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LETTER

Low Cost Error Correction for Multi-Hop Data Aggregation Using
Compressed Sensing∗

Guangming CAO†,††,†††a), Student Member, Peter JUNG††††b), Sławomir STAŃCZAK††††c),
and Fengqi YU†, Nonmembers

SUMMARY Packet loss and energy dissipation are two major chal-
lenges of designing large–scale wireless sensor networks. Since sensing
data is spatially correlated, compressed sensing (CS) is a promising recon-
struction scheme to provide low–cost packet error correction and load bal-
ancing. In this letter, assuming a multi-hop network topology, we present
a CS–oriented data aggregation scheme with a new measurement matrix
which balances energy consumption of the nodes and allows for recovery
of lost packets at fusion center without additional transmissions. Compar-
isons with existing methods show that the proposed scheme offers higher
recovery precision and less energy consumption on TinyOS.
key words: large–scale wireless sensor networks, compressed sensing,
packet loss, energy balancing

1. Introduction

Packet loss and energy dissipation are two major chal-
lenges when designing large–scale wireless sensor networks
(WSN) operating under strict energy constraints. Such net-
works are often deployed to monitor the environment in
some areas of interest, like forest fire monitoring.

Usually WSNs gather sensing data from a number of
geographically distributed sensor nodes and transmit the
data to a single fusion center (the sink) for further pro-
cessing. The data is transmitted using intermediate nodes
as relays in a “receive–and–forward” (or “decode–and–
forward”) manner. Therefore, the nodes near the sink
have to carry a significantly higher load than peripheral
nodes, leading to disparity in energy and power consump-
tion. Immediate consequences of the disparity are connec-
tivity and congestion problems due to battery depletion at
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sensor nodes closer to the sink. The problem is further ag-
gravated by the interference caused by concurrent transmis-
sions, leading to higher single–hop and end–to–end packet
loss rates. Improving end-to-end packet loss rates while
treating communication resources (energy and bandwidth)
with care is one of the most fundamental challenges in de-
signing WSNs, for example in [1].

This letter, while aiming at improving the end–to–end
performance, shows how to beneficially utilize a sparse
structure of environmental parameters in the design of net-
work protocols and for the data recovery at the fusion cen-
ter. In many WSN applications, such a property results
from the spatially correlated sensing data which is essen-
tially determined by a small number of unknown environ-
mental parameters in highly dimensional spaces. For this
reason, compressed sensing (CS), as an emerging area in the
field of sparse recovery, provides promising reconstruction
approaches to the problem of low–cost end–to–end packet
error correction and hot–spot energy usage of bottleneck
nodes. As the source compression at a sensor node is com-
putationally less expensive than conventional encoding, CS
is suitable for WSN hardware configurations. More im-
portantly, due to the linearity of such compressed encoding
schemes, sensor nodes can always transmit a globally fixed
number of packets (fixed compressed dimension in [2]) in
a hop–by–hop manner regardless of the number of nodes;
this naturally avoids the unbalanced load distribution. Ref-
erence [3] first introduced CS erasure coding (CSEC) to ad-
dress the problem of packet loss in WSNs through com-
pressed sensing; the scheme offers precise data recovery un-
der the condition of packet loss rates up to 20% while in-
creasing the compressed dimension by the same percentage.
The accurate recovery is therefore achieved by sending more
data, which is not suitable to handle the worse case of seri-
ous loss rate sufficiently. Furthermore, multi-hop scenarios
are not covered explicitly.

Although combining sensing networks and CS is one
of the central research topics in compressed sensing, it re-
mains a big challenge to implement the theoretical meth-
ods in WSNs to improve their packet loss tolerance, espe-
cially in the case of multi-hop tree network topologies. The
main contribution of this letter is a CS–oriented data aggre-
gation method for the multi–hop tree topology; the method
is shown to precisely reconstruct lost packets at the fusion
center without additional transmission costs. Moreover, the
energy consumption is balanced which mitigates the hot–
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spot energy usage problem. We consider peer–to–peer and
end–to–end packet loss rates and compare our greedy–based
and convex CS–oriented recovery methods with conven-
tional data aggregation and CSEC reception of [3].

2. System Model

In this section, we introduce a data gathering scheme for a
multi-hop tree topology where each node always transmits
a fixed number of packets in every hop, instead of sending
more and more packets from hop to hop. We establish a
probabilistic model for the distribution of lost packets and
consider the CS–based reconstruction of the sensor readings
including the recovery of the lost data packets. Let us start
with the conventional aggregation.

