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Constant Time Enumeration of Subtrees with Exactly k Nodes in a
Tree∗

Kunihiro WASA†a), Yusaku KANETA†b), Nonmembers, Takeaki UNO††c),
and Hiroki ARIMURA†d), Members

SUMMARY By the motivation to discover patterns in massive struc-
tured data in the form of graphs and trees, we study a special case of the
k-subtree enumeration problem with a tree of n nodes as an input graph,
which is originally introduced by (Ferreira, Grossi, and Rizzi, ESA’11,
275–286, 2011) for general graphs. Based on reverse search technique
(Avis and Fukuda, Discrete Appl. Math., vol.65, pp.21–46, 1996), we
present the first constant delay enumeration algorithm that lists all k-
subtrees of an input rooted tree in O(1) worst-case time per subtree. This
result improves on the straightforward application of Ferreira et al.’s algo-
rithm with O(k) amortized time per subtree when an input is restricted to
tree. Finally, we discuss an application of our algorithm to a modification
of the graph motif problem for trees.
key words: graph algorithm, enumeration algorithm, constant delay enu-
meration, motif discovery, tree mining

1. Introduction

By emergence of massive structured data in the form of
trees and graphs, there have been increasing demands on
efficient methods that discovers many of interesting patterns
or regularity hidden in collections of structured data [1], [2],
[14], [15]. For instance, the proximity pattern mining prob-
lem [8], [10] is a class of such pattern discovery problems,
where an algorithm is requested to find all collections of
items satisfying proximity constraints in a given discrete
structure. For example, the proximity string search prob-
lem [10] and the graph motif problem [5], [8] are popular
examples of such proximity pattern discovery problems.

In this paper, we consider the k-subtree enumeration
problem, which is originally introduced by Ferreira, Grossi,
and Rizzi [6], where an instance consists of an undirected
graph G of n nodes and every positive integer k ≥ 1, and the
task is to find all k-subtrees, a connected and acyclic node
subsets consisting of exactly k nodes in G. Ferreira et al. [6]
presented the first output-sensitive algorithm that lists all k-
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subtrees in a graph G of size n in O(sk) total time and O(m)
space, in other words, in O(k) amortized time per subtree,
where m is the number of edges of an input graph and s
is the number of solutions. However, it has been an open
question whether there exists a faster enumeration algorithm
that solves this problem.

As a main result of this paper, we present the first con-
stant delay enumeration algorithm for the k-subtree enumer-
ation problem in trees. More precisely, for every k ≥ 1, our
algorithm lists all k-subtrees of an input tree T of size n in
constant delay (worst-case time per subtree) using O(n) pre-
processing and space. Note that the delay of our algorithm
is bounded by a constant independently from k and n. Our
algorithm is based on reverse search technique, proposed
by Avis and Fukuda [3], as in the algorithm by Ferreira et
al. [6] for general input graphs. However, unlike their algo-
rithm [6], our algorithm achieves the best possible enumer-
ation complexity. Finally, we discuss an application of our
algorithm to a modification of the graph motif problem for
trees.

1.1 Related Work

Ferreira, Grossi, and Rizzi [6] presented an enumeration for
all k-subtrees in an input graph G in O(k) amortized time per
solution. Ruskey [9] presented an enumeration algorithm for
all subtrees in an input tree T . His algorithm runs in O(n)
time per solution with O(n) space, where n is the number of
nodes in T .

The k-subtree enumeration problem considered in this
paper is closely related to a well-known graph problem
of enumerating all spanning trees in an undirected graph
G [12]. For this problem, Tarjan and Read [12] first pre-
sented an O(ns+m+n) time and O(m+n) space algorithm in
1960’s, where s is the number of solutions, m is the number
of edges in G, and n is the number of nodes in G. Recently,
Shioura, Tamura, and Uno [11] presented O(m + n + s) time
and O(m + n) space algorithm. Unfortunately, it is not easy
to extend the algorithms for spanning tree enumeration to
subtree enumeration.

One of our motivation comes from application to the
graph motif problem (GMP, for short). Given a bag of k la-
bels, called a pattern, and an input graph G, called a text,
GMP asks to find a k node subgraph of G whose multi-set
of labels is identical to a given pattern. Lacroix et al. [8]
introduced the problem with application to biology and pre-
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sented an FPT algorithm with k = O(1), and NP-hardness
in general. Then, Fellows et al. [5] showed that the prob-
lem is NP-hard even for trees of degree 3, and presented
an improved FPT algorithm. Sadakane et al. [10] studied
the string version of GMP, and presented linear-time algo-
rithms.

Although there are increasing number of studies on
GMP [5], [8], there are few attempts to apply efficient enu-
meration algorithms to this problem. Ferreira et al. [6] men-
tioned above is one of such studies. Recent studies [2], [14],
[15] in data mining applied efficient enumeration algorithms
to discovery of interesting substructures from massive struc-
tured data in the real world.

1.2 Organization of This Paper

In Sect. 2, we define basic definitions on the k-subtree prob-
lem. In Sect. 3, we first introduce the family tree for k-
subtrees in a tree, and in Sect. 4, then, we present a con-
stant delay algorithm that solves the k-subtree enumeration
problem. Section 5 gives an application to the graph motif
problem. Finally, in Sect. 6, we conclude.

2. Preliminaries

In this section, we give basic definitions and notation for
trees and their subtrees. For the definitions not found here,
please consult textbooks (see, e.g., [4]). For a set S , we
denote by |S | the number of elements in S . For mutually
disjoint sets X and Y , we denote by X � Y the disjoint union
of X and Y . In this paper, all graphs are simple (without
self-loops or parallel edges).

