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Activity Recognition Based on an Accelerometer in a Smartphone
Using an FFT-Based New Feature and Fusion Methods

Yang XUE†a), Yaoquan HU†, Nonmembers, and Lianwen JIN†, Member

SUMMARY With the development of personal electronic equipment,
the use of a smartphone with a tri-axial accelerometer to detect human
physical activity is becoming popular. In this paper, we propose a new
feature based on FFT for activity recognition from tri-axial acceleration
signals. To improve the classification performance, two fusion methods,
minimal distance optimization (MDO) and variance contribution ranking
(VCR), are proposed. The new proposed feature achieves a recognition rate
of 92.41%, which outperforms six traditional time- or frequency-domain
features. Furthermore, the proposed fusion methods effectively improve the
recognition rates. In particular, the average accuracy based on class fusion
VCR (CFVCR) is 97.01%, which results in an improvement in accuracy of
4.14% compared with the results without any fusion. Experiments confirm
the effectiveness of the new proposed feature and fusion methods.
key words: acceleration data, activity recognition, feature extraction, fu-
sion method, tri-axial accelerometer

1. Introduction

Recently, the development of personal electronic equipment
has allowed for the popular use of personal companion de-
vices such as smartphones with embedded sensing and com-
puting power to detect physical activities. When smart-
phones are carried by people in pockets or bags, they are
moving at the pace of the human body; thus, they appear to
be the ideal platforms for detecting physical activities such
as sitting, walking, and running [1]. However, the study
of activity recognition using an accelerometer-embedded
smartphone is still very limited, and there are still many
difficulties that have greatly prevented it from mass adop-
tion thus far. Therefore, it is very important to pay more
attention to the research in activity recognition based on
accelerometer-embedded smartphones.

It is known that robust features and fusion methods
play a very crucial role in determining the accuracy of ac-
tivity recognition and the flexibility and practicality of an
application. Some researchers have focused on feature ex-
traction approaches and fusion methods and have applied
them into the large-scale applications of activity recogni-
tion. Yan et al. [2] proposed a classification algorithm called
A3R based on time- and frequency-domain features. They
saved approximately 50% of the energy of a continuous
sensing engine running at full power, and fused features
on the basis of specific activities and the adapted-needed
sampling rate. They achieved a recognition rate of about
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75%–92% for some activities such as normal walking and
descending stairs. Chung et al. [3] applied a hierarchical
classification method which could be regarded as a classi-
fier fusion method, to recognize the three basic activities of
standing, walking, and running with an overall accuracy of
82.8%. Ward et al. [4] proposed three fusion methods using
class ranking after classification, which were called highest
rank, Borda count, and logistic regression. The greatest ad-
vantage in [4] was considering the number of calculations
when fusing.

The fusion idea has been studied in some of recent pa-
pers. In general, the widely used fusion method is to sim-
ply concatenate the different type of features together [2],
[3]. Some researchers also concentrated on the classifier
based fusion method for activity recognition and have pro-
posed different fusion strategies [4]. However, we proposed
two fusion methods based on time- and frequency- domain
features, and we also discussed the performance of two fu-
sion applications in activity recognition. The contributions
of this paper include the following: 1) a new feature based
on FFT. The feature make use of the mean of the FFT coef-
ficients and the difference between the maximum and min-
imum of acceleration signals using logarithmic and averag-
ing operations, and 2) two new fusion methods, minimal dis-
tance optimization (MDO) and variance contribution rank-
ing (VCR), for improving the classification performance of
five activities. The MDO fusion searches the fusion rankings
of each class for a specific classifier. The VCR fuses fea-
tures through the extraction of base vectors and the cluster-
ing of center vectors. The fusion weights obtained through
the modified variance contribution strengthen the discrimi-
nation of different features.

2. Recognition Approach

2.1 Data Collection

Two smartphones manufactured by HTC and Samsung with
Android OS were used as a platform for data collection. The
subjects were 87 volunteers (44 male and 43 female) with a
mean age of 22 from a local university. Data were collected
in a less-noisy, broad, and flat place outside of the labora-
tory, which means that the environment was less-controlled
and user-annotated. The subjects placed the smartphone on
their body, alternating between the waist belt, shirt pocket,
and trousers pocket respectively, for data collection. Each of
the subjects recorded their own tri-axial acceleration signal
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Table 1 Accuracy for different features.

data with an approximate time duration of approximately
90s for each of the following activities: jumping, walking,
running, ascending stairs, and descending stairs.

