
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014
469

PAPER

Efficient Update Activation for Virtual Machines in IaaS Cloud
Computing Environments

Hiroshi YAMADA†a), Shuntaro TONOSAKI††, Nonmembers, and Kenji KONO††, Member

SUMMARY Infrastructure as a Service (IaaS), a form of cloud comput-
ing, is gaining attention for its ability to enable efficient server administra-
tion in dynamic workload environments. In such environments, however,
updating the software stack or content files of virtual machines (VMs) is a
time-consuming task, discouraging administrators from frequently enhanc-
ing their services and fixing security holes. This is because the adminis-
trator has to upload the whole new disk image to the cloud platform via
the Internet, which is not yet fast enough that large amounts of data can
be transferred smoothly. Although the administrator can apply incremental
updates directly to the running VMs, he or she has to carefully consider the
type of update and perform operations on all running VMs, such as appli-
cation restarts. This is a tedious and error-prone task. This paper presents a
technique for synchronizing VMs with less time and lower administrative
burden. We introduce the Virtual Disk Image Repository, which runs on
the cloud platform and automatically updates the virtual disk image and the
running VMs with only the incremental update information. We also show
a mechanism that performs necessary operations on the running VM such
as restarting server processes, based on the types of files that are updated.
We implement a prototype on Linux 2.6.31.14 and Amazon Elastic Com-
pute Cloud. An experiment shows that our technique can synchronize VMs
in an order-of-magnitude shorter time than the conventional disk-image-
based VM method. Also, we discuss limitations of our technique and some
directions for more efficient VM updates.
key words: Cloud computing, IaaS, virtual machines, software updates

1. Introduction

Infrastructure as a Service (IaaS), a form of cloud comput-
ing, is gaining attention for its ability to enable cost-effective
server administration. Its pay-as-you-go pricing model al-
lows companies of any size or individuals to easily start new
services and to scale up and down the services as needed. At
any given time, a cloud user may choose to run only enough
servers to handle the load that the service is facing. Amazon
Web Services (AWS) [1], a major IaaS provider, is an ex-
ample. Anyone can start using Amazon’s infrastructure im-
mediately after registration, with no initial cost or monthly
minimum fees.

The trend of cloud computing is derived from the
progress of virtualization technology. Virtualization tech-
nology enables multiple virtual machines (VMs) to run con-
currently on the same physical computer. Each VM is iso-
lated from other VMs, enabling the user to customize the

Manuscript received June 12, 2013.
Manuscript revised October 13, 2013.
†The author is with Tokyo University of Agriculture and Tech-

nology, Koganei-shi, 184-8588 Japan.
††The authors are with Keio University, Yokohama-shi, 223–

8522 Japan.
a) E-mail: hiroshiy@cc.tuat.ac.jp

DOI: 10.1587/transinf.E97.D.469

entire software stack within the VM. Users may install oper-
ating systems (OSes) and applications of their choice. Cloud
computing especially utilizes virtual disks. A snapshot of a
virtual disk, called a virtual disk image, can be easily cre-
ated and transferred over the network. By transferring a vir-
tual disk image of a VM’s root disk, replicas of the VM can
be easily launched at other parts of the cloud, notably for
load balancing. Encapsulating the entire software stack as a
virtual disk means the developer does not need to consider
dependencies between software components.

Although virtualization provides a way to easily make
replicas of VMs, updating the VMs is a time-consuming
operation, discouraging administrators from frequently en-
hancing their services and fixing security holes. A typical
method to update VMs is to upload the new virtual disk im-
age to the cloud platform, and then launch new VMs from
the uploaded disk image and terminate the old ones. When
updating the VMs, the administrator has to upload the whole
new virtual disk image to the cloud platform even if the up-
date is quite small, such as one modified line in a configura-
tion file. This is a time-consuming task since virtual disk im-
ages are quite large and the upload is performed over the In-
ternet, which is not currently fast enough to smoothly trans-
fer large amounts of data. Launching VMs also takes a con-
siderably long time. In fact, instantiating a VM in Amazon
Elastic Computing Cloud (EC2) typically takes minutes [2].
Although the administrator can apply incremental updates
directly to the running VMs, this is a tedious and error-prone
task since he or she has to consider the type of update and
perform operations on all running VMs, such as restarting
applications. These facts can lead to the delay of deploying
new contents and, even worse, the unfixed vulnerabilities
being exploited by network attackers.

This paper presents a technique for updating VMs in
shorter time and lower administrative burden. The key idea
is that we manage incremental update information, inspired
by commodity version control systems. To efficiently apply
update information to VMs, we introduce the Virtual Disk
Image Repository, which updates automatically the virtual
disk image and the running VMs with only the incremen-
tal update information. The Virtual Disk Image Repository
runs on the cloud platform and receives the incremental up-
dates from the administrator. The administrator needs to
send only the updated files via the Internet since the Vir-
tual Disk Image Repository creates a new virtual disk image
from the sent files and registers it for subsequent launches of
additional VMs. The Virtual Disk Image Repository trans-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



470
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

fers the updated files to the serving VM, and our mecha-
nism automatically performs necessary procedures, such as
restarting server processes, on the running VM, based on the
types of files that are updated.