2.1 Trees

A rooted tree is a directed connected acyclic graph T =
(V(T ), E(T ), root(T )), where V = V(T ) is a set of nodes,
E = E(T ) ∈ V2 is a set of directed edges, and root(T ) ∈ V is
a distinguished node, called the root of T . For each directed
edge (u, v) ∈ E, we call u the parent of v and v a child of u.
We assume that every node v except the root has the unique
parent. The size of T is denoted by |T | = |V(T )| = n. We
say that nodes u and v are siblings each other if they have
the same parent. For each node v, we denote the unique par-
ent of v by pa(v), and the set of all children of a node u by
Ch(v) = { w ∈ V | (v,w) ∈ E }. We say that T is an ordered
tree if a left-to-right order among siblings in T is given.

We define the ancestor-descendant relation � as fol-
lows: For any pair of nodes u and v ∈ V , if there is a se-
quence of nodes (v0 = u, v1, · · · , vk = v) (k ≥ 0), where
v0, . . . , vk are mutually distinct and (vi−1, vi) ∈ E for every
i = 1, . . . , k, then we define u � v, and say that u is an an-
cestor of v, or v is a descendant of u. If u � v but u � v,
then this relationship is denoted by u ≺ v, and u is a proper
ancestor of v, or v is a proper descendant of u. For any node
v, we denote by T (v) the set of all descendants of v in T .

2.2 DFS-Numbering

In this paper, we regard an input rooted tree T of size n ≥ 0
as an ordered rooted tree as follows. Given an input rooted
tree T , we give an arbitrary left-to right order among sib-
lings of T . Then, we number all nodes of T from 1 to n
by the DFS-numbering, which is the preorder numbering in
the depth-first search [4] on nodes in T . In what follows,
we identify the node and the associated node number, and
thus, write V = {1, · · · , n}. Thus, we can write u ≤ v
(resp. or u < v) if the numbering of u is smaller or equal
to (resp. smaller than) that of v. As a basic property of a
DFS-numbering, we have the next lemma.

Lemma 1: For any u, v ∈ V , the DFS-numbering on T sat-
isfies the following properties (i), (ii), and (iii):

(i) If v is a proper descendant of u, i.e., u ≺ v, then u < v
holds.

(ii) If v is a properly younger sibling of u, then u < v holds.
(iii) Suppose that u � v and v � u. For any nodes u′ and v′

such that u � u′ and v � v′, u < v implies that u′ < v′.

Proof : Properties (i) and (ii) are clear from the order of
visiting nodes. For property (iii), since u < v, u � v, and
v � u hold, any nodes in T (v) are visited after all nodes in
T (u) are visited. Furthermore, we see u ≤ u′ and v ≤ v′
because u � u′ and v � v′. Hence, u′ < v′ holds.

2.3 K-Subtree Enumeration Problem in a Tree

Let 1 ≤ k ≤ n = |T |. A k-subset is any subset of V(T )
with k nodes. A k-subtree in a tree T is a connected and
acyclic subgraph G of T , as an undirected graph, consisting
of exactly k nodes. Since T is a tree, any connected subgraph
is obviously acyclic, and thus, it is completely specified by
its node set. We denote by S = S(k)(T ) the family of all
k-subtrees of T .

More precisely, given a subset S of k nodes, the corre-
sponding k-subtree T (S ) is specified as the subgraph T (S ) =
(S , E(S )) of T induced in S , where the edge set is given by
E(S ) = { (u, v) ∈ T | u, v ∈ S }. Since T (S ) is connected
and any connected subgraph of a tree is again a tree, T (S )
must be a proper k-subtree. Therefore, if it is clearly under-
stood, we often identify a connected node set S such that
|S | = k with the k-subtree, where we say that S is connected
if its induced subgraph T (S ) is connected. Now, we state
our problem below.

Problem 1 (k-subtree enumeration in a tree): Given an in-
put rooted tree T and a nonegative integer k, enumerate all
the k-subtrees of T .

That is, it is the problem of enumerating all elements
of S. The number of solutions is given as follows.

Lemma 2: Let s = f (k, n) be the number of all k-subtrees
in an input rooted tree T of n nodes.
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• s = O(nk) for the upper bound.
• s = 2Ω(k) for the lower bound.

Proof : For the upper bound, we can specify any k-subtree
by selecting mutually distinct k nodes from n nodes of T .
Thus, s = f (k, n) is bounded from above by

(
n
k

)
= O(nk)

for constant k. For the lower bound, we consider the infinite
sequence of input rooted trees {Tk}k≥1, where Tk is the rooted
tree of height 1 and size n = 2k − 1 consisting of the root
and n − 1 leaves only. Then, s = f (k, n) is given by

(
n−1
k−1

)
.

From the lower bound of binomial coefficient, this number
is bounded from below(

n − 1
k − 1

)
≥

(
n − 1
k − 1

)k−1

=

(
2(k − 1)

k − 1

)k−1

= 2k−1.

Hence, we have s = 2Ω(k). �

Our problem is a special case of the k-subtree problem
in a graph, originally introduced and studied by Ferreira,
Grossi, and Rizzi [6]. An input graph is a tree in our prob-
lem, while it is a general undirected graph in [6]. Ferreira et
al. [6] showed an efficient enumeration algorithm that lists
all k-subtrees in O(k) amortized time per subtree for a gen-
eral class of undirected graphs. However, its time complex-
ity is still open when an input is restricted to rooted trees.
Therefore, our goal is to devise an optimal algorithm that
lists all k-subtrees in O(1) worst-case time per subtree.