2.2 Feature Extraction

The recognition rate of activities is different with differ-
ent features. Therefore, we select some efficient features
that have been demonstrated to be successful in previous
works [5]–[11]. The features include the mean [6]–[9], the
variance (Var.) [6]–[9], the difference between the maximum
and the minimum (Diff.) [10], the power spectral density
(PSD) [3], and the FFT coefficients [2], [5]–[7]. In addition,
the real cepstrum (RCEP) of a signal is also included. The
RCEP is defined as the inverse Fourier transform of the real
logarithm of the magnitude of the Fourier transform of a sig-
nal, which is very useful for speech signal processing [11].
These six features are referred to as the set of efficient fea-
tures (SEF).

We perform experiments to compare the performance
of six features and the SEF in our dataset. In our experi-
ments, we recognize the five activities using a Bayesian net-
work (BayesNet) [12] classifier for a comparison with the
experiments for the fusion methods in Sect. 3. Table 1 lists
the average classification accuracy of the five activities for
different features. The “SF” row specifies the recognition
rate based on the specific feature solely, while the “SFR”
row specifies the recognition rate with any specific feature
removed.

From Table 1, we find that the recognition rate based
solely on the FFT or PSD feature is high. The decrease of
recognition rate is more noticeable with FFT or PSD fea-
ture removed. This means that FFT feature and PSD feature
are more useful to classify five activities. The FFT feature
describes a variation of the signal strength, while the PSD
feature describes the variation of the signal magnitude ver-
sus frequency [3]. Although the classification accuracies us-
ing the Mean, Var., and Diff. features are not high enough,
these three features still remain as equilibrium features in
the SEF. From Table 1, we also find that the recognition rate
decreases 0.7% when the PSD feature combines with the
other features. In view of the higher discriminative ability
of the FFT feature, a new feature based on an FFT (NewF)
is proposed and defined as

NewF=

√√√
1
N

N∑
n=1

log2
Diff (mean(FFTcoefficientsn(1 : k)))

(1)

where N is the number of sliding windows, and N =

Table 2 Accuracy for NewF and SEF+NewF.

Table 3 Confusion matrix using the NewF feature.

[
K − (L − 1)
L ∗ overlap

+1], overlap = 50%, K is the length of raw ac-

celeration signal, and L = 512 is window length. The partial
expression mean(FFTcoefficientsn(1:k)) of the NewF means
the average of the first k FFT coefficients of the accelera-
tion signal of the nth sliding window per axis, while Diff is
the difference between the maximum and the minimum val-
ues of the acceleration signal within each sliding window. In
statistics, Diff suggest how diversely spread out the data val-
ues. By computing Diff, we can get an estimate of the spread
of the signal. The mean(FFTcoefficientsn(1:k)) in Eq. (1) is
designed to capture features in frequency-domain, and the
Diff is time-domain feature. Further, for better combination
of two different domain features, logarithmic and averaging
operations are used. All of the features are extracted from
the raw tri-axial acceleration signal using a sliding window
size of 512 samples with 50% overlap.

To validate the effectiveness of the proposed NewF fea-
ture, experiments are conducted to compare the performance
of NewF and SEF+NewF. A BayesNet is used as a classifier.
Table 2 lists the average accuracy for the five activities.

The average accuracy based solely on the NewF is
92.41%, which is better than using the PSD feature, the FFT
feature, and the SEF (listed in Table 1). From Table 2, the
recognition rate based on SEF+NewF is 92.87%, increas-
ing by 1.37% compared with the results based on the SEF,
while there is a noticeable decrease in the recognition rate
with NewF feature removed. These results demonstrate that
the NewF feature has better classification performance. To
investigate this further, the aggregate confusion matrix is
summarized in Table 3, which also shows that the proposed
feature has better performance.

