
2166
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

LETTER

Write Avoidance Cache Coherence Protocol for Non-volatile
Memory as Last-Level Cache in Chip-Multiprocessor∗

Ju Hee CHOI†, Jong Wook KWAK††a), Nonmembers, and Chu Shik JHON†, Member

SUMMARY Non-Volatile Memories (NVMs) are considered as
promising memory technologies for Last-Level Cache (LLC) due to their
low leakage and high density. However, NVMs have some drawbacks such
as high dynamic energy in modifying NVM cells, long latency for write op-
eration, and limited write endurance. A number of approaches have been
proposed to overcome these drawbacks. But very little attention is paid to
consider the cache coherency issue. In this letter, we suggest a new cache
coherence protocol to reduce the write operations of the LLC. In our proto-
col, the block data of the LLC is updated only if the cache block is written-
back from a private cache, which leads to avoiding useless write operations
in the LLC. The simulation results show that our protocol provides 27.1%
energy savings and 26.3% lifetime improvements in STT-RAM at maxi-
mum.
key words: cache coherence, non volatile memory, STT-RAM, chip multi-
processor

1. Introduction

Researches on non-volatile memories (NVMs), such as
STT-RAM or PCM, have substantially increased in recent
years [1], [2]. Unlike the conventional memories, NVMs
consume little or no static power because they do not use
the electric power to store their information. Therefore, the
static energy consumption can be remarkably reduced, if the
cache is composed of NVMs. Since the leakage power is re-
sponsible for a significant part of the power consumption in
the last-level cache (LLC), researchers have studied to use
NVMs as an alternative to SRAM in the LLC [3], [4].

Although NVMs are very attractive alternative for
SRAM, there are three penalties to use. Modifying the states
of NVM cells requires long latency and high level current.
In addition, NVM cells have limited endurance. To over-
come these difficulties, several methods were suggested [3],
[4]. However, we found that the previous works have not
considered the cache coherence issue. Under the environ-
ments of SRAM-based LLC, these drawbacks of the write
operation of NVMs are not considered during designing the
cache coherence protocol. Therefore, the existing cache co-
herence protocols [5] have a potential to reduce the write
operations, which leads to decreasing the dynamic energy
consumption and enhancing the write endurance. In this let-

Manuscript received March 3, 2014.
†The authors are with the Department of Computer Science

and Engineering, Seoul National University, Korea.
††The author is with the Department of Computer Engineering,

Yeungnam University, Korea.
∗This work has been funded by the BK21+ program of the

National Research Foundation (NRF) of Korea.
a) E-mail: kwak@ynu.ac.kr

DOI: 10.1587/transinf.E97.D.2166

ter, we introduce a new cache coherence protocol for NVMs
to decrease the number of write access to the LLC. In our
scheme, the data array of the LLC is not updated during the
linefill operation, while the tag array is changed to maintain
the inclusion property. The data array is modified only when
the cache block is written-back from the private cache. Our
protocol reduces the number of write access to the LLC;
thus, the dynamic energy consumption is reduced and the
lifetime is enhanced in our protocol.

In this letter, we introduce a new cache coherence pro-
tocol for NVMs to decrease the number of write access to
the LLC. In our scheme, the data array of the LLC is not
updated during the linefill operation, while the tag array is
changed to maintain the inclusion property. The data array
is modified only when the cache block is written-back from
the private cache. Our protocol reduces the number of write
access to the LLC; thus, the dynamic energy consumption is
reduced and the lifetime is enhanced in our protocol.

2. Motivation

In this section, we review the legacy cache coherence pro-
tocols to get a new insight to reduce the write operations.
The existing studies about cache coherence protocol have
not concentrated on reducing the write operations because it
does not matter in the SRAM-based LLC. Since there is no
drawback of write operation compared to read operation, the
number of write access is not taken into account. However,
reducing the write operations is an important issue in NVM-
based LLC. The dynamic energy consumption is largely de-
pend on the write operations, because the dynamic energy of
write operation is greater than that of read operation. More-
over, the lifetime is inversely proportional to the number of
write access. Therefore, a new protocol for NVMs to mini-
mize the write operations is needed.

There are useless write operations in the existing pro-
tocol. Generally, memory systems of CMPs are composed
of a shared LLC and several private caches which are ded-
icated to cores [5]. In addition, the cache block is divided
into two arrays: tag array and data array. Tag array stores
tag bits and cache coherence state, while data array stores
block data. When a linefill operation occurs at the LLC, the
requested block data is written to the data array, and the tag
bits and cache coherence state are updated to the tag array.
Then, the cache block is forwarded and linefilled to the pri-
vate cache. When a core tries to modify the cache block in
the private cache, an invalidation signal is sent to the shared

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



LETTER
2167

Fig. 1 Conventional protocol.

Table 1 States and descriptions.