2.4 Properties of k-Subtrees

For a k-subtree S in T , we denote by root(S ) and L(S )
the root and the set of leaves of S , respectively. For sub-
set S and its complement S̄ = V(T ) \ S , we call an edge
e = (x, y) of T a cut edge between S and S̄ if x ∈ S and
y ∈ S̄ . The border set, denoted by B(S ), is the set of all
lower ends y of cut edges (x, y) between S and S̄ defined by
B(S ) = { y ∈ V(T ) | (x, y) ∈ E(T ), x ∈ S , y � S } = { y ∈
Ch(x) | x ∈ S , y � S }. In other words, B(S ) is the set of all
nodes lying immediately outside of S . We define the weight
of a k-subtree S by the sum w(S ) =

∑
v∈V(S ) v ≥ 0 of the

DFS numbers of the nodes in S .
Next, we introduce a class of subtrees in special form,

called serial trees, as follows. For any node r (1 ≤ r ≤
n − k + 1), the serial k-subtree rooted at r is the k-subtree
I(k)

r (T ) = {r, r + 1, . . . , r + k − 1} in the DFS-numbering.
A k-subtree S is serial if S = I(k)

r (T ) for some r, and S is
non-serial otherwise.

Lemma 3 (DFS-numbering lemma): For any k-subtree S
in T , then

(i) If S is non-serial, then min(B(S )) < max(L(S )) holds,
and there exists a node v that satisfies v ∈ B(S ) and
min(S ) < v < max(S ).

(ii) If S is serial and B(S ) � ∅, then max(L(S )) <
min(B(S )) holds.

Proof : (i) If S is non-serial, then there is some v ∈ V(T )\S
such that min(S ) < v < max(S ). We can find some v′ ∈

B(S ) such that min(S ) < v′ < max(S ) and v′ � v. Further-
more, if we take the smallest such v, then v′ = min(B(S )).
Since max(L(S )) = max(S ), min(B(S )) < max(L(S )) holds.
(ii) If S is serial, there is no border node between min(S )
and max(S ) = max(L(S )). Since any border node v is a de-
scendant of root(S ), we have root(S ) = min(S ) ≤ v. Thus,
v is properly larger than max(L(S )). �

2.5 Enumeration Algorithms

We introduce terminology for enumeration algorithms ac-
cording to Goldberg [7] and Uno [13]. An enumeration al-
gorithm for an enumeration problem Π is an algorithm A
that receives an instance I and outputs all solutions S in the
answer set S (I) into a write-only output stream O without
duplicates. Let N = ||I|| and M = |S (I)| be the input and the
output size on I, respectively. We say thatA is of amortized
constant time if the total running time ofA for computing all
solutions on I is linear in M. For a polynomial p(·), A is of
constant delay using preprocessing p(N) if the delay, which
is the maximum computation time between two consecutive
outputs, is bounded by a constant c(N) after preprocessing
in p(N) time. As a computation model, we adopt the usual
RAM [4].

3. The Parent-Child Relationship among k-Subtrees

Let us fix an input rooted tree T = (V(T ) = {1, . . . ,
n}, E(T ), root(T ) = 1) with size n. We assume that nodes
of T are numbered by the DFS-ordering. Let 1 ≤ k ≤ n be
any positive integer. In what follows, we write S or S(k) for
S(k)(T ) by omitting k or T . Similarly, we write P, I, and so
on.

3.1 Basic Idea: A Family Tree

Our algorithm is designed based on reverse search technique
by Avis and Fukuda [3]. In the reverse search technique,
we define a tree-shaped search route on solutions, called a
family tree.

A family tree for the class S(k)(T ) is a spanning tree
F (k)(T ) = (S(k)(T ),P(k),I(k)(T )) over S = S(k)(T ) as node
set. Given a family tree F = F (k)(T ), we can enumer-
ate all solutions using backtracking starting from the root
I = I(k)(T ). The collection of reverse edges is given by
a function P(k) : S \ {I} → S, called the parent function,
that assigns the unique parent P(S ) = P(k)(S ) to each child
k-subtree S except I. Precise definitions of I and P will be
given later.

Example 1: In Fig. 1, we show an example of a family tree
for all of nineteen k-subtrees of an input rooted tree T1 of
size n = 11, where k = 4.

A basic idea of the construction of the family tree F is
explained as follows. Recall that V(T ) = {1, . . . , n}. First,
we partition the family S of all k-subtrees in T into the mu-
tually disjoint sub-familiesS = S(k)

1 (T )�· · ·�S(k)
n (T ), where
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Fig. 1 A family tree for all of nineteen k-subtrees of an input rooted tree T1 of size n = 11, where
k = 4. In this figure, each set of nodes surrounded by a dotted circle indicates a k-subtree, and each arrow
(resp. dashed arrow) indicates the parent-child relation defined by the parent function Pr for r ∈ V(T1)
of type I (resp. P∗ of type II). We observe that the arrows among each set of subtrees in a large circle
indicates an intra-family tree, and the dotted arrows among the set of the serial and pre-serial k-subtrees
form the unique inter-family tree.

for every r ∈ V(T ), the sub-family Sr = S(k)
r (T ) is the set of

all k-subtrees in T rooted at r.
Let r be any node in T . The first task is to define the

family tree Fr = F (k)
r , called an intra-family tree, for the

traversal of all k-subtrees rooted at r that belongs to the sub-
family Sr. The root of the intra-family tree Fr is the unique
serial tree Ir = I(k)

r (T ) in Sr. For the construction of Fr, we
define the parent function Pr : Sr \ {Ir} → Sr that uniquely
assigns the parent Pr(S ) = P(k)

r (S ) with properly smaller
weight to each non-serial k-subtree S rooted at r, called a
k-subtree of type I. The construction of Pr will be described
in Sect. 3.3.

The second task is to define the family tree F∗ =
F (k)
∗ (T ), called an inter-family tree, for the traversal of sub-

families Sr’s. The root of the inter-family tree F∗ is the
unique serial treeI1 inS that has the smallest weight among
all k-subtrees. We define the parent functionP∗ : {Ir}r∈V(T )\
I1 → S that uniquely assigns the parent P∗(S ) = P(k)

∗ (S )
with properly smaller weight to each Ir, that is, the serial
k-subtree S rooted at r. The construction of P∗ will be de-
scribed in Sect. 3.4.

Finally, we have the family tree F = (S,P,I) for the
whole family S by merging all intra-family trees and the
inter-family tree, where the parent function P is the disjoint
union P∗ �⊎

r Pr, and the initial tree I is the unique serial
tree I(k)

1 with the smallest weight. In the following sections,
we will describe the details of the above construction.

3.2 Traversing k-Subtrees

We efficiently traverse between two k-subtrees R and S ∈ S.
Suppose we are to visit S from R. Then, we first delete
a leaf � ∈ L(R) from R, and next, add a border node β ∈
B(R) to R. Unfortunately, this construction is not always
sound, meaning that, sometimes, a certain combination of
� and β violates the connectivity condition on S . The next
technical lemma precisely describes when this degenerate
case happens and how to avoid it.

Lemma 4 (connectivity): Let R be any k-subtree of T with
size k ≥ 2. Suppose that � ∈ R and β � R are any nodes of
T (root(R)). Then, (i) and (ii) are equivalent:

(i) The set S = (R \ {�}) ∪ {β} is k-subtree.
(ii) � ∈ L(R), β ∈ B(R), and β � Ch(�).

Proof : (i)⇒ (ii): By contradiction, we suppose that con-
dition (ii) does not hold. Then, there are three cases below.
(Case 1) � � L(R): There dose not exist any node except �
such that the node is the parent of children of � in T . Thus,
S is not connected. (Case 2) β � B(R): S consists of two
or more connected sets such that one is {β} and another is a
set including the root node. (Case 3) β ∈ Ch(�): See Fig. 2
for example. There is a parent-child relationship between
β and � in S , R, and T . Thus, S is obviously unconnected
and is not a k-subtree. (ii) ⇒ (i): S ′ = R \ {�} is obviously
connected. Furthermore, S = S ′ ∪ {β} is connected since
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Fig. 2 The bad case for Case 3 β ∈ Ch(�) in the proof for the connectivity
lemma (Lemma 4).

Fig. 3 An idea of the proof for Lemma 5.

pa(β) ∈ S ′. Thus, S is a k-subtree. �

The next technical lemma is useful in showing the iden-
tity of two k-subtrees.

Lemma 5 (identity): Let R be any k-subset of V(T ). Sup-
pose that we take two k-subsets S and R′ such that S = (R \
{�})∪{β} and R′ = (S \{β′})∪{�′} where � ∈ R, β � R, �′ � S ,
and β′ ∈ S . Then, we have the equivalence that (i) R = R′
holds iff (ii) � = �′ and β = β′ hold.

Proof : First, (ii)⇒ (i) is obvious (See Fig. 3). Therefore,
we consider (i) ⇒ (ii). Suppose that (i) R = R′ holds. We
assume that (ii) does not hold. There are two cases below.
(Case 1) � � �′: In this case, R contains � but not �′, while
R′ contains �′ but not �. Thus, R and R′ can not be identical.
(Case 2) β � β′: By symmetricity, R and R′ can not be
identical, too. By contradiction, (ii) holds. �

3.3 An Intra-Family Tree for Non-serial k-Subtrees

Firstly, for each node r in T , we describe how to build the
intra-family tree Fr for the subspace Sr of all r-rooted k-
subtrees of type I. Suppose that |T (r)| ≥ k. Then, the intra-
family tree Fr = (Sr,Pr,Ir) is given as follows. The node
set is the collection Sr. The sub-initial k-subtree Ir is given
as a serial tree containing r as its root. Actually, such a
serial k-subtree is uniquely determined by the k-subtree Ir

consisting of k nodes { r + i | i = 0, . . . , k− 1 }. Next, we give
the parent function Pr from Sr \ {Ir} to Sr as follows.

Definition 1 (the parent of k-subtree of type I): Let T be
an input rooted tree and S ∈ Sr \ {Ir} be any non-serial
k-subtree rooted at r ∈ V(T ). Then, the parent of S is the
k-subtree

Pr(S ) = (S \ {�}) ∪ {β} (1)

obtained from S by deleting a node � ∈ L(S ) and adding a
node β ∈ B(S ) satisfying the conditions that � = max(L(S ))
and β = min(B(S )). Then, we say that S is a type-I child of
Pr(S ).

Lemma 6: If S ∈ Sr \ {Ir}, then Pr(S ) is uniquely de-
termined, and an well-defined k-subtree of T . Furthermore,
w(Pr(S )) < w(S ) holds.

Proof : Since S is non-serial, β < � from Lemma 3. Then,
we have β � Ch(�) because if we assume that β ∈ Ch(�)
then � < β from Lemma 1, and thus the contradiction is
derived. It immediately follows from Lemma 4 that Pr(S )
is connected. Since β < � again, we have w(Pr(S )) = w(S )−
� + β < w(S ). �

From Lemma 6, it is natural to have Ir as the sub-initial
k-subtree of Sr.