2.1 Data Aggregation

Assume that N sensor nodes are arranged by tree routing
in B branches with each branch consisting of H hops, i.e.
N = BH. For simplicity we assume also that for each
branch b ∈ [0, B − 1] the node indices are arranged in the
correct order Bb := [bH + 1 . . . (b + 1)H]. In the conven-
tional data aggregation, data is streamed in a “receive–and–
forward” manner. Thus, the gathered data y ∈ RM at the
sink is then simply the sensed data d ∈ RN of the N nodes,
y = [d1, . . . dH , dH+1, . . . dBH]T = d. Each node k in a branch
has here only one child node and therefore the received data
vector Rk equals the generated data vector S k−1 of its child
node k−1. If linear encoding of received data Rk and sensed
data dk is not exploited, i.e. a corresponding encoding ma-
trix Ek equals the identity, we obtain:

S k = Ek

[
dk

Rk

]
=

[
dk

S k−1

]
∈ RMk . (1)

The output dimension Mk increases linearly hop by hop and
finally the sink receives M = N packets containing the prim-
itive data y = d from the N nodes. This scheme is easy
to implement without special requirements and is therefore
universally used. However, as already mentioned, such a
strategy does not scale well with the size of the network. It
is therefore necessary to develop multi-hop methods which
operate at a fixed packet load independent of the particular
location of the node in a branch.

Data Aggregation in Fixed Dimension: Here, we as-
sume that a linear combination of the sensor readings, the
vector y = Φd ∈ RM , is observed at the sink where Φ is
the measurement matrix of dimension M × N. However, the
data processed at node k is always an M–dimensional vec-
tor:

S k = [φk I]

[
dk

Rk

]
, (2)

where φk is the kth column of Φ and I ∈ RM×M is a corre-
sponding identity. Hence, the generic encoding matrix Ek

in (1) becomes Φk = [φk I]. Since summations are inde-
pendent of ordering, this aggregation strategy covers linear

topology and tree topology with dynamic branches.

2.2 Packet loss in Data Aggregation

Before we model the effect of packet loss, it should be noted
that two related types of error rate are considered in WSNs
due to the multi-hop type of communications: (i) peer-to-
peer and (ii) end-to-end. Peer-to-peer packet loss rate is
easier to measure in practice, while end-to-end rate is more
important at the system level and will be considered in this
letter. We assume that the probability of packet loss in ev-
ery node is independent and identically distributed (i.i.d.).
Let qk be a Mk–dimensional random vector representing
the error pattern at node k. If its mth component qmk for
m ∈ [1 . . .Mk] equals 1, it means successful reception of the
mth packet of node k. Otherwise it means the packet is lost.
We denote a success probability by p (peer-to-peer packet
loss rate is 1 − p), so that

Pr{qmk = 1} = p. (3)

Furthermore, we use Qk to denote the Mk × k–dimensional
random error matrix at node k with elements (Qk)mi :=∏k−1

l=i qml.
Packet loss in Fixed S k Dimension: Using Qk, the ef-

fective measurement matrix is changed to Qk �Φk, where �
denotes point-wise (Hadamard) product. This means, at the
sink the lost packet is counted as zero at the corresponding
position in measurement matrix, i.e. the over all matrix Φ is
replaced by the effective measurement matrix Φ̂ = Q � Φ,
where Q is the error matrix at the sink. This method does
not increase system complexity and does not consume ex-
tra energy either, in contrast to the existing solutions, e.g.
CSEC. Although this method seems quite simple, it is more
intuitive to use sensed data from adjacent sensors or the last
sensed data of the same sensor instead of zeros. Later on,
in the simulation section, we simulate the strategy where
last time measurements are used due to the temporal corre-
lations of sensed data. In our system setup, we observe a
much worse performance.

Now, by replacing Φ with Φ̂, Rk = qk−1 � S k−1 holds
and (2) becomes:

(S k)m = φmkdk+

k−1∑
i=1

(
k−1∏
l=i

qml) φmi di = φmkdk+(Rk)m. (4)

For a whole network with B branches, the data aggregated
at the sink is then:

ym =

B−1∑
b=0

(b+1)H∑
i=bH+1

(
(b+1)H∏

l=i

qml) φmi di. (5)

The elements of the effective measurement matrix Φ̂ =
Q � Φ are therefore φ̂mi := Qmi · φmi = (

∏(b+1)H
l=i qml) φml

in branch b. If the tree network has only one branch, i.e. a
linear topology, then φ̂mi = (

∏N
l=i qml) φml.

