
1914
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

LETTER

CRRP: Cost-Based Replacement with Random Placement for
En-Route Caching∗

Sen WANG†, Nonmember, Jun BI†a), Member, and Jianping WU†, Nonmember

SUMMARY Caching is considered widely as an efficient way to reduce
access latency and network bandwidth consumption. En-route caching,
where caches are associated with routing nodes in the network, is proposed
in the context of Web cache to exploit fully the potential of caching. To
make sensible replacement and placement decision for en-route caching,
traditional caching schemes either engage computation-intensive algorithm
like dynamic programming or suffer from inferior performance in terms
of average access latency. In this article, we propose a new caching
scheme with cost-based replacement and random placement, which is
named CRRP. The cost-based replacement of CRRP introduces probing
request to timely perceive cost change and the random placement is in-
dependent of current caching state, of O(1) computational complexity of
placement decision. Through extensive simulations, we show that CRRP
outperforms a wide range of caching schemes and is very close to the tradi-
tional dynamic-programming-based algorithm, in terms of average access
delay.
key words: Web caching, en-route caching, cache policy

1. Introduction

Caching has been shown as an efficient way to reduce net-
work bandwidth consumption and propagation latency [3].
The authors of a previous work [5] first tried to provide
caches in a hierarchical arrangement in the network in or-
der to significantly reduce the network bandwidth. In such
a hierarchical architecture, N. Laoutaris et al. [1] proposed
a series of meta algorithms which determine how to place
an object along its request path. The proposed LCD (Leave
Copy Down) performs very well against the de facto LCE
(Leave Copy Everywhere) and others, under all studied sce-
narios [1]. However, these meta algorithms are independent
of object replacement policy, and no cache cooperation was
considered.

Going further on along the direction of hierarchical
caching, a new caching architecture is developed, which is
called en-route web caching [6]. In en-route web caching,
each router has been enabled caching capability and is able
to cache files passing through it. Requests are routed di-
rectly towards the source, and en-route caches check if a
copy of the requested file is present at the local cache, and

Manuscript received November 29, 2013.
Manuscript revised February 25, 2014.
†The authors are with the Institute for Network Sciences and

Cyberspace and Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing, 100084
China.

∗This research is supported by the National High-tech R&D
Program (“863” Program) of China (No.2013AA010605) and the
National Science Foundation of China (No.61161140454).

a) E-mail: junbi@tsinghua.edu.cn (Corresponding author)
DOI: 10.1587/transinf.E97.D.1914

respond directly if found. Tang et al. [4] showed that, in the
en-route web caching system, object management could be
deduced to a cooperative optimization problem where object
replacement is integrated with object placement. A dynamic
programming algorithm is provided to solve the optimiza-
tion problem. The server (or intermediate cache) executes it
for each request with the computational complexity of O(k2)
where k is the number of nodes on the request path. Due
to the complexity of solving the optimization problem, the
applicable scope of this scheme is limited. K. Li et al. [7]
extends the previous work of Tang et al. [4] from the lin-
ear array along the request path to the tree rooted at the file
server. The proposed scheme significantly increases com-
putational complexity since a server needs to compute the
optimal placement for the entire tree. However, the per-
formance gain is quite limited. W. Li et al. [3] proposes
a more general theoretical model to analyze the data ac-
cess cost in cooperative caching systems, and provide both
a division-based algorithm and a heuristic greedy algorithm
to reduce the computational complexity of the dynamic pro-
gramming algorithm proposed in the previous work [4]. The
proposed division-based algorithm is applicable only within
some conditions. The performance of the heuristic greedy
algorithm is quite inferior to that in the previous work [4].

In this study, in order to lower the computational com-
plexity and maintain high performance as well, we propose a
new caching scheme with cost-based replacement and ran-
dom placement, named CRRP, for en-route caching. The
cost-based replacement of CRRP involves probing request
to perceive cost change, and the random placement is in-
dependent of current caching state, of O(1) computational
complexity of placement decision. In the rest of this article,
we begin with a description of the system model concerned
in the following sections. Section 3 presents the design de-
tails of CRRP. In Sect. 4, we evaluate CPPP by extensive
simulations on NS3.

2. System Model

For Web caching, the network can be modeled with a undi-
rected graph G(V, E), where V is the set of nodes (routers)
enabled with caching capability and E is the links between
nodes. Every server or client is attached to a node in V . Re-
quests are issued by clients for Web objects (or content ob-
jects) maintained by servers. We assume that each web ob-
ject is served by exactly one server. Requests are forwarded
to servers, along their regular routing paths. Routing paths

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

LETTER
1915

Fig. 1 The spanning tree rooted at a server.