Example 2: In Fig. 1, we observe that subtree S 6 is the par-
ent of S 7 of type I since the maximum leaf is � = 8 and the
minimum border node is β = 3, where L(S 7) = {2, 8} and
B(S 7) = {3, 4, 9, 10, 11, 12}.

3.4 An Inter-Family Tree for Serial k-Subtrees

To enumerate the whole S, it is sufficient to compute the r-
rooted serial k-subtree Ir for each possible node r in T , and
then to enumerate Sr starting from Ir. We see, however,
that this approach is difficult to implement in constant delay
because it is impossible to compute Ir from scratch in the
constant time.

To overcome this difficulty, we define the family tree
F∗. Then, we traverse between Sr’s using the parent func-
tionP∗. The family tree is given byF∗ = (S∗,P∗,I∗), where
S∗ is the collection of serial k-subtrees and pre-serial k-
subtrees, I∗ = I1 is the unique serial k-subtree with root 1,
and P∗ is the parent function from {Ir}r∈V(T ) \{I1} to S. The
definition of a pre-serial k-subtree is given in Sect. 4.2. We
define function P∗ as follows.

Definition 2 (the parent of k-subtree of type II): Let S be
any serial k-subtree other than I∗. Then, the parent of S
is the k-subtree

P∗(S ) = (S \ {�}) ∪ {β} (2)

obtained from S by deleting the node � = max(L(S )) and
adding the node β = pa(root(S )). Then, we say that S is a
type-II child of P∗(S ).

Lemma 7: If S ∈ S∗ \ {I∗}, then P∗(S ) is uniquely de-
termined, and an well-defined k-subtree of T . Furthermore,
w(P∗(S )) < w(S ) holds.

Proof : If S is not the initial k-subtree I∗ = I1, β is always
defined. Since � is a leaf in S , S ′ = (S \ {�}) is obviously
connected. Since β is adjacent to root(S ), clearly, P∗(S ) =
(S ′ ∪ {β}) is also connected. Since β < v for any node v in
S , w(P∗(S )) = w(S ) − � + β < w(S ) holds. �
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Example 3: In Fig. 1, we observe that subtree S 8 is the par-
ent of S 9 of type II since the maximum leaf is � = 10 and
the parent of the root is β = 1, where L(S 9) = {9, 10} and
B(S 9) = {11, 12}.

3.5 Putting Them Together

Recall that S = S1 � · · · � Sn. Let Pr and P∗ be the parent
functions for non-serial trees for every node r in T and serial
trees defined in Sects. 3.3 and 3.4, respectively. Now, we de-
fine the master family tree F for the class S of all k-subtrees
in T by

F = (S,P,I), (3)

where P : S \ I → S is the disjoint union P∗ �⊎
r∈V(T ) Pr,

and I = I1 is the initial k-subtree for T . By definition,
w(I) = 1

2 k(k + 1). Furthermore, it is not hard to see that
w(S ) ≥ w(I) for any k-subtree S ⊆ V .

Theorem 1: The master family tree F forms a spanning
tree over S.

Proof : Suppose that starting from any S ∈ S, we are to
repeatedly apply the parent functionP to S . Then, we have a
sequence of k-subtrees S 0(= S ), S 1, . . . , S i, . . ., where i ≥ 0.
From Lemma 6 and Lemma 7, the corresponding properly
decreasing sequence of w(S 0) > w(S 1) > · · · > w(S i) > · · ·
has at most finite length since w(S i) ≥ 0. Since any subtree
other than the initial k-subtree I has the unique parent, the
above sequence of k-subtrees eventually reaches I in finite
time. �

From Theorem 1 above, we can easily show that all k-
subtrees in S can be enumerated in polynomial delay and
polynomial space by a backtracking algorithm that traverses
the family tree F starting from the root I.

Example 4: In Fig. 1, F (k)(T1) is a spanning tree on
S(k)(T1) rooted at I(k)(T1) = S 1 for k = 4. Then, we can
enumerate all 4-subtrees by traversing F(4)(T1).

4. The Constant Delay Enumeration Algorithm

In this section, we present an efficient backtracking algo-
rithm that enumerates all k-subtrees of an input rooted tree T
in O(1) delay using O(n) preprocessing. The remaining task
is to invert the reverse edges in P to compute the children
from a given parent. We describe this process according to
the types of a child S .

4.1 Generation of Non-serial k-Subtrees

We first consider the case that a child S is non-serial (type I).
In our algorithm, we keep these nodes as pointers to nodes
in the implementation.

Definition 3: We define the candidate sets DelList(R) and

AddList(R) for deleting nodes � and adding nodes β, respec-
tively, as follows: DelList(R) = { � ∈ L(R) | � < min(B(R)) },
AddList(R) = { β ∈ B(R) | β > max(L(R)) }.
Definition 4 (child generation of type I): Given an r-rooted
k-subtree R in T , we define the k-subtree

Childr(R, �, β) = (R \ {�}) ∪ {β} (4)

for (i) any � ∈ DelList(R) and (ii) any β ∈ AddList(R) such
that (iii) β is not a child of �.

Lemma 8 (update of lists): Let R be any r-rooted k-subtree
and S = Childr(R, �, β) be defined for a leaf � ∈ DelList(R) is
removed from R and a border node β ∈ AddList(R) is added
to R. Then,

(i) The leaf � becomes the minimum border node in S .
(ii) The border node β becomes the maximum leaf in S .

Proof : From Lemma 3, we have that � < min(B(S )) <
max(L(S )) < β. Hence, conditions (i) and (ii) immediately
follows. �

The above lemma describes what happens when we ap-
ply Childr to R. Now, we show the correctness of Childr as
follows.