2.3 Fusion Methods

Fusion is a vital step for eliminating false clustering due to
the excessive sensitivity of the acceleration signals and for
further improvement of the state-of-the-art recognition rates.
We propose two fusion methods as follows:
1) Minimal Distance Optimization (MDO): We first assign
the rankings a linear order, with “1” being the highest and
the lowest equaling the number of classes [4]. Second, we
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choose a classifier, which may result in great classification
performance according to previous works [5], [13], to train
the feature set fused with the rankings. Through a simple
traversal of the different rankings, we obtain the optimized
fusion ranking suitable for the specific classifier. Further,
the rankings of each class assigned by the different classi-
fiers are near the center ranking. Thus, the problem of de-
termining the center ranking of each class is described as a
minimal distance optimization problem:

arg min
N∑

i=1

|r − ri| (2)

where ri is the ranking of each class assigned by the ith clas-
sifier, and r is the center ranking of each class. We take the
integer part of r as the final ranking for fusion.
2) Variance Contribution Ranking (VCR): The variable
contribution rate refers to the contribution of one factor in
proportion to the total contribution, and the variance contri-
bution describes its fluctuations. Based on VCR, we propose
two fusion methods: feature-fusion-based VCR (FFVCR)
and class-fusion-based VCR (CFVCR).
FFVCR: We choose one basic feature set F = [Fx, Fy, Fz]
from seven features, which include the SEF and the new pro-
posed feature NewF. Then, this basic feature set is expressed
as the combination of vectors X = [X1, X2, . . . , Xp],which
are a set of base vectors extracted from the feature space
matrix [Fx; Fy; Fz]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Fx = a11X1 + a12X2 + · · · + a1pXp + ε1

Fy = a21X1 + a22X2 + · · · + a2pXp + ε2

Fz = a31X1 + a32X2 + · · · + a3pXp + ε3

(3)

where εi is for error balance, and ai j is a coefficient with
i = 1, 2, 3, j = 1, 2, . . . , p.

Therefore, the problem of solving the base vectors X
and the coefficients matrix A is equivalent to minimize the
cost function J(A, X).

J(A, X) = ‖AX − F‖22 + λ‖X‖1 + γ‖A‖22 (4)

where λ and γ are control parameters.
Thus, the variance contribution is defined as

VC2
i =

p∑
j=1

(ai j − μi)(ai j − μi)
T , i = 1, 2, 3 (5)

where μi =
1
p

p∑
j=1

ai j.

A large variance contribution indicates that the features
of different activities may be superposed. This means that
classification is more difficult. Thus, the variance contribu-
tion is modified by

NewVC2
i =

VC2
max − VC2

min

VC2
i − VC2

min

(6)

Through amplitude compression for the tri-axial feature fu-
sion weights, the efficient fusion features (EFF) of one basic

feature set are consequently computed as follows:

EFF= [Fx, Fy, Fz]
[NewVC2

1,NewVC2
2,NewVC2

3]T

3∑
j=1

NewVC2
i

(7)

CFVCR: We divide the entire sample set into T testing sets
{S 1, S 2, · · · S T }. Thus, each testing set has m clustering
centers {CC1,CC2, · · · ,CCm}, where CCi (i = 1, 2, . . .m)
denotes the feature vector of the ith activity after clus-
tering, and m is the number of activities. We regard
{CC1,CC2, · · · ,CCm} as a set of basis vectors. Thus, the
feature of each person in each testing set is expressed as the
combination of this set of basis vectors:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = a11CC1 + a12CC2 + · · · a1mCCm + ε1

F2 = a21CC1 + a22CC2 + · · · a2mCCm + ε2
...

Fq = aq1CC1 + aq2CC2 + · · · aqmCCm + εq

(8)

where Fi, i = 1, 2, . . . , q denotes the activity feature set of
each subject in the feature subset, and q denotes the number
of sampling subjects in the feature subset.

Taking into account the effects of the clustering center
on the recognition rate, the variance contribution is defined
as

ˆVC
2
j =

q∑
i=1

(ai j − 1
q

q∑
l=1

μl)(ai j − 1
q

q∑
l=1

μl)
T , (9)

j = 1, 2, . . . ,m

where μl =
1
m

m∑
j=1

ai j.

For each testing set, the final feature vector (FFV) is
calculated by

FFV j = CC j
VC2

max − VC2
min

VC2
j − VC2

min

FFV = [FFV1; FFV2; . . .FFVm] (10)

3. Experiments and Analysis

3.1 Experimental Setup

First, we preprocessed the 3D acceleration signals. Win-
dow filtering and normalization were used to remove noise
and weaken the influence of physical factors among the dif-
ferent subjects, respectively. Second, the feature matrix
was extracted and input into the classifier according to the
new proposed feature and fusion methods in Sect. 2. Fi-
nally, the proposed methods were tested using five-fold-
cross-validation method. For one round of cross-validation,
we chose 70 subjects for each activity class, resulting in 350
samples for training the classifiers, and the remaining 17
subjects (85 samples) were used for testing each class. Five
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Table 4 Classification accuracy for the different classifiers.