Fig. 2 System model for en-route caching.

from all the nodes to a given server form a tree topology like
the topology shown in Fig. 1.

In en-route caching, request is always served by the
first node caching the requested object along the routing
path. For example, a request issued by a client connected
to node r8 is forwarded along the path {r8, r5, r3, s} to the
server s. The dark nodes are those nodes which contains the
requested object of the request. Therefore, when the request
arrives at node r3, it would be responded with the cached
copy in r3’s local cache. We assume the content object goes
back to the client along the same path of the request. While
the content object goes back to the client, there are two de-
cisions to be made, namely: 1) Which nodes along the path
should cache it (object placement problem); 2) If it is needed
to evict some objects at a certain node to make space for
this object, which objects should be evicted (object replace-
ment problem). Traditionally, these two problems are con-
sidered separately. For the first problem, the default LCE,
LCD [1] and MODULO [6] are among the proposed op-
tions; for the second problem, LRU (Least Recently Used)
and LFU (Least Frequently Used) are two alternative object
replacement policies.

To solve the two problems for a perspective of opti-
mization, we need to take into account many factors, such as
object access frequency and communication costs between
nodes. Since the two problems are only about those nodes
along request path, the topology concerned is line structure
as Fig. 2 shows. In the linear topology, node n is where a
request first enters the network, and node 0 is where the re-
quested object is first found along the routing path of the
request. For object O, each link is associated with a value
c(e,O) which represents the cost of sending a request for
object O and the object back on the link e. The cost could
be interpreted into such as network latency, bandwidth con-
sumption and so on. In the case of network latency, every
node measures the network latencies of all its links. Suppose
the network latency of link e is d(e), the cost c(e,O) of object
O is set to 2 · d(e), considering both the transmissions of the
request and object back. In the case of bandwidth consump-
tion, the cost c(e,O) of object O is the size of the object,

denoted by s(o), neglecting the bandwidth consumption of
request packet. The cost of sending object O along a path
is defined simply as the sum of the costs of the links of the
path. For example, sending object O from node 0 to node
i, the path cost is represented as m(O) =

∑i−1
j=0 c(e j, j+1,O).

The access frequency of object O perceived at node i is de-
noted as fi(O). We define a placement P as a subset of the
n nodes {1, 2, . . . , n} along the path. The size of the place-
ment P is denoted as k, and the elements are represented as
1 ≤ p1 ≤ p2 ≤ · · · ≤ pk ≤ n. The cost saving of caching
object O at node i is calculated by the production of the ac-
cess frequency fi(O) and the path cost from node 0 to node
i which is denoted as mi(O), namely fi(O) · mi(O). Suppose
that it is needed to evict those objects {O1,O2, . . . ,Oj} to
make space for caching object O at node i, then the cost loss
of caching object O is computed as the sum of the cost sav-
ings of those objects, namely

∑ j
k=1 fi(Ok) · mi(Ok) ≡ li(O).

Concerning the total cost saving of a placement P, it should
be noted that these nodes are dependent with each other
in a sense that placing an object in one node would re-
sult in no request of this object going further to upstream
nodes. The total cost saving of a placement P is given by
∑k

j=1(fp j (O) − fp j+1 (O)) · mpj (O). The fpk+1 (O) is involved
and set to be 0 for brevity of exposition. The total cost loss
is given by

∑k
j=1 lp j (O). The goal is to maximize the total

cost gain
∑k

j=1((fp j (O) − fp j+1 (O)) · mpj (O) − lp j (O)).

3. Cost-Based Replacement with Random Placement

In the previous work of Tang et al. [4], a dynamic program-
ming solution is first introduced to solve the joint object
placement and replacement problem formulated in the last
section. As mentioned previously, due to the complexity
of solving the optimization problem, the applicable scope
of this scheme is limited. However, this work provides an
insightful and inspirational theorem to our approach, which
says that the optimal placement with locations p1, p2, . . . , pk

satisfies the following inequalities:

fp j (O) · mpj (O) ≥ lp j (O)

Interested readers are referred to [4] for its proof. The left
part of the inequalities is the cost saving at node pj. The
right part is the cost loss for evicting other objects at node
p j, in other words, the sum of cost savings of those objects.
This theorem can be interpreted into that a node is in the
optimal placement only if placing the object in this node is
locally beneficial which means the cost saving of the object
outweighs the cost loss concerning the single node.

Based on this insight, we try to reduce the complexity
of solving the joint placement and replacement problem by
proposing a decoupled solution. We propose a cost-based
replacement algorithm with cost-probing mechanism for in-
dividual caches. The cost-probing mechanism allows in-
dividual caches to timely perceive the cost change of each
object. It gives our scheme an advantage in comparision
with the dynamic programming solution [4]. For the dy-
namic programming solution [4], once a decision is made,

1916
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

there is no mechanism to perceive the changes of the condi-
tions which result in the decision. For example, an eviction
of upper placement will not trigger reevaluations of lower
placements. In term of placement problem, we compare a
series of low-complexity placement algorithms and find that
the random placement works best with the aforementioned
cost-based replacement algorithm. We name the combina-
tion of the cost-based replacement and random placement
CRRP. In the following subsections, we present respectively
the two essential parts of CRRP, namely the cost-based re-
placement and random placement.

3.1 Cost-Based Replacement

To decide which objects to replace for a newly-coming ob-
ject, we adopt a similar replacement algorithm like the one
first proposed in the context of single Web caching [2]. It
is based on access frequency and sensitive to the change
of access frequency which is crucial to counter the inter-
impact between replacements of different caches. The func-
tion f (O)·m(O)

s(O) (s(O) is the size of the object) is used as the
only criterion to select the candidates to evict. Specifically,
the proposed replacement algorithm greedily selects the ob-
jects with the smallest f (O)·m(O)

s(O) to evict until there is enough
space for a newly-coming object. In order to assessing the
access frequency of an object, we use the same sliding-
window approach proposed in [2] which can timely perceive
the change of access frequency. Specifically, for each object
O, up to N most recent reference times are recorded, and
the access frequency is calculated by f (O) = N

t−tN
where t is

the current time, and tN is the Nth most recently referenced
time. In our simulations, N is set to 3 as suggested in the
previous work of Scheuermann et al. [2].

As mentioned earlier, placements at different nodes af-
fect each other in terms of costing saving. For example,
in Fig. 2, caching object at node i could reduce the access
frequency perceived by upstream nodes (e.g., node 1). In
the meanwhile, it reduce the costing saving at downstream
nodes (e.g., node n) due to the reduction of m(O). In order
to make replacement decision locally, it is crucial to timely
perceive the changes of m(O) and f (O). At each entering
point of request, say node n in Fig. 2, we mark a request
as a probe request with a probability of q to perceiving the
change of m(O) of nodes all along to the content server. A
marked request will go further to the content server even if
there are some intermediate nodes having the requested ob-
ject. When the object travels back, it would not be placed
at any node. Instead it would record the m(O) from the last
node which has the object and inform nodes on its way the
current m(O). Specifically, a variable is associated with the
object and set to 0 initially when it is first generated at con-
tent server. As the object travels through a link, the variable
is added by the cost of the link. When it arrives at a node,
the node uses the variable as the cost saving of the object. If
the node has the object cached locally, the variable is set to
0 before leaving.

3.2 Random Placement Strategy

We propose a random placement strategy to work with our
cost-based replacement policy. This placement strategy is
independent of current caching state, of O(1) computational
complexity and easy to implement. In term of performance,
an advantage of the random placement is that it gives every
node along the request path the same caching opportunity in
a less aggressive way than those of other schemes such as
LCE. As described before, this placement strategy may not
result in an optimal solution. We resort to our local cost-
based replacement policy with cost-probing mechanism to
correct the suboptimal placement decision made by the ran-
dom placement strategy.

The proposed random placement strategy works as fol-
lows. Along the path back to the requester, one node is
randomly selected as the place to cache the object. A vari-
able with an initial value of 0, called HopCount, is attached
to each request to record the hop number the request has
passed. When the request is responded by the content server
or an intermediate router, a random number within the range
[1,HopCount] is selected and embedded in the response
packet to indicate which node should cache the object along
the path back. As the requested object goes back, the hop
number it has passed is recorded. When it arrives at the
indicated node, it is cached there. Besides, like the probing
process, a variable is associated with the object to record the
m(O) from the starting node in order to inform the indicated
node. This random placement strategy has two advantages.
The first is that it gives the same opportunity to each cache
on the path to test the eligibility of the object via competition
on cost saving. The second is that it is more conservative
than other strategies such as LCE since only one node is se-
lected. This placement strategy together with the proposed
cost-based replacement policy is named CRRP.

We also try two other placement strategies to compare
with CRRP. The first placement strategy is the LCE. As the
requested object O goes back to the requester, the object is
inserted into every cache it traverses. The costing saving
m(O) is set to the cost of the last-hop link, since the last-
hop upstream node has cached the same object. We named
this strategy as CR-LCE. The second placement strategy is
the placement strategy proposed in the previous work of
Bhattacharjee et al. [6] which is a simple placement opti-
mization to LCE. On the path from the cache (or server) to
the requester, the object is cached at the nodes that are a
fixed number (called cache radius) of hops apart. Thus, an
object ends up being distributed in concentric “rings” cen-
tered on the content server where it resides. The cache ra-
dius is set to 3 in our simulations like that in the previous
work [6]. We name this strategy CR-MOD.