The sink receives M data y = Φ̂d of B ·H data symbols.
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The number of zeros in Φ̂ = Q � Φ determines the number
of lost data contributions (corresponding elements in Φ are
multiplied by zeros) in y and it is a random variable. We
then define the end–to–end data loss rate:

1 − P =
E(# zeros in Q)

MN
=
E(# zeros in a branch of Q)

MH

(a)
=

1
H

H∑
h=1

h Pr{qmh = 0|(qm,h+1 . . . qm,H) = 1}

=
1
H

(1 − p)pH
H∑

h=1

h p−h, (6)

where the expectation is taken the average over the statistics
of Q. Step (a) follows from the properties of Q since its
zeros occur as a series which always starts independently
for each compressed dimension m ∈ [1 . . .M] and for each
branch [0 . . . B − 1] in its first hop. We call P in (6) the
end–to–end data success rate since it indicates the averaged
proportion of d contained in the observation y. P depends on
the peer–to–peer packet success rate p. For example, taking
H = 5 and p = 77.7%, P is up to 50%.

2.3 Data Reconstruction with Compressed Sensing

Usually, the spatial behavior of environmental parameters,
for example temperature, is determined only by a small
number of unknown parameters. In the language of CS, this
means that the parameters are sparse (or compressible) in a
certain domain, for example in the wavelet domain as it has
been observed in [2]. Thus, the sensed data d = (di)N

i=1 can
be expressed as d = Ψx ∈ RN where Ψ is a unitary matrix
and x is a K–sparse vector, i.e. x contains most K non–zero
elements: ‖x‖�0 := |{i : xi � 0}| ≤ K � N. Then from (5),
the aggregated data at the sink is y = (Q � Φ)Ψx =: Ax ∈
R

M . It is known that the stable reconstruction of K–sparse
x ∈ RN (and therefore the reconstruction of the sensor read-
ings d) requires only M = O(K ln N) � O(N) randomized
observations. An efficient solution to the following under-
determined and combinatorial problem:

min
z∈RN
‖z‖�0 s.t. y = Az, (7)

has been extensively studied in the field of compressed sens-
ing [4]. If any 2K columns of Φ are linear independent, x is
uniquely determined by y, i.e. M = 2K measurements are
sufficient. But, proving this condition is as hard as solv-
ing (7), which is known to be NP complete. However, in
the case of i.i.d. Gaussian measurements Φ, the orthogonal
matching pursuit (OMP) accurately recovers x with prob-
ability greater than 1 − 2ε if M ≥ CK ln(N/ε) for some
ε ∈ (0, 0.36) where C ≤ 20 (C can be improved for large
K) [5]. This greedy algorithm is quite simple and fast, but it
is not always finds the correct solution.

Another main insight of sparse optimization and com-
pressed sensing is that under certain conditions on A the so-
lution to (8) can be obtained by solving the convex relax-
ation [6] where the �0–term is replaced by ‖x‖�1 =

∑
i |xi|. It

is also known as the basis pursuit (BP):

min
z∈RN
‖z‖�1 s.t. y = Az. (8)

Conditions for correct reconstruction of x using the program
(8) instead of (7), have been established for fixed matrices
A, for example, in terms of the restricted isometry prop-
erty (RIP) †. Matrices with independent sub–Gaussian rows
or columns are with overwhelming probability sufficiently
close to restricted isometries once M = O(K ln N) � O(N)
[8]. Meanwhile, the conditions have been relaxed substan-
tially once the observations are randomized and incoherent
to the domain where x is sparse (the RIPless theory, see [9]).

A key assumption in all known CS guarantees for the
programs (8) and (7) is that the random matrix A has to be
known at the decoding stage. Thus, in our application the
corresponding positions of packet errors have to be known
at the sink. Fortunately, this can be achieved with little cost
in WSNs. In most data collection scenarios, every packet
has a certain sequence number based on its node ID such
that the sink can identify it. Therefore, the sink knows the
status of all packets. In CS, the following should be han-
dled appropriately. Sensor readings are always encoded into
M packets which need be numbered for identification. The
positions of zeros are known at the sink. Therefore, sensor
nodes should record lost packets once they are detected.