We implement a prototype on Linux 2.6.31.14 and
Amazon EC2. An experiment shows that our technique
can synchronize VMs in an order-of-magnitude shorter time
than the conventional disk-image-based VM cloning. More-
over, our overhead measurements show that installing our
system will not affect service quality. Although our system
imposes about 30% overhead on the developer’s environ-
ment, it imposes no observable overhead on public servers.

The rest of the paper is organized as follows. Section 2
gives a brief explanation of VM update methods in IaaS en-
vironments. Section 3 and 4 describe the design and im-
plementation respectively of our VM synchronization tech-
nique. Section 5 shows our experimental results, comparing
our technique with the conventional one, and also describ-
ing the overhead of our prototype. Section 6 discusses some
limitations and future directions of our technique. Section 7
describes related work, and Sect. 8 concludes this paper.

2. Conventional Update Methods

A conventional method for updating VMs is to create a new
disk image having the new desired software stack and then
launch as many new VMs as necessary to replace the exist-
ing VMs. Launching new VMs to replace old VMs is an ex-
pensive but simple way of updating VMs. These procedures
are shown in Fig. 1. The administrator first launches a new
VM to use as a development environment. He or she makes
necessary changes to the development VM then stops the
VM and bundles a new disk image from it. Using the new
disk image, the administrator launches new VMs that are
used as serving VMs. The number of VMs being launched
at this point is typically the same as the number of existing
serving VMs running at that time. After all the new VMs
have been launched, the configuration of the load balancer
is changed so that incoming traffic is directed to the new
VMs, not the old ones. After all these steps, the old VMs
are terminated.

Although this method enables us to handle any kind of
update in a uniform way, it takes a long and variable time. In
updating a disk image, we have to send the whole new disk
image to the cloud platform even if the file updates are quite
small, such as one modified line in a configuration file or an

Fig. 1 Manual update.

updated binary file of a utility program. The upload of the
new disk image is performed via the Internet, which is not
yet fast enough that large amounts of data can be smoothly
transferred. Some researchers report that shipping of an ac-
tual updated disk sometimes takes less time than disk image
uploads via the Internet [3], [4].

In addition, launching new VMs takes a considerably
long time. In the conventional method, we have to instan-
tiate new VMs from the new disk image from scratch, even
if the only thing needed to update the VM states is only to
restart the application or store a new file in the disk. Typ-
ically, instantiating new VMs in Amazon EC2 takes min-
utes [2]. Although we could apply only incremental updates
directly to the existing serving VMs by using scp and/or
ssh instead of launching new VMs, this task is tedious and
error-prone since we must carefully consider the type of up-
date and perform operations on all the serving VMs to up-
date their states, such as restarting applications and doing
nothing.

3. Design

3.1 Overview

We present a technique to efficiently synchronize changes
on a development VM to serving VMs. Our technique has
three main characteristics. First, we send only the files that
were updated on the development VM since the last syn-
chronization, to minimize the network bandwidth usage and
the time taken to transfer data. Second, we apply changes
directly to the serving VMs instead of launching new VMs.
This eliminates the time for launching new VMs. Last, we
reduce the administrative burden of applying updates to all
the serving VMs by preparing a kernel-level mechanism that
supports automatic determination of what kinds of process
operations are necessary regarding the updated files.

We introduce the Virtual Disk Image Repository, which
aggregates the incremental update information from the de-
velopers and applies it to the disk image and the serving
VMs. An overview of our technique is shown in Fig. 2.
Our approach is inspired by recent versioning systems in-
cluding pull and push models. However, simply applying
these concepts to IaaS environments is difficult because the
pull/push model propagates updates only to disks. In IaaS
environments, we need to apply the changes to 1) running
processes and 2) virtual disks to be used by subsequently
launching VMs. When the administrator indicates that syn-
chronization should start, newly created files, modified files,
and the paths of deleted files are aggregated as delta infor-
mation and then sent to the Virtual Disk Image Repository, a
management node running on the cloud platform. From the
delta information, the Virtual Disk Image Repository auto-
matically creates a new disk image and registers it for sub-
sequent launches of additional VMs.

The Virtual Disk Image Repository distributes the delta
to all serving VMs to update their states. After a serving VM
receives the delta, the delta is applied to its local virtual disk.



YAMADA et al.: EFFICIENT UPDATE ACTIVATION FOR VIRTUAL MACHINES IN IAAS CLOUD COMPUTING ENVIRONMENTS
471

Fig. 2 Overview of our technique.