State Description
I(nvalid) The cache block is invalid
S(hared) The cache block has valid block data and other

private caches may have valid copy.
E(xclusive) The cache block has valid block data with ex-

clusive permission and other caches have no
valid copy.

M(odified) The cache block has valid and modified block
data. Other caches have no valid copy. This
state appears in the private cache only.

P(rivate cache) The cache block in the LLC has no valid block
data, but more than one of the private caches
has valid block data. This state appears in the
LLC only.

* P state is introduced due to keeping the inclusion property. Modern
multiprocessors have employed the inclusive LLC to filter the cache
coherence traffic from other chipset or the main memory. Thus, it is
needed that a state represents one of the private caches has valid data
even the LLC has no valid data.

LLC and other private caches to maintain the cache coher-
ence. Therefore, the previous write access to the LLC during
the linefill operation is considered as the useless write oper-
ation, if the cache block in the LLC has been never used
until it is invalidated.

Figure 1 illustrates an example of write inefficiency in
widely used cache coherence protocols such as MESI or
MOESI [6]. In the example, we assume that a core reads and
writes a block data of the PC (Private Cache) 1. Table 1 lists

the cache states in the figure and their descriptions. When
the core tries to read the block data, since the PC1 has no
valid block data, the cache controller sends the request for
the block data to the LLC.

However, the LLC also has no valid copy; thus, the re-
quest is sent to the external sources such as the main mem-
ory or other chipsets. When the block data “ABCD” is ar-
rived at the LLC, it is written into the LLC and the state of
the LLC is changed to S state, which means the cache block
is valid and other private caches may have the same cache
block. Then, the block data “ABCD” is forwarded to the
PC1.

When the block data is received in the PC1, it is written
into the PC1 and the state of the PC1 is changed to E state.
After the linefill operation is completed, if the core tries
to modify the block data “ABCD” to “EFEF”, an invalida-
tion request is sent to the LLC to maintain cache coherence.
The purpose of the invalidation request is indicating that the
block data of the PC1 is modified and the cache block in the
LLC should be invalidated. If the block data “ABCD” in
the LLC has not been used until it is invalidated, writing the
block data “ABCD” to the LLC during the linefill operation
was an useless write operation.

3. Write Avoidance Cache Coherence Protocol

To deal with this problem, we suggest a new cache coher-
ence protocol which is called Write Avoidance Cache Co-
herence (WACC) protocol. In our protocol, the block data
of the cache block is not written into the LLC during the
linefill operation, while the tag bits and the cache coherence
state are updated. Since the block data is not placed in the
LLC, one of the private caches has responsibility to provide
the valid block data. The block data in the LLC is only up-
dated when it is written-back from the private cache. The
writeback is initiated only when no other private cache has
the block data in WACC protocol. Therefore, we avoids use-
less write operation due to modifications of the block data
in the private cache.

Figure 2 shows an example of WACC protocol. Unlike
the conventional protocols, when the block data “ABCD” is
arrived at the LLC, it is not written to the LLC. Instead, the
state is changed to P state and the block data is forwarded
to the PC1. When the PC1 is modified to “EFEF”, there is
no need to send an invalidation request to the LLC for the
block data “ABCD” is not written to the LLC. Therefore,
one write operation of the LLC and one request for cache
coherence is decreased compared to the baseline protocols
in this case.

We compare an simple version of the existing MOESI
protocol with its modified protocol in Fig. 3. Table 2 shows
the coherence signals and actions. The transition signal
is divided into two parts: {signal} {source} and the action
indicates the operation of the data array. For example,
WB PC/Wr means that if the block is P state and receives
the WB signal from a private cache, the block data is writ-
ten to the data array.



2168
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

Fig. 2 Write avoidance cache coherence protocol.

Fig. 3 State transition diagrams for LLC. Bold lines indicate modified
transition signals and actions.

As shown in Fig. 3 (a), when a new cache block is re-
ceived in the LLC, the state of the cache is transition to S
state and the block data is written to the data array in the
existing protocol. On the contrary, the state is transition to P
state instead of S state in our protocol under the same condi-
tion. Furthermore, the write operation is omitted as shown
in Fig. 3 (b). This is because the block data is forwarded
without write access to the data array in WACC protocol.

Another point to be considered is that the protocol of
the private cache should be changed. The writeback oper-
ation is initiated if the cache block in the private cache is

Table 2 Signals/actions and descriptions.

Signal Description
Inv Invalidate the cache block if it is valid. This signal is

generated when another device tries to modify the block
data.

Recv Provide the block data in the cache block. This signal is
generated when a cache hit occurs.

Req Request the block data for read operation. This signal
is generated when a cache miss occurs.

WB Writeback the block data to the LLC. This signal is gen-
erated when a private cache evicts the cache block.

Action Description
Wr Write the block data of the received cache block into the

data array.
Rd Read the block data and provide it with the requestor.

modified and evicted in the existing protocols. However, the
cache block should be written-back to the LLC in WACC
protocol when it is evicted in the private cache regardless of
whether the cache block is dirty or not.

