01 0.10 0.11 2.02 2.06 50.99 51.29 T/O

is not unrealizable. The realizability checkers Acacia+ [23]
and Unbeast [24] cannot handle even Ele4. (The checking
times of Acacia+ and Unbeast for Ele3 were 540.97 sec-
onds and over 1000 seconds, respectively. For Ele4, Aca-
cia+ also was not able to check realizability within 1000
seconds.) Our method can therefore detect deficiencies in
practical specifications that existing realizability checkers
cannot deal with.

These successful results result from the restriction of
input patterns to k-loops, the usage of an efficient SAT solver
and, importantly, our encoding method. In our encoding
method, we bound the number of occurrences of final nodes
by d. Then, k-universality checking can be accomplished
incrementally for d = 0, 1, . . . (as described in Sect. 5.3.1).
In the case of Elen, a counterexample is found when d = 0.

8. Discussion

Encoding methods for bounded model checking. For
bounded model checking, SAT encoding methods of prob-
lems that satisfy specifications represented by LTL, very
weak alternating Büchi automata (VWABA) and weak al-
ternating Büchi automata (WABA) can be found in [4],
[25], [26]. LTL and VWABA are less expressive than NBA,
which was used in this work. WABA and NBA are of
equal expressiveness. Indeed, bounded universality check-
ing for NBA can also be accomplished via WABA, us-
ing the WABA encoding method of [26]. However, our
method is more efficient than the WABA approach. The
size of the propositional formulae of the WABA approach is
O(k2+k·|Q|2 ·|δ|), whereas we have provided O(k2+k·|Q|·|δ|)-
encoding.
Bounded realizability. In the methods described in [27],
[28], to simplify the procedures for realizability checking,
the (non-)acceptance condition of automata is bounded, as
with our method. That is, the condition that the number of
occurrences of final states is “at most d”, instead of “finite”
is used as a (non-)acceptance condition of the automata.
An incremental approach is also taken. However, the size
of witnesses or counterexamples is not bounded in the ap-
proach described in [27], [28].

In [13], the notion of bounded realizability and a check-
ing method using a SMT solver were reported. Bounded
realizability is the property that there exists a reactive sys-
tem that acts as a transition system of k states, such that all

behaviors satisfy the specification. In bounded realizabil-
ity checking, transition systems of k states are searched. In
contrast, with our method, k-loops (which are simpler) are
searched. Because of this, our method can detect typical
simple deficiencies in larger specifications.

9. Conclusion

We introduced the notion of bounded strong satisfiability
and a checking method for this property, to detect simple de-
ficiencies in reactive system specifications. In our method,
we construct an NBA that accepts input sequences for which
there is a response that satisfies a specification, then check
whether the NBA is k-universally acceptable using a SAT
solver. We show that the bounded strong satisfiability prob-
lem for a specification in LTL is co-NEXPTIME-complete.
This implies that the bounded strong satisfiability problem
is easier than or of equal difficulty compared with the real-
izability problem and the strong satisfiability problem. We
implemented our method and demonstrated that it can han-
dle larger specifications than exisiting checking techniques
for other properties, and that it can also detect simple de-
ficiencies efficiently. We believe that our methods are of
practical use in the requirement analysis phase in develop-
ing safety critical systems.

References

[1] D. Jackson, Software Abstractions: Logic, Language, and Analysis,
The MIT Press, 2006.

[2] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable
specifications of reactive systems,” Proc. 16th International Collo-
quium on Automata, Languages, and Programming, LNCS, vol.372,
pp.1–17, Springer, 1989.

[3] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
Proc. 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp.179–190, ACM, 1989.

[4] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” Proc. 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems,
LNCS, vol.1579, pp.193–207, Springer, 1999.

[5] R. Mori and N. Yonezaki, “Several realizability concepts in reac-
tive objects,” Proc. Information Modeling and Knowledge Bases IV:
Concepts, Methods and Systems, pp.407–424, IOS Press, 1993.

[6] M. Shimakawa, S. Hagihara, and N. Yonezaki, “Complexity of
strong satisfiability problems for reactive system specifications,”
IEICE Trans. Inf. & Syst., vol.E96-D, no.10, pp.2187–2193, Oct.
2013.

SHIMAKAWA et al.: BOUNDED STRONG SATISFIABILITY CHECKING OF REACTIVE SYSTEM SPECIFICATIONS
1755

[7] R. Mori and N. Yonezaki, “Derivation of the input conditional
formula from a reactive system specification in temporal logic,”
Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems,
LNCS, vol.863, pp.567–582, Springer, 1994.

[8] R. Rosner, Modular Synthesis of Reactive Systmes, Ph.D. thesis,
Weizmann Institute of Science, 1992.

[9] S. Hagihara and N. Yonezaki, “Completeness of verification meth-
ods for approaching to realizable reactive specifications,” Proc.
1st Asian Working Conference on Verified Software, AWCVS ’06,
UNU-IIST, vol.348, pp.242–257, 2006.

[10] W. Thomas, “Automata on infinite objects,” in Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Semantics
(B), pp.133–192, Elsevier and MIT Press, 1990.

[11] H. Tauriainen, “On translating linear temporal logic into alternat-
ing and nondeterministic automata,” Research Report A83, Helsinki
University of Technology, Laboratory for Theoretical Computer Sci-
ence, Espoo, Finland, 2003.

[12] F. Klaedtke, “Complementation of Büchi automata using alterna-
tion,” Automata, Logics, and Infinite Games, LNCS, vol.2500,
pp.61–78, Springer, 2001.