Files that were created or modified on the development VM
are saved to the local virtual disk, and files that were deleted
on the development VM are deleted from the local virtual
disk. Depending on the types of files that are updated, our
kernel-level mechanism automatically performs proper pro-
cess operations in order to safely update the files, and to put
the changes into effect. For example, if the configuration
file of the Apache web server is changed, then the Apache
processes will be restarted after the new configuration file is
saved on the local virtual disk.

3.2 Delta Transfer

We transfer only the files that were updated on the develop-
ment VM. On the development VM, we run a process that
watches the file system for all changes made. Whenever a
file is modified in any way, this watching process records the
path of the file and the type of modification, which is either
“create”, “delete”, or “update”.

To know the file system events performed on the de-
velopment VM, we make a checkpoint at the last record of
the file system event log right after the administrator indi-
cates the start of synchronization. We gather all file system
event records from the last checkpoint to the current check-
point. For files that have multiple pieces of update informa-
tion within the timespan, all but the newest record are omit-
ted. For files that were either created or updated, the paths of
the files along with their contents are packed into the delta.
For files that were deleted, only the paths are recorded in the
delta. When all necessary data are gathered into the delta, it
is transferred to the Virtual Disk Image Repository.

As soon as the Virtual Disk Image Repository receives
the delta, it distributes the delta to all serving VMs. The Vir-
tual Disk Image Repository is also responsible for merging
the delta information with the old disk image and creating a
new image. The new image is registered for the automatic
scaling feature of the cloud service.

3.3 Process Operations in Serving VM

When a serving VM receives a delta, it applies the delta to
its local virtual disk. Before and after the delta is applied,
necessary process operations are performed. We have clas-
sified the procedures needed within serving VMs into two
types. The first type is to stop a process before updating the
files and then start the processes again after update. This
is necessary when updating the executable file of a running
process, a dynamic link library file being used by a running
process, or a file that has been opened (and not closed yet)
by a running process.

The second type of procedure is restarting a process
after updating the files. This is necessary when updating a
file that was previously opened, and closed, by a running
process. Restarting such processes is necessary since the
content of the file may somehow affect the behavior of the
running process. We also restart any process that has opened
the directory containing an updated file. This is necessary
since the content of the directory may affect behavior of the
process. An example would be a *.d directory, which a pro-
cess reads all files contained within the directory and regards
them all as configuration files.

In some cases, rules stated above are too strict. For
example, in general we do not need to restart Apache after
updating an HTML file in a public web directory, even if
it had been opened by the Apache process in the past. We
provide configuration options to ignore such files (e.g., all
files in a public web directory) when determining process
operations. Note that correctly setting up the configuration
file require deeply administrative knowledge. Even if we do
not configure the file, we can successfully update our appli-
cation with our mechanisms. This is because the effects of
the configuration files is to skip redundant software restarts.

4. Implementation

We have implemented our technique on 32-bit VMs run-
ning within Amazon EC2. We modified Linux 2.6.31.14,
and used MySQL version 5.0.45 for recording metadata and
Apache 2.2.17 for implementing HTTP messaging features
between VMs. We implemented most features in Perl, and
we used Perl interpreter version 5.8.8. Note that our kernel
modification is small, and thus we believe that our mecha-
nism is not difficult to port to other OS kernels.

4.1 Development VM

4.1.1 Recording File Updates

We use our desktop PC or laptop as the development VM.
The delta is sent from them through the CGI provided by
Virtual Disk Image Repository, as described later. To watch
and record updates on the file system, we run the File Up-
date Watch process on the development VM. The File Up-
date Watch process uses inotify, a feature of the Linux kernel



472
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

capable of notifying a user-mode program of changes to the
file system. By using inotify, an application can watch file
system events without polling the entire file system.

The File Update Watch process uses a modified ver-
sion of inotify-tools 3.14 [5], a series of command line pro-
grams and libraries. Whenever the File Update Watch pro-
cess fetches event information via inotify-tools, it registers
the event information into the fs events table in the local
MySQL database. The structure of the fs events table is
shown in Table 1. Fs event basically includes information
on file system events. It has the record id (ID), date time
(time), file path name (path), performed file operations (op),
and a bit (isdir) showing whether the target is a directory or
a file.

4.1.2 Delta Transfer

We developed the Delta Uploader that transfers the file
update information to the Virtual Disk Image Repository.
When the developer decides to synchronize the changes
made on the development VM to the serving VMs, the Delta
Uploader first creates a checkpoint in the database and gath-
ers the file update information since the last update from
the database. Newly created files and updated files are col-
lected into a single tar file (updates.tar), with the full file
path and file attributes preserved. The full paths of the
deleted files are recorded into a text file (removals.txt), with
one file path per line. The tar file having the created and
updated files (updates.tar) and the text file having the paths
of deleted files (removals.txt) are compressