
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014
323

LETTER

Dual Management of Real-Time and Interactive Jobs in
Smartphones

Eunji LEE†, Youngsun KIM†, Nonmembers, and Hyokyung BAHN†a), Member

SUMMARY A dual management of real-time and interactive jobs in
dual-core smartphones is presented. The proposed scheme guarantees
the end-to-end QoS of real-time applications, while also provides reason-
able latency for interactive applications. To this end, high performance
NVRAM is adopted as storage of real-time applications, and a dual pur-
pose CPU scheduler, in which one core is exclusively used for real-time
applications, is proposed. Experiments show that the proposed scheme re-
duces the deadline miss ratio of real-time applications by 92%.
key words: real-time job, smartphone, NVRAM, scheduling

1. Introduction

With the enhanced computational abilities of smartphones
and the subsequent explosion of mobile applications, multi-
tasking is becoming a common feature of smartphones.
In particular, not only real-time applications (e.g., video
player), but also interactive applications (e.g., web browser)
are supported together in smartphones. Unfortunately, cur-
rent smartphone platforms do not support these heteroge-
neous applications efficiently. Android is a widely used plat-
form for smartphones, which runs on top of Linux. Since
Linux has been developed as a general-purpose OS to man-
age best-effort applications, it does not support deadline-
guaranteed services. Specifically, there are two sources
of unpredictable latency in the program execution path of
smartphones. The first one is the sporadic execution of
garbage collection performed in NAND flash memory and
the second one is the time-quantum-based scheduler used in
Android platforms.

This letter eliminates the aforementioned unpredictable
latency and guarantees the end-to-end QoS of real-time ap-
plications by two architectural supports with novel mecha-
nisms. First, we adopt high performance NVRAM such as
PCM (phase-change memory) or STT-MRAM (spin torque
transfer magnetic RAM) as the storage of real-time applica-
tions. Unlike flash memory, as its underlying structure does
not require garbage collection but provides small and con-
stant access latency, NVRAM ensures predictable I/O per-
formance for real-time tasks [1], [2]. Second, we propose
a dual purpose CPU scheduler, in which one core is exclu-
sively used for a real-time job. This scheduler enables the
real-time job to have CPU control even during the I/O ex-
ecution, thereby resuming its CPU execution right after the

Manuscript received September 17, 2013.
†The authors are with the Department of Computer Engineer-

ing, Ewha University, Seoul, 120–750 Korea.
a) E-mail: bahn@ewha.ac.kr

DOI: 10.1587/transinf.E97.D.323

I/O completion. Though CPU cycles may be wasted during
the I/O execution of the real-time job, we show that the CPU
utilization is not degraded largely as NVRAM provides suf-
ficiently fast I/O. Experimental results show that the pro-
posed scheme reduces the deadline miss ratio of real-time
applications by 92% on average compared to conventional
blocking I/O used in Android.

The remainder of this letter is organized as follows.
Section 2 describes the details of the mechanism we propose
for real-time tasks in smartphones. Section 3 presents the
experimental results to assess the effectiveness of the pro-
posed scheme, and Sect. 4 finally concludes this letter.

2. The Proposed Scheme

In Android, when a user application requests a file I/O, it
invokes a specific framework API to access storage. Then,
the API transmits the request to kernel through system calls,
and the kernel subsequently conveys the I/O request to stor-
age through device drivers and controllers. Then, the kernel
blocks the calling application and performs context-switch
to execute other tasks during I/O processing. When the I/O
is completed, the device controller notifies it to the kernel
by an interrupt, and the kernel transfers the requested data
to the buffer space if any and wakes up the blocked pro-
cess. After waking up, however, even a high priority process
like real-time tasks cannot obtain CPU instantly because the
current Android scheduler, CFS (completely fair scheduler),
schedules CPU non-preemptively. That is, even a real-time
task should wait in the ready-queue until the time quantum
of the currently running task expires [3]. The time quan-
tum is about 1 millisecond, which is long time considering
the access time of NVRAM, which is only tens of nanosec-
onds [4]. Furthermore, as this latency varies depending on
the remaining time slice of the currently running task, the
real-time task may suffer from unpredictable delays.

