
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014
315

LETTER

Performance Optimization for Sparse At Ax in Parallel on
Multicore CPU

Yuan TAO†,††,†††a), Yangdong DENG††††b), Nonmembers, Shuai MU††††c), Member, Zhenzhong ZHANG††d),
Mingfa ZHU††e), Limin XIAO††f), and Li RUAN††g), Nonmembers

SUMMARY The sparse matrix operation, y ← y+AtAx, where A is a
sparse matrix and x and y are dense vectors, is a widely used computing
pattern in High Performance Computing (HPC) applications. The pattern
poses challenge to efficient solutions because both a matrix and its trans-
posed version are involved. An efficient sparse matrix format, Compressed
Sparse Blocks (CSB), has been proposed to provide nearly the same per-
formance for both Ax and Atx. We develop a multithreaded implementation
for the CSB format and apply it to solve y←y+AtAx. Experiments show
that our technique outperforms the Compressed Sparse Row (CSR) based
solution in POSKI by up to 2.5 fold on over 70% of benchmarking matri-
ces.
key words: sparse AtAx, compressed sparse block, compressed sparse
rows, multicore platform

1. Introduction

Sparse matrices are extensively used in HPC applications
because they properly capture the natural properties of en-
gineering and scientific problems [1]. Among various com-
putation patterns, y← y+AtAx is an essential one due to its
usage in singular value decomposition [2], [3] and other ap-
plications. Vuduc et al. [3] provide optimization strategies
for the memory hierarchy as well as performance bounds of
computing y←y+AtAx. With multicore platforms becom-
ing prevalent in the HPC community, the exploitation of
increasing parallelism by designing efficient parallel algo-
rithms will be the dominant means to attack the increasing
problem size. However, there has been few works on devel-
oping parallel solution for y←y+AtAx due to the lack of ef-
fective data structures supporting the computing of both Ax
and Atx. Recently, an efficient sparse matrix format, Com-
pressed Sparse Blocks (CSB) [4], has been proposed to pro-
vide nearly the same performance on the above mentioned

Manuscript received August 30, 2013.
†The author is with State Key Laboratory of Software Devel-

opment Environment, Beihang University, Beijing 100191, China.
††The authors are with School of Computer Science and Engi-

neering, Beihang University, Beijing 100191, China.
†††The author is with College of Mathematics, Jilin Normal Uni-

versity, Jilin 136000, China.
††††The authors are with Institute of Microelectronics, Tsinghua

University, China.
a) E-mail: taoyuan@cse.buaa.edu.cn
b) E-mail: dengyd@tsinghua.edu.cn
c) E-mail: mus04ster@gmail.com
d) E-mail: zzzhang0118@gmail.com
e) E-mail: zhumf@buaa.edu.cn (Corresponding author)
f) E-mail: xiaolm@buaa.edu.cn
g) E-mail: ruanli@buaa.edu.cn

DOI: 10.1587/transinf.E97.D.315

problems.
In this work, we develop an efficient parallel solution

for the CSB data structure. Our techniques are tested on
a multicore platform and compared with the Compressed
Sparse Row (CSR) based techniques used in the latest Paral-
lel Optimized Sparse Kernel Interface Library (POSKI) [5].
Our multicore parallel solution outperforms POSKI on over
70% of benchmark sparse matrices up to 2.5 fold.

2. Preliminaries

In this section, we briefly review the preliminaries of this
work. First, the CSB data structure is explained. Then we
explain the software and hardware configuration for the ex-
periment as well as the benchmarking matrices used in this
work.

2.1 CSB

Buluc et al. [4] introduced the CSB to store a sparse matrix
to enable efficient computations of both Ax and Atx. As il-
lustrated in Fig. 1, a sparse matrix A is partitioned into β ×
β blocks designated as Ai, j. Such a row (column) of blocks
is coined as blockrow (blockcolumn). Inside each block of
sub-matrix, the non-zeros are stored with their intra-block
row and column coordinates. Because CSB provides better
locality for vectors x and y, it offers roughly identical perfor-
mance on both Sparse Matrix Vector Product (SMVP) and
Sparse Matrix Transpose Vector Product (SMTVP) prob-
lems.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0,0 A0,1 . . . A0, nβ−1

A1,0 A1,1 . . . A1, nβ−1

...
...