4. Evaluation

Besides CR-LCE and CR-MOD, we compare by simulation
the proposed CRRP with existing other schemes, such as

LETTER
1917

Table 1 Parameters of simulations.

Fig. 3 Cache size vs. average access latency and overall byte hit ratio.

LRU (with default LCE), LCD [1], MODULO [6] and the
dynamic programming algorithm proposed in [4] that is re-
ferred as DPA in following figures. We use a network topol-
ogy randomly generated by the Tiers program in our simu-
lations. In the topology, each MAN node is associated with
one client and one content server. Some parameters of our
simulations are listed in Table 1.

The object size distribution follows a uniform distri-
bution ranging from 5KB to 10MB. The arrival of request
follows the Poisson Process, and the distribution of aver-
age arrival intervals for clients follows a uniform distribu-
tion from 0.1 second to 0.9 second. The access frequencies
of the content servers as well as the objects maintained by
a given server both follow a Zipf-like distribution, like that
in [4]. Specifically, the probability of a request for object O
in provider s is proportional to 1/(iα · j β) where s is the ith
most popular server and O is the jth most popular object in
s. We empirically set the probing probability p to 0.005.

In Fig. 3, the horizontal axis is the relative cache size
per node that is the percentage between the cache size
per node and the size of the total content population. As
Fig. 3 (a) shows, CRRP is very close to the DPA in most
cases in terms of the average access latency, and even out-
performs slightly DPA when cache size is small. It outper-
forms others significantly in most cases. As Fig. 3 (b) shows,
CRRP is close to DPA but underperform LCD significantly
in terms of the overall byte hit ratio. As our results show,
LCD is the best in terms of the overall byte hit ratio but un-
derperform significantly CRRP in terms of the average ac-
cess latency because it does not take into account the cost
factor.

To investigate the impact of the skewness parameter α

Fig. 4 Impact of parameter alpha.

of Zipf distribution, we vary it from 0.2 to 1.4 and fix the rel-
ative cache size to 0.36. Figure 4 shows the consequential
results. As Fig. 4 (a) shows, the differences between vari-
ous caching schemes increase, as parameter α rises. In all
the cases, CRRP is close to DPA and outperforms others.
Interestingly, the overall byte hit ratio does the opposite as
shown in Fig. 4 (b). The differences among various caching
schemes decrease as parameter α rises. In terms of the over-
all byte hit ratio, CRRP outperforms DPA when α is small,
and LCD does the best.

5. Conclusion

In this article, we propose CRRP for en-route caching,
which randomly places object along the request path and
integrates cost-based replacement policy with cost probing.
Extensive simulations show that CRRP outperforms a wide
range of caching schemes and is very close to the conven-
tional dynamic-programming-based algorithm, in terms of
average access delay. As a future work, we will conduct
trace-driven simulation to evaluate CRRP further.

References

[1] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hier-
archical web caches,” IEEE International Conference on Performance,
Computing, and Communications, pp.445–452, 2004.

[2] P. Scheuermann, J. Shim, and R. Vingralek, “A case for delay-
conscious caching of web documents,” Computer Networks and ISDN
Systems, vol.29, no.8-13, pp.997–1005, Sept. 1997.

[3] W. Li, E. Chan, G. Feng, D. Chen, and S. Lu, “Analysis and perfor-
mance study for coordinated hierarchical cache placement strategies,”
Comput. Commun., vol.33, no.15, pp.1834–1842, 2010.

[4] X. Tang and S.T. Chanson, “Coordinated en-route web caching,”
IEEE Trans. Comput., vol.51, no.6 pp.595–607, 2002.

[5] P.B. Danzig, R.S. Hall, and M.F. Schwartz, “A case for caching file
objects inside internetworks,” SIGCOMM Computer Communication
Review, vol.23, no.4, pp.239–248, 1993.

[6] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura, “Self-organizing
wide-area network caches,” Proc. INFOCOM ’98, Seventeenth An-
nual Joint Conference of the IEEE Computer and Communications
Societies, vol.2, pp.600–608, 1998.

[7] K. Li, H. Shen, F.Y. Chin, and S.Q. Zheng, “Optimal methods for
coordinated enroute web caching for tree networks,” ACM Trans. In-
ternet Technology (TOIT), vol.5, no.3, pp.480–507, 2005.