NAND flash memory is another source of unpre-
dictable latency in I/O paths. As NAND flash memory is
an erase-before-write medium, it needs garbage collection,
which collects invalid pages and erases them to recycle their
spaces [5], [6]. As garbage collection is triggered sporadi-
cally and takes long time due to bulky erase operations, it
results in the fluctuation of I/O time in smartphones. As Ta-
ble 1 shows, an erase operation takes an order of magnitude
longer latency compared to other operations.

This letter eliminates all sources of the aforemen-
tioned unpredictable latency by making use of dual purpose

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



324
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

Table 1 Performance characteristics of memory and storage media.

Fig. 1 The proposed system architecture.

scheduling with NVRAM (DPS-NV). Figure 1 shows the
architecture of DPS-NV. Both NVRAM and flash memory
are adopted as storage. NVRAM is dedicated to real-time
applications and their data, whereas all the other programs
and data are located in flash partitions. This architecture not
only prevents unexpected I/O delay of real-time tasks, but
also minimizes the latency caused by I/O bus contention.
The CPU of our architecture consists of two cores. We use
one core for a real-time task, and the other for interactive
tasks. However, if no real-time task is active, both cores can
be allocated to interactive tasks like conventional systems.
The L1 cache is private to each core and the L2 cache is
shared among two cores.

In our architecture, DRAM is used as main memory
media like the conventional system architectures. Since
NVRAM is byte-accessible and sufficiently fast compared
to DRAM, there is a prospect that NVRAM might unify
the functionalities of main memory and storage, eventually
leading to a unified memory architecture [7], [8]. In this
case, a real-time task can be executed in its place with-
out moving to DRAM, and thus more accurate prediction
of I/O time can be possible. However, many components
of the system including operating system kernel should
be redesigned to support this functionality. Thus, we use
NVRAM only for storage media.

This architecture also resolves the scheduling latency
incurred by the current blocking I/O mechanism. The fun-
damental principle behind the blocking I/O is to improve
CPU utilization by executing other tasks while performing
I/O because storage I/O takes millions of cycles in conven-
tional systems. However, it cannot provide predictable I/O
execution for real-time tasks. DPS-NV relieves this prob-
lem by using non-blocking I/O for real-time applications. It
allows the running task to control CPU during its I/O, and
thus avoids long scheduling latency.

Though a certain CPU time is wasted with non-

Fig. 2 Program execution in blocking I/O with CFS and DPS-NV.

blocking I/O, it is not that much as the access time of
NVRAM is an order of magnitude shorter than flash mem-
ory. Figure 2 depicts the comparison of the conventional
blocking I/O and DPS-NV. As shown in the figure, DPS-
NV meets the deadline of the real-time task, but blocking
I/O fails to do so due to the context-switch overhead and the
scheduling latency.

In DPS-NV, CPU is under-utilized during the I/O time
of real-time tasks, but the wasted time can be offset by the
saved context-switch overhead due to the high performance
characteristics of NVRAM. Furthermore, as the core allo-
cated to the real-time task can be used by other tasks when
it is not active, degradation of the CPU utilization is limited.

3. Experimental Results

To assess the effectiveness of DPS-NV, we performed trace-
driven simulations. The target architecture is Odroid A4
open mobile development platform running with Android
4.0.4 ICS. The traces were obtained with a system pro-
filer implemented on Linux 2.6.32 by playing the StarWars
movie with smplayer. Smplayer plays a series of movie
frames periodically (e.g., 24 frames/sec) and in each period,
it reads, decodes, and displays frames from the movie file,
and then sleeps until the next period starts. The developed
simulator measures the completion time of the movie player
for each period. In this experiment, the context-switch time
is set to 15 us [9]. We use PCM as the NVRAM storage
since PCM is expected to be used as secondary storage like
flash memory or hard disks in the next few years [2].

Figure 3 (a) shows the deadline miss ratio of the real-
time task as a function of the cache size. As shown in the
figure, DPS-NV reduces the deadline miss ratio of blocking
I/O by 92% on average. Specifically, DPS-NV guarantees
zero percent of deadline miss ratio when the cache size is
7 K pages, while blocking I/O incurs 48% of deadline miss
ratio on that point. Figure 3 (b) shows the deadline miss
ratio according to the variations of the waiting time in the
ready-queue. CPU waiting time of 100% implies the situa-
tion that a running process uses CPU for its full time quan-
tum when the real-time task arrives at the ready-queue. We
set the time quantum to 1 millisecond following the conven-
tional setting [4]. The deadline miss ratio of blocking I/O
exponentially increases as the waiting time becomes longer,
whereas DPS-NV provides consistently good performance.
Note that the deadline miss ratio rises up to 84% even when
the waiting time is only 20% in the blocking I/O.