. . .
...

A n
β−1,0 A n

β−1,1 . . . A n
β−1, nβ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2 Experimental Setup

Table 1 lists the software and hardware platform for our
experiments. Our parallel implementation is built in Cilk
multithreaded language [6]. Table 2 lists the benchmarking
matrices, which were all used in [3] and downloaded from
the University of Florida sparse matrices collection [7]. We
compare our implementations with POSKI.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



316
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

Table 1 Test-bed used in this work.

CPU Memory OS Kernel Compiler Runtime Version
IntelR CoreT M

i7-3770
32G Centos 6.3

x86 64
3.4.56 Red Hat

4.4.6-4
POSKI
1.0.0

cilk 8503-
x86 64

Fig. 1 Algorithms for computing y← y+AtAx with CSB (our work) and
CSR (POSKI) formats.

Fig. 2 Pseudo code for parallel computing of SMVP and SMTVP.

3. Implementation

In this section, we provide implementation details of the
algorithms for computing CSB based y← y+AtAx in Cilk
and CSR based y← y+AtAx in POSKI. Both algorithms
are designed by first performing SMVP and then computing
SMTVP which are supported by CSB [4]. Figure 1 lists the
CSB based algorithm of ours in details and the CSR based
algorithm used by POSKI. Figure 2 gives details of parallel
computing SMVP or SMTVP.

Fig. 3 Performance of CSB and POSKI on CPU for first twenty matrices
(CSB is our implement for y← y+AtAx in CSB format, and POSKI is in
CSR format of POSKI for comparison).

Fig. 4 Performance of CSB and POSKI on CPU for the remainder ma-
trices.

4. Experimental result

We evaluate the proposed techniques on an Intel i7-3770
CPU running 8 threads on 4 cores. We compare the perfor-
mance of our approach with that of the latest POSKI pack-
age. Figures 3 and 4 show the experimental results. We
use double precision data, which is the only supported data
type by POSKI. Our implementation outperforms POSKI
on over 70% of the benchmarking matrices. In addition, our
implementation delivers a higher level of performance than
POSKI on all matrices with over 36,000 rows and/or 36,000
columns.

The performance advantage of our techniques are
mainly due to the better locality made possible by the CSB
data structure in both vector x and vector y. CSB also al-
lows accessing the non-zeros of sparse matrices in the same
storage format and data layout when computing SMVP and
SMTVP. Such a feature significantly saves communicating
demand between memory and processor on multi-core plat-
forms. One remaining problem of our work is that matrix A
has to be loaded twice to compute y← y+AtAx. In the future



LETTER
317

Table 2 Benchmarking matrices used in this work.