Table 5 Accuracy for the different smartphone locations.

rounds of cross-validation were performed using different
partitions, and the validation results were averaged over the
five rounds.

3.2 Experimental Results

To validate the classification performance of the two pro-
posed fusion methods, we performed experiments to select
a better classifier. We compared the performance of a J48
decision tree, multilayer perceptron (MLP), and BayesNet
classifier using the mixed set of features, which contained
the NewF and the SEF. Table 4 summarizes a performance
comparison of the different classifiers for each of the five
activities.

We find that the BayesNet classifier has the best recog-
nition rate (92.87%) among the three classifiers. Thus,
BayesNet is used as a classifier for evaluating the per-
formance of the different fusion methods for the different
smartphone locations, which are listed in Table 5.

It can be seen that our fusion method can significantly
improve the recognition rates. The accuracy based on the
two fusion methods, MDO and VCR, outperforms that with-
out fusion. Furthermore, the accuracy based on the VCR
fusion method outperforms that using MDO. From Table 5,
it is noticeable that the recognition rate is relatively high
for the smartphone located at the waist, while the recogni-
tion rate fluctuates for the smartphone placed in the trousers
pocket. Intuitively, the smartphone placed in the trousers
pocket should be the most powerful, since the majority of
activities involve heavy use of the legs. However, as the
smartphone is not fixed to the body, it may move randomly
in the pocket (e.g. rotate), thereby producing more variations
during the data collection process.

Table 6 shows the recognition results based on different
fusion methods for the smartphone located at the waist.

It can be seen that, for each of the five activities, the
accuracy using CFVCR fusion method is much higher than
using MDO and FFVCR. Furthermore, the CFVCR fusion
method produces the highest recognition rate of 97.01%, an
increase of 4.14% compared with that without fusion. From

Table 6 Accuracy based on different fusion methods.

Tables 5 and 6, the CFVCR fusion method exhibits better
performance because it strongly attracts the clustering cen-
ter to samples within the class.

3.3 Analysis and Discussion

A BayesNet consists of a directed acylic graph and condi-
tional probability table [12] and can train a best matching
network to classify root nodes. The NewF feature and fu-
sion feature vectors are both nodes which are strong de-
pendent on each other. This strong dependence relies on
the quality and character of the selected or fused feature
with high recognition accuracy. Furthermore, the enhanced
probability distribution also strengthens the causal relation-
ship among learning variables. A BayesNet learns by causal
edges. According to our analysis, the BayesNet performs
the best.

In our experiments, the BayesNet classifier has the best
recognition performance listed in the Table 4. But we can-
not ensure that the best results are still obtained from a
BayesNet when the the number of classes is larger or the
feature changes. Because the scoring function in a BayesNet
is the minimal description length (MDL) [13]. A larger class
will result in a larger error for the MDL. Further, the MDL
may score and automatically remove vital attribute variables
for classification. Thus, Our goal is to simply validate the
effectiveness of the new feature and fusion methods.

The MDO fusion searches the fusion rankings of each
class for a specific classifier, which is a horizontal improve-
ment among the classifiers with high accuracy. FFVCR
and CFVCR fuse features through the extraction of base
vectors and the clustering of center vectors, respectively,
and considerably reduce the impact of a small amount of
low-quality data through the modified variance contribu-
tion. Coupled with the BayesNet classifier, the fused fea-
ture training set indicates a stronger and more correct prob-
ability distribution network. On the other hand, the fusion
weights obtained through the modified variance contribution
strengthen the discrimination of different features, which in-
evitably results in perfect performance for the five activities
recognition.

4. Conclusion

In this paper, a new feature based on an FFT (NewF) for
activity recognition from tri-axial acceleration signals has
been proposed. The average accuracy of recognizing five
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activities using NewF was 92.41%, which was better than
six traditional time- or frequency-domain features. When
combined with the set of traditional efficient features, the
NewF feature further improved the recognition accuracy. To
improve the classification performance, two fusion meth-
ods (MDO and VCR) were proposed. The average accu-
racy based on the CFVCR fusion method was 95.17%, an
increase of 0.69% compared to the MDO fusion method.
The recognition results demonstrated that FFVCR achieved
the best recognition performance. The average accuracy was
97.01%. The experimental results have confirmed the effec-
tiveness of the proposed feature and fusion methods.
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