4. Performance Evaluation

We simulated our approach with PARSEC benchmark
suite [7]. The gem5 simulator is used to evaluate the nor-
malized energy and normalized lifetime of our protocol [8].
The overall simulation parameters are shown in Table 3. We
assume that the cache coherence protocol is a MOESI pro-
tocol. In addition, LLC is composed of STT-RAM because
STT-RAM is considered as the right alternative among sev-
eral NVMs [3]. The power value of STT-RAM is derived
from the previous work [9].

Figure 4 presents the normalized number of the read
and write access to LLC in our protocol compared to the
baseline MOESI protocol. Note that write access is divided
into writeback access and linefill access. As a result, 13.2%
of the write operations were decreased on average. The no-
ticeable result is that the number of the writeback access
was increased, while there were no linefill operation. When
a cache block is evicted in a private cache, the writeback op-
eration is not required in the existing protocols if the cache
block is not modified. This is because the LLC already has
the valid block data if the cache block is clean. On the con-
trary, the writeback operation should be initiated if no other
private cache has the valid copy during cache replacement in
WACC protocol. This difference generates the extra write-
back operations. However, the total number of the write
access in WACC protocol is smaller than that of other pro-
tocols because the reduction in the linefill operation is much
larger than the increment in the writeback operation.

We show the normalized dynamic energy consumption
and lifetime in Fig. 5. Since the dynamic energy in write op-
eration dominates the dynamic energy consumption in read
operation, the reduction of the write operations leads to re-
ducing the total dynamic energy consumption. Our protocol
achieves 27.1% energy savings at maximum and 10.8% en-
ergy savings on average. In addition, WACC protocol also
extends the lifetime of the LLC because the lifetime of STT-
RAM is inversely proportional to the number of write access



LETTER
2169

Table 3 Parameters of the simulated architecture.

Parameter Value
Cores 4
L1 Inst / Data Cache 64KB, 2-way, 64B line
L2 Unified Cache 2MB, 16-way, 64B line
Memory 64bit bus width, 4 read/write ports
Function Units 6 IALU, 2 IMULT, 4 FPALU, 2 FPMULT

Fig. 4 The normalized number of the access to LLC of WACC protocol
compared to the MOESI protocol.

Fig. 5 The normalized dynamic energy consumption and lifetime of
WACC compared to the baseline MOESI protocol.

to the LLC. The improvement of average write endurance in
WACC protocol is 26.3% at maximum and 9.3% on average.

5. Conclusion

In this letter, we proposed a novel cache coherence proto-
col to eliminate useless write operations of LLC for multi-
core system. Based on the analysis of the existing proto-

cols, it was found that they generated useless write access
to the LLC during the linefill operation. Thus, the LLC of
our protocol which is called WACC only changes the cache
states without storing the block data when it is arrived. This
write policy reduced the number of write access to the LLC,
which led to improvements in the energy consumption and
lifetime. The simulation result showed that the reduction of
maximum energy consumption in WACC protocol is 27.1%
and lifetime extension is 26.3% at maximum in STT-RAM
based LLC.

References

[1] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K.
Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano, “A novel nonvolatile memory with spin torque trans-
fer magnetization switching: Spin-ram,” Electron Devices Meeting,
2005. IEDM Technical Digest. IEEE International, pp.459–462, 2005.

[2] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M.
Shelby, M. Salinga, D. Krebs, S.H. Chen, H.L. Lung, and C.H. Lam,
“Phase-change random access memory: A scalable technology,” IBM
Journal of Research and Development, vol.52, no.4.5, pp.465–479,
2008.

[3] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for stt-
ram using early write termination,” IEEE/ACM International Confer-
ence on Computer-Aided Design-Digest of Technical Papers, 2009.
ICCAD 2009. pp.264–268, 2009.

[4] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” Proc.
Conference on Design, Automation and Test in Europe, pp.136–141,
European Design and Automation Association, 2010.

[5] “The intel 64 and ia-32 architectures software developer’s manual.”
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-system-
programming-manual-325384.pdf. accessed 3-Mar-2014.

[6] D.J. Sorin, M.D. Hill, and D.A. Wood, “A primer on memory consis-
tency and cache coherence,” Synthesis Lectures on Computer Archi-
tecture, vol.6, no.3, pp.1–212, 2011.

[7] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” Proc. 17th
International Conference on Parallel Architectures and Compilation
Techniques, pp.72–81, 2008.

[8] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M.D. Hill, and D.A. Wood, “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol.39,
no.2, pp.1–7, 2011.

[9] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture
of the 3D stacked MRAM l2 cache for CMPS,” IEEE 15th Inter-
national Symposium on High Performance Computer Architecture,
2009. HPCA 2009. pp.239–249, 2009.