[13] S. Schewe and B. Finkbeiner, “Bounded synthesis,” Proc. 5th Inter-
national Symposium on Automated Technology for Verification and
Analysis, LNCS, vol.4762, pp.474–488, Springer, 2007.

[14] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety prop-
erties using induction and a SAT-solver,” Proc. Third International
Conference on Formal Methods in Computer-Aided Design, LNCS,
vol.1954, pp.108–125, Springer, 2000.

[15] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Piterman, and M.Y.
Vardi, “SAT-based induction for temporal safety properties,” Electr.
Notes Theor. Comput. Sci., vol.119, no.2, pp.3–16, 2005.

[16] B.S. Chlebus, “From domino tilings to a new model of computa-
tion,” Symposium on Computation Theory, pp.24–33, 1984.

[17] P.V.E. Boas, “The convenience of tilings,” Complexity, Logic, and
Recursion Theory, Lecture Notes in Pure and Applied Mathematics,
vol.187, pp.331–363, Marcel Dekker Inc, 1997.

[18] A.P. Sistla and E.M. Clarke, “The complexity of propositional linear
temporal logics,” J. ACM, vol.32, no.3, pp.733–749, 1985.

[19] T. Aoshima, K. Sakuma, and N. Yonezaki, “An efficient verification
procedure supporting evolution of reactive system specifications,”
Proc. International Workshop on Principles of Software Evolution,
IWPSE 2001, pp.182–185, 2001.

[20] N. Eén and N. Sörensson, “An extensible SAT-solver,” Proc. 6th In-
ternational Conference on Theory and Applications of Satisfiability
Testing, LNCS, vol.2919, pp.502–518, Springer, 2003.

[21] M.D. Wulf, L. Doyen, N. Maquet, and J.F. Raskin, “Antichains:
Alternative algorithms for LTL satisfiability and model-checking,”
Proc. 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, vol.4963, pp.63–77,
Springer, 2008.

[22] T. Aoshima and N. Yonezaki, “Verification of reactive system spec-
ification with outer event conditional formula,” Proc. International
Symposium on Principles of Software Evolution, ISPSE 2000,
pp.195–199, 2000.

[23] A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.F. Raskin, “Aca-
cia+, a tool for LTL synthesis,” Proc. 24th International Confer-
ence on Computer Aided Verification, LNCS, vol.7358, pp.652–657,
Springer, 2012.

[24] R. Ehlers, “Unbeast: Symbolic bounded synthesis,” Proc. 17th Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS, vol.6605, pp.272–275, Springer,
2011.

[25] D. Sheridan, “Bounded model checking with SNF, alternating au-
tomata, and Büchi automata,” Electron. Notes Theor. Comput. Sci.,
vol.119, no.2, pp.83–101, 2005.

[26] K. Heljanko, T.A. Junttila, M. Keinänen, M. Lange, and T. Latvala,
“Bounded model checking for weak alternating Büchi automata,”
Proc. 18th International Conference on Computer Aided Verifica-

tion, LNCS, vol.4144, pp.95–108, Springer, 2006.
[27] E. Filiot, N. Jin, and J.F. Raskin, “An antichain algorithm for LTL re-

alizability,” Proc. 21st International Conference on Computer Aided
Verification, LNCS, vol.5643, pp.263–277, Springer, 2009.

[28] R. Ehlers, “Symbolic bounded synthesis,” Proc. 22nd International
Conference on Computer Aided Verification, LNCS, vol.6174,
pp.365–379, Springer, 2010.

Masaya Shimakawa received the B.E. and
M.E. degrees in computer science from Tokyo
Institute of Technology, Tokyo, Japan, in 2004
and 2006, respectively. His research interests
include temporal logic, automata theory and for-
mal verification.

Shigeki Hagihara received the B.E., M.E.
and D.E. degrees in computer science from
Tokyo Institute of Technology in 1993, 1995 and
2000, respectively. From 2000 to 2001, he was
a research associate in Research for the Future
Program, Japan Society for the Promotion of
Science. Since 2001, he has been an assistant
professor in Department of Computer Science,
Tokyo Institute of Technology. His research in-
terests include proof methods of non-classical
logics such as temporal logics, epistemic log-

ics, etc., and software verification, especially, specification analysis and
model-checking for reactive systems, and security protocol analysis. He is
a member of Japan Society for Software Science and Technology.

Naoki Yonezaki received B.E., M.E. and
D.E. degrees from Tokyo Institute of Technol-
ogy in 1972, 1974 and 1977, respectively. He
has been a Professor of Tokyo Institute of Tech-
nology since 1991. He was also a Professor of
Japan Advanced Institute of Science and Tech-
nology from 1991 to 1995. His research in-
terests are formal approach to construction and
analysis of complex systems, including algo-
rithms, verification of software, verification of
security and formal analysis of biological sys-

tems. Currently he is a dean of the School of Information Science and
Engineering, and the Director General of Inter-departmental Organization
for Informatics in Tokyo Institute of Technology. He is also the head of the
Information Technology Specialist educational program (IT Bauhaus), and
was the head of the joint education program for Translational Biomedical
Informatics with Tokyo Medical and Dental University. He has been the
editor in chief of Computer Software, the main Journal of Japan Society
of Software Science and Technology (JSSST) from 2000 to 2004. He also
served as a program committee chair of IWTS99, IWPSE01, etc. He was
awarded a fellowship by JSSST in 2008.