Theorem 2 (correctness of Childr): Let R and S be any r-
rooted k-subtree of T , and S be non-serial. Then, (1) R =
Pr(S ), iff (2) S = Childr(R, �, β) for (i) some � ∈ DelList(R)
and (ii) some β ∈ AddList(R) such that (iii) β � Ch(�).

Proof : Firstly, we can easily obtain a statement that
Childr(R, �, β) is non-serial from Lemma 3 and Lemma 4.
(1) ⇒ (2): Suppose that R = Pr(S ). Then, R is ob-
tained from S by removing �∗ = max(L(S )) and adding
β∗ = min(B(S )). From Lemma 3, β∗ < �∗. From Lemma 4,
β∗ � Ch(�∗). Furthermore, any node v ∈ S \ {�∗} is smaller
than �∗ and any node u ∈ (B(S )\{β∗})∪Ch(β∗) is larger than
β∗. Then, we see that max(L(R)) < �∗ and β∗ < min(B(R)).
If we put β = �∗ and � = β∗, then we can show that β and �
are a border node and a leaf in R, respectively, that satisfy the
pre-condition of Childr in Definition 4. Therefore, we can
apply Childr(R, �, β), and then, we obtain the new child from
R by removing � = β∗ from R and adding β = �∗ to R. From
Lemma 5, the child is identical to the original subtree S . (2)
⇒ (1): In this direction, we suppose that S = Childr(R, �, β)
for some � ∈ L(R) and β ∈ B(R) satisfying the conditions
(i)–(iii). Then, S is obtained from R by removing � from and
adding β to R. From Lemma 8, � becomes min(B(S )) and β
becomes max(L(S )). Thus, if we put β∗ = � and �∗ = β, then
β∗ and �∗ satisfies the pre-condition of Pr in Definition 1.
By applying Pr to S , we easily see that (S \ {�∗})∪ {β∗} = R.
Hence, the result is proved. �

4.2 Generation of Serial k-Subtrees

Next, we consider the special case to generate a serial k-
subtree as a child k-subtree S of a given parent k-subtree
(type II). A k-subtree R is a pre-serial k-subtree if (i) root(R)
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has only one child v such that |T (v)| ≥ k, and (ii) v satisfies
that R \ {root(R)} is a serial (k − 1)-subtree of T with root v.

Lemma 9: R is a pre-serial k-subtree of T iff root(R) has a
single child v that |T (v)| ≥ k and the equality max(L(R)) =
v + k − 2 holds.

Proof : The result follows from that a pre-serial k-subtree
is obtained from a serial (k−1)-subtree by attaching the new
root as the parent of its root. �

Definition 5 (child generation of type II): For any pre-
serial k-subtree R rooted at ρ, we define

Child∗(R) = (R \ {ρ}) ∪ {β}, (5)

where β = max(L(R)) + 1 = min(B(R \ {ρ})).
Theorem 3 (correctness of Child∗): Let R and S be any k-
subtrees of T . Then, the following (i) and (ii) hold:

(i) If R is pre-serial, then S = Child∗(R) implies R =
P∗(S ).

(ii) If S is serial and S is not I, then R = P∗(S ) implies
S = Child∗(R).

Proof : Suppose that ρ is the root of R, and R′ = R \ {ρ}.
From Lemma 3 and Lemma 9, if R is a pre-serial k-subtree,
then we have min(B(R)) = max(R) + 1 and Child∗(R) is se-
rial. (i) Suppose that S = Child∗(R) with deleting ρ and
adding min(B(R′)). Since ρ is the parent node of root(S )
and min(B(R′)) is the largest node in S , application of P∗
to S yields R. (ii) Suppose that R is obtained from S
by P∗ with adding the parent ρ′ of root(S ) and deleting
β = max(S ). We can easily see ρ′ = ρ. Since S is se-
rial, we have max(R) = max(S ) − 1 = β − 1 and then
min(B(R′)) = max(R)+1 = (β−1)+1 = β, where R′ = R\{ρ}.
Thus, we obtain S if we apply Child∗ to R by deleting ρ and
adding min(B(R′)). This completes the proof. �

4.3 The Proposed Algorithm

In Algorithm 1, we present the main procedure EnumSub-
Trees and the subprocedure RecSubTree that enumerates
all k-subtrees in an input rooted tree T of size n in constant
delay. Starting from I, RecSubTree recursively computes
all child k-subtrees from its parent by the child generation
method in this section.

The procedure RecSubTreemaintains the lists of nodes
AddList(S ) and DelList(S ) so that it can efficiently find a
pair of nodes � in DelList(S ) and β in AddList(S ) at lines 15
and 16, respectively, when it generates a child of type I by
calling Childr satisfying the conditions of Def. 4. When it
backtracks to the parent, we restore the update by perform-
ing the same set of operations in the reverse order. For the
generation a child of type II by Child∗, we perform similar
maintenance. For keeping the present values of � and β, we
use the working stack W.