3. Simulation Results

In our simulations, we use Matlab and TinyOS with Tossim
which is a discrete event-based simulator. The sensor data
d are temperature values from field environment, which are
spatially and temporally correlated. Thus, we assume that
the vector d = Ψx is K–sparse in a fixed basis Ψ. To illus-
trate the result we have repeated the experiment 1000 times
for each fixed M and random measurements. We observed
that for N = 100 and K = 9 in the tree topology with
B = 10 branches, the sink can recover the original data at
M = 40 with sufficient precision, i.e. the reconstruction er-
ror ‖d̂ − d‖�2/‖d‖�2 is less than 1% where d̂ is our recovery.

Recovery of lost data using CS: In Fig. 1 we show the
performance of our method for end–to–end packet loss rate

Fig. 1 Data recovery by OMP with Φ̂ for data loss rates (1 − P) of 0%,
5%, 50%, comparing with OMP using Φ instead of Φ̂ or OMP with previ-
ous readings (N = 100, K = 9).

†A satisfies the RIP of order K if there exists δK ∈ (0, 1) such
that |||Ax||2�2 − ||x||2�2 | ≤ δK holds for all K-sparse vectors x [7].
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Fig. 2 Compare our proposed method with two different data recovery
approaches. (1) CS with OMP and BP respectively (M = 40, K = 9), (2)
CSEC [3] with OMP (M = 48, K = 9), (3) conventional aggregation.

Table 1 The energy model of sensor node.

Component Status Current
MCU (Atmega128) Active 8.93 mA

Idle 4.93 mA
Power save 8 uA
Power down 0.3 uA
Transmit (power: 0 dBm) 10.4 mA
Receive(sensitivity: -110dBm) 9.3 mA

RADIO(CC1000) Power down 0.2 uA
LED Lighting 3 mA
SENSOR (SHT10) Active 4 mA

1 − P = 5% and 50%. It shows that our method recovers
the sensor data in both cases very well. The performance is
almost the same as that without loss. Figure 1 also shows
other methods using CS, as mentioned before. It might be
more intuitive, for example, keeping Φ instead of Φ̂ or using
last time measurements instead once the current packet is
lost (previous OMP). We can see in both cases, CS doesn’t
work even 1 − P = 0.5%.

Comparison with other methods: Fig. 2 compares our
greedy–based (OMP) and convex CS–oriented (BP) recov-
ery methods with CSEC (using OMP) and conventional data
aggregation. We can see that for all methods the recov-
ery accuracy gets worse with increasing packet loss rate,
where BP has the best performance. Contrarily, the whole
row of measurement matrix is dropped off by CSEC, when
one packet loss happens during the sampling. CSEC pre-
cisely recovers the sensor data for packet loss rate up to 20%
through increasing the compression dimension by 20%, i.e.
M = 48 instead of M = 40. The conventional aggregation
appears on a straight line in Fig. 2 since each packet loss
causes a corresponding data vacancy at the sink.

Energy dissipation: Our method also keeps the benefit
of balanced energy dissipation that CS promises because at
every hop the fixed M packets are sent in the whole network.
In order to visualize the energy efficiency gains of different
methods, we decrease the energy consumption for channel
detection to minimum. It is because this part of energy is de-
cided by low-level MAC protocol and is the same for all data
recovery algorithms with/without using CS. Here, we com-
pare two CS data collections with traditional tree collection
protocol (CTP) in TinyOS. All data are sampled every 10
seconds during 1000 seconds in a linear topology as B = 1
where the sink is node 0 as the starting point of this net-

Fig. 3 Energy consumption of every sensor node in the network under
20% packet loss. CS data collection is more balanced than CTP, and CSEC
consumes more energy than our CS.

work. Using the energy model shown in Table 1, the statistic
of the energy consumption of every node is analyzed. For
1 − P = 20% in Fig. 3 we can see that CTP is unbalanced
and the nodes near the sink exhaust earlier. Although in CS
scheme the peripheral nodes send more packets than in the
traditional one, i.e. M packets instead of 1, both two CS
scenarios are more balanced and energy-efficient over the
whole network, while CSEC consumes more energy due to
its overhead as explained above.

4. Conclusions

We have described a low cost error correction method for
multi–hop data aggregation using compressed sensing. We
have shown that this method has low–cost implementation
and excellent performance due to the sparse nature of sensor
data. Our method is stable even at the packet loss rate of
50%. Furthermore, it has been verified, using TinyOS, that
the energy dissipation is also efficient and balanced.
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