Name Description Row/Column Non-zeros
Non-zero per column

Mean/Max

dense2000 Dense matrix 2000 / 2000 4000k 2000 / 2000

rafesky3 Fluid structure interaction turbulence 21200 / 21200 1488k 70 / 80

olafu Accuracy problem on Y-MP 16146 / 16146 515k 31 / 60

bcsstk35
Stiffness matrix, automobile seat

frame and body attachment
30237 / 30237 740k 24 / 166

venkat01 Unstructured 2D Euler solver 62424 / 62424 1717k 27 / 44

cryskt02
Fem crystal free

vibration stiffness matrix
13965 / 13965 491k 35 / 42

cryskt03
Fem crystal free

vibration stiffness matrix
24696 / 24696 887k 35 / 42

nasasrb
Structure from NASA langley,

shuttle rocket booster
54870 / 54870 1366k 24 / 57

3dtube 3-D pressure tube 45330 / 45330 1629k 35 / 2358

ct20stif CT20 engine block - stiffness matrix 52329 / 52329 1375k 26 / 207

bai af23560 NACA airfoil eigenvalue calculation 23560 / 23560 484k 20 / 21

raefsky4 Buckling problem for container model 19779 / 19779 674k 34 / 72

ex11 Computational fluid dynamics problem 16614 / 16614 1096k 66 / 90

rdist1 Chemical process separation 4134 / 4134 94k 22 / 81

orani678 economic problem 2529 / 2529 90k 35 / 1110

rim Fluid mechanics problem 22560 / 22560 1014k 44 / 112

memplus Memory circuit 17758 / 17758 126k 7 / 574

gemat11 Power network problem sequence 4929 / 4929 33k 6 / 27

goodwin Fluid mechanics problem 7320 / 7320 324k 44 / 112

bayer02 Chemical process simulation problem 13935 / 13935 63k 4 / 22

coater2
Tail end of a

converging slot coater
9540 / 9540 207k 21 / 63

finan512 Portfolio optimization 74752 / 74752 335k 4 / 17

pwt Structural problem 36519 / 36519 181k 4 / 15

vibrobox Vibroacoustic problem 12328 / 12328 177k 14 / 78

wang4 Semiconductor device problem 26068 / 26068 177k 6 / 7

lnsp3937 Computational fluid dynamics problem 3937 / 3937 25k 6 / 11

lns3937 Computational fluid dynamics problem 3937 / 3937 25k 6 / 11

sherman5 Computational fluid dynamics problem 3312 / 3312 20k 6 / 21

sherman3 Computational fluid dynamics problem 5005 / 5005 20k 4 / 7

orsreg1 Oil reservoir simulation 2205 / 2205 14k 6 / 7

saylr4 Computational fluid dynamics problem 3564 / 3564 12k 3 / 4

shyy161 Computational fluid dynamics problem 76480 / 76480 329k 4 / 6

wang3 Semiconductor device problem 26064 / 26064 177k 6 / 7

mcfe 2D / 3D problem 765 / 765 24k 31 / 81

jpwh991 Semiconductor device problem 991 / 991 6027 6 / 16

guptal Linear programming matrix 31802 / 31802 1098k 34 / 109

lpcreb Linear programming problem 9648 / 77137 260k 27 / 844

lpcred Linear programming problem 8926/ 73948 246k 27 / 808

lnfit2p Linear programming problem 3000/ 13525 50k 16 / 22

lpnug20 Linear programming problem 15240 / 72600 304k 20 / 20

work, we are going to explore techniques to improve the I/O
complexity. 5. Conclusion

CSB enables to compute both SMVP and SMTVP with a



318
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

similar level of performance. Such a capability makes CSB
more suitable for y← y+AtAx on multi-core platforms than
the CSR based approach used in POSKI. We developed
multithreaded implementations for CSB on modern multi-
core machines and observed significant performance advan-
tage.

Acknowledgments

The work is partially supported by the Hi-tech Research
and Development Program of China (863 Program) under
Grant No.2011AA01A205, supported by the National Natu-
ral Science Foundation of China under Grant No.61370059,
supported by the National Natural Science Foundation of
China under Grant No.61003015, supported by the Doc-
toral Fund of Ministry of Education of China under Grant
No.20101102110018, supported by Beijing Natural Science
Foundation under Grant No.4122042, supported by the fund
of the State Key Laboratory of Software Development Envi-
ronment under Grant No.SKLSDE-2012ZX-07, supported
by the National Natural Science Foundation of China under

Grant No.61370059, and supported by the National Natural
Science Foundation of China under Grant No.61232009.

References

[1] S.I. Duff, “A survey of sparse matrix research,” Proc. IEEE, vol.65,
no.4, pp.500–535, April 1977.

[2] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[3] R. Vuduc, A. Gyulassy, J.W. Demmel, and K.A. Yelick, “Memory

hierarchy optimizations and performance bounds for sparse ATAx,”
ICCS 2003, Melbourne and Petersburg, pp.705–714, June 2003.

[4] A. Buluc, J.T. Fineman, M. Frigo, J.R. Gilbert, and C.E. Leiserson,
“Parallel sparse matrix-vector and matrix-transpose-vector multipli-
cation using compressed sparse blocks,” 21st ACM Symposium on
Parallelism in Algorithms and Architectures, pp.233–244, Calgary,
Aug. 2009.

[5] J.H. Byun, R. Lin, J.W. Demmel, and K.A. Yelick, “pOSKI: Parallel
Optimized Sparse Kernel Interface Library,” http://bebop.cs.berkeley.
edu/poski/, accessed Aug. 25, 2013.

[6] C.E. Leiserson, The Cilk Project, http://supertech.csail.mit.edu/cilk/,
accessed Aug. 25, 2013.

[7] T. Davis and Y.F. Hu, The University of Florida Sparse Matrix Collec-
tion, http://www.cise.ufl.edu/research/sparse/matrices/, accessed Aug.
25, 2013.