In Algorithm 2, we show the procedures Updater and

Algorithm 1 Constant delay enumeration for all k-subtrees
in a tree.
1: procedure EnumSubTrees(T, k)
2: Input: an input rooted tree T of size n, and size k of

subtrees (1 ≤ k ≤ n);
3: Output: all k-subtrees in T ;
4: Global variable: the working stack W;
5: W = ∅;
6: Number the nodes of T by the DFS-numbering;
7: Compute the initial k-subtree I of the input rooted tree T ;
8: Initialize data structureA and B;
9: Update the related lists and pointers;

10: RecSubTree(I,T, k);
11: end procedure

12: procedure RecSubTree(S , T, k)
13: Input: an r-rooted k-subtree S , an input rooted tree T , and

size k of subtrees;
14: Print S ;
15: for each � ∈ DelList(S ) do // See Sect. 4.1.
16: for each β ∈ AddList(S ) such that β � Ch(�) do
17: S ← Childr(S , �, β) with calling Updater(A, �, β);
18: RecSubTree(S , T, k);
19: S ← Pr(S ) with calling Restorer(A);
20: end for
21: end for
22: if S is a k-pre-serial tree then // See Sect. 4.2.
23: S ← Child∗(S ) with calling Update∗(A);
24: RecSubTree(S , T, k);
25: S ← P∗(S ) with calling Restore∗(A);
26: end if
27: end procedure

Algorithm 2 Update of data structures DelList(S ) and
AddList(S ) of type I
1: procedure Updater(A, �, β)
2: Push �̂ and β̂ in the working stack W;
3: L2B(�); B2L(β);
4: �̂ ← β; β̂← �;
5: end procedure

6: procedure Restorer(A)
7: β← �̂; � ← β̂;
8: L2B(β); B2L(�);
9: Pop the values of �̂ and β̂ from W;

10: end procedure

Restorer for maintaining AddList(S ) and DelList(S ) at gen-
eration of a child of type I by Childr using B2L and L2B.
We employ the representation of T similar to the leftmost-
child right-sibling representation [4], where each node v has
the pointers v.child, v.prevsib, and v.nextsib for the leftmost
child, the previous, and next siblings, respectively.

For all parent S , we represent two node lists
AddList(S ) and DelList(S ) by the data structure A with the
following information:

• Doubly linked lists of nodes L = L(S ) and B = B(S ),
which consist of all leaves and all border nodes of S ,
respectively, in the increasing DFS order. These lists
are implemented by attaching with each node v of T
two pointers v.pred and v.succ to the predecessor and
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successor in a list, respectively.
• Two pointers �̂ = max(L(S )) and β̂ = min(B(S )) to

nodes in L(S ) and B(S ), respectively.

For a list X ∈ {L, B}, X.head and X.tail denotes the head
and tail of X, respectively. Then, we define DelList(S ) =
{ � ∈ L(S ) | � < β̂ } and AddList(S ) = { β ∈ B(S ) | β > �̂ }.
The following operations B2L(v) and L2B(v) are fundamen-
tal to the maintaining of the data structure A, where v is a
node, and B0, B1, L0, and L1 are possibly empty sequences
of nodes, and nodes in the lists are written in the increasing
order of DFS-numbering.

• B2L(v): Move a node v in B to L. To implement this
operation, we rewrite (i) the present list B = (B0 ·v ·B1)
to the new list B = (B0 · Ch(v) · B1), and (ii) L = (L0 ·
α(v) · L1) to L = (L0 · v · L1), where the associated
pointers are appropriately maintained.

• L2B(v): Move a node v in L to B. To implement this,
we rewrite (i) B = (B0 ·Ch(v) · B1) to B = (B0 · v · B1),
and (ii) L = (L0 · v · L1) to L = (L0 · α(v) · L1).

In the above definition of B2L(v) (resp. L2B(v)), α(v)
is pa(v) if pa(v) is a leaf in S before operation (resp. af-
ter operation), and an empty sequence otherwise. Note that
during the above updates, we keep all the predecessor and
successor pointers unchanged except those changed by the
above operations. We can show that two operations B2L
and L2B are the inverse operations each other. We represent
a k-subtree S by the following data structure B.

• A pointer to the root ρ of S .
• A doubly linked list L = L(S ) of leaves of S . This is

shared withA.
• Each node v in T has two pointers lmc and rmc. If v

is an internal node of S , they point to the leftmost and
rightmost child of v, respectively, restricted to nodes in
S . Otherwise, they are NULL.

In Algorithm 3, we show the procedure for maintaining
AddList(S ) and DelList(S ) at generation of a child of type II
by Child∗. Using the next lemma derived from Lemma 9, we

Algorithm 3 Update of data structures DelList(S ) and
AddList(S ) of type II
1: procedure Update∗(A)
2: r ← ρ.rmc; // the unique child of ρ in S
3: β0 ← r.prevsib; β1 ← r.nextsib;
4: Push ρ, �̂, β̂, B.head, B.tail, β0, and β1 to stack W;
5: if β0 � NULL then B.head ← β0.succ;
6: if β1 � NULL then B.tail← β1.prev;
7: ρ← r; β← B.head;
8: B2L(β);
9: �̂ ← β; β̂← β.next; // β.next = max(L(S )) + 1

10: end procedure

11: procedure Restore∗(A)
12: β← �̂;
13: L2B(β);
14: Restore ρ, �̂, β̂, B.head, B.tail, β0, and β1 by popping W;
15: end procedure

can decide whether S is a pre-serial k-subtree in O(1) time
using a pair of pointers rmc and lmc.

Lemma 10: S is a pre-serial k-subtree with root ρ if and
only if (i) ρ.rmc = ρ.lmc =: r, (ii) L.tail = r + k − 2, and
(iii) |T (r)| ≥ k.

To check condition (iii) in O(1) time, we associate
|T (v)| to each node v of T in the preprocessing.

Lemma 11: Let R be any pre-serial k-subtree rooted at ρ,
and let r be the unique child of ρ in R. Then, B(R \ {ρ}) =
{ v ∈ B(R) | r.prevsib < v < r.nextsib }, where we define
v.prevsib = −∞ (resp. v.nextsib = +∞) if v has no previous
sibling (resp. no next sibling).