Figure 4 shows the actual completion time of the real-
time task in each cycle as time progresses. DPS-NV satis-



LETTER
325

Fig. 3 Performance comparison of DPS-NV and blocking I/O; (a) dead-
line miss ratio as the cache size is varied; (b) deadline miss ratio as the CPU
waiting time is varied.

Fig. 4 Deadline over time.

Fig. 5 CPU utilization for different storage.

fied the deadlines in all periods and completed the real-time
task 58% earlier than its deadline on average. However,
blocking I/O incurred 78 times of deadline misses while
playing 150 frames and delayed the completion time by 22%
on average.

As the real-time task does not release CPU dur-
ing its I/O, the performance of other tasks may be de-
graded. To investigate this effect, the CPU utilization
of DPS-NV is measured. For the comparison purpose,
we also measure the CPU utilization of DPS-NV cou-
pled with flash memory and hard disks whose perfor-
mance characteristics are described in Table 1. As shown
in Fig. 5, the CPU utilization of DPS-NV is reduced by
only 4% in PCM compared to blocking I/O, but 38%
and 49% in flash memory and hard disks, respectively.
When using slow storage media, I/O processing consumes
considerable CPU cycles, and thus occupying CPU dur-
ing I/O processing might result in serious performance

degradation. However, with high performance storage like
PCM, the wasted CPU cycles of DPS-NV are not large and
most of them can be offset by the saved context-switch time.

4. Conclusion

DPS-NV is an end-to-end QoS support mechanism for real-
time applications in smartphones. DPS-NV eliminates two
sources of unpredictable latency in the program execution
paths of smartphones: non-uniform access time of flash stor-
age and the scheduling latency of the completely fair sched-
uler. Specifically, DPS-NV adopts NVRAM as the storage
of real-time applications, and then performing non-blocking
I/O. Experimental results showed that DSP-NV reduces the
deadline miss ratio of real-time applications by 92% on av-
erage.

Acknowledgments

This research was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea govern-
ment (MEST) (No.2011-0028825).

References

[1] S. Lee, H. Bahn, and S.H. Noh, “Characterizing memory write refer-
ences for efficient management of hybrid PCM and DRAM memory,”
Proc. IEEE Symp. Modeling, Analysis, and Simulation of Computer
and Telecomm. Systems (MASCOTS), Singapore, pp.168–175, 2011.

[2] E. Lee, S. Yoo, J. Jang, and H. Bahn, “WIPS: A write-in-place snap-
shot file system for storage-class memory,” Electron. Lett., vol.48,
no.17, pp.1053–1054, 2012.

[3] S. Wang, Y. Chen, W. Jiang, P. Li, T. Dai, and Y. Cui, “Fairness
and interactivity of three CPU schedulers in Linux,” Proc. IEEE
Conf. Embedded and Real-Time Computing Systems and Applica-
tions, pp.172–177, 2009.

[4] B.B. Brandenburg, J.M. Calandrino, and J.H. Anderson, “On the scal-
ability of real-time scheduling algorithms on multicore platforms:
A case study,” Proc. IEEE Real Time Systems Symposium (RTSS),
2008.

[5] J. Kim, J.M. Kim, S.H. Hoh, S.L. Min, and Y. Cho, “A space effi-
cient flash translation layer for compact flash systems,” IEEE Trans.
Consum. Electron., vol.48, no.2, pp.366–375, 2002.

[6] L. Chang, T. Kuo, and S. Lo, “Real-time garbage collection for
flash-memory storage systems of real-time embedded systems,” ACM
Trans. Embedded Computing Systems, vol.3, no.4, pp.837–863, 2004.

[7] J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent mem-
ory,” Proc. ACM Symp. Operating Systems Principles (SOSP), 2009.

[8] X. Wu and A.L.N. Reddy, “SCMFS: A file system for storage class
memory,” Proc. IEEE Conf. Supercomputing (SC), 2011.

[9] H.S. Choi and H.C. Yun, “Context switching and IPC performance
comparison between uClinux and linux on the ARM9 based proces-
sor,” SAMSUNG Tech. Conf., 2005.