Proof : Since a node v is in T (r) if and only if
r.prevsib < v < r.nextsib, the lemma follows. �

Assuming the above representation, we show the next
lemma on the time complexity of update.

Lemma 12: The data structures A and B for AddList(S )
and DelList(S ) can be implemented to be updated in O(1)
time using O(n) time preprocessing on RAM.

Proof : Initialization of the data structure is done in O(n)
time by once traversing an input rooted tree T . At each re-
quest for update, we dynamically update the fields of the
data structure A according to Algorithm 2 for Childr, and
Algorithm 3 for Child∗. By construction, these operations
can be implemented in the claimed complexity. �

We have the main theorem of this paper. This theo-
rem shows that we can enumerate all k-subtrees in an input
rooted tree in constant delay.

Theorem 4: Given an input rooted tree T of size n, and a
positive integer k ≥ 1, algorithm 1 solves the k-subtree enu-
meration problem in constant worst-case time per subtree
using O(n) preprocessing and space.

Proof : By the construction of RecSubTree in Algo-
rithm 1, we observe that each iteration of recursive call gen-
erates at least one solution. To achieve constant delay enu-
meration, we need a bit care to represent subtrees and to
perform recursive call. From Lemma 12, each call performs
constant number of update operations when it expands the
current subtree to descendants. Therefore the remaining
thing is to estimate the book-keeping on backtrack. This is
done as follows: When a recursive procedure call is made,
we apply a constant number of operations on candidate lists
and record them on a stack as in Lemma 12, and when the
procedure comes back to the parent subtree, we apply the
inverse of the recorded operations on the lists in constant
time as in Lemma 12 to reclaim the running state in constant
time. To improve the O(d) time output overhead with back-
track from node v of depth d = O(n) to a shallow ancestor
on the family tree, we use alternating output technique (see,
e.g., Uno [13]) to reduce it to exactly O(1) time per solution.
Combining the above arguments, we proved the theorem.

�
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This result improves on the straightforward application
of Ferreira et al.’s algorithm [6] with O(k) amortized time
per subtree when an input is restricted to a tree.

5. Application to the Graph Motif Problem for Trees

We consider the restricted version of graph motif prob-
lem [5], [8], called the k-graph motif problem in a tree.
Then, we present an adaptive algorithm for the problem
whose running time is proportional to the number of k-
subtrees.

Let C = {1, . . . , σ} (σ ≥ 1) be a set of colors. A mul-
tiset X on C is a collection of possibly duplicated colors in
C. Precisely, fX(c) denotes the count of the color c in X.
The size of multiset X is the total count of the colors in X
defined by ||X|| = ∑

c∈C fX(c). For multisets X and Y on C,
We define X ⊆ Y if fX(c) ≤ fY (c) for every c ∈ C, and X = Y
if fX(c) = fY (c) for every c ∈ C.

Let k be any nonegative integer and T = (V, E, root(T ),
ξ) be a vertex colored, rooted tree, where ξ(v) is the color of
a vertex v in V . For a subset S of nodes, we denote by ξ(S )
the multiset of colors appearing in S . The k-graph motif
problem in a tree is the problem of, given a vertex colored,
rooted tree T and a multiset X on Cwith size k = ||X||, called
a pattern, to find a k-subtree S ⊆ V such that ξ(S ) = X. This
problem is known to be NP-hard even if an input is restricted
to trees [5].

In what follows, we denote by s the number of all k-
subtrees in a tree T . From Theorem 4, we have the following
result.

Theorem 5: Let k ≥ 1. Given an input rooted tree T of
size n and a multiset X on C with size k, the k-graph motif
problem in a tree is solvable in O(s + n + k) total time using
O(n + k) space.

Proof : We give the algorithm Adaptive that solves the
problem in the claimed complexity as follows: The algo-
rithm uses a counter array g on c, where the counter value
g[c] can take either a positive, zero, or negative integer.
Given a pattern X, it first initializes the counter array by
g[c] ← − fX(c) for each c ∈ C in O(σ) time. It also initial-
izes EnumSubTrees of Algorithm 1 in O(n) time. Then, the
algorithm enumerates all the k-subtrees S of T in O(1) time
per subtree. During the enumeration by EnumSubTrees, the
algorithm increments (decrements, resp.) the counter g[c]
by one whenever a node labeled with color c is added to (is
deleted from, resp.) S . This update of the counter can be
done in constant time per subtree. When all counter values
equal zero after the update, it outputs S as an output. The
total running time of the algorithm is O(s+ n+ k) time from
Theorem 4. �

We compare the time complexity of the algorithm
Adaptive in the proof of Theorem 5 above to that of the
straightforward algorithm, called Naive here, using exhaus-
tive search for all k-subsets. Naive solves our graph motif
problem as follows: First, Naive chooses k-subset S of T ,

and next, checks whether S is a k-subtree. If so, Naive com-
pares the multi-set of ξ(S ) and input pattern X. It outputs S
as the position of X if ξ(S ) = X, and No otherwise. Naive is
done by applying the above procedure to all k-subsets of T .

From the upper bound in Lemma 2, Adaptive runs in
time proportional to the actual number s of k-subtrees con-
tained in an input rooted tree T , while Naive always re-
quires O(knk) time regardless of s. Therefore, we can say
that our algorithm is indeed an adaptive algorithm so that it
runs faster than Naive in the case that the number s is much
smaller than nk.

6. Conclusion

In this paper, we studied the k-subtree enumeration problem
in rooted trees. As a main result, we presented an efficient
algorithm. Our proposed algorithm solved this problem in
constant worst-case time per k-subtree.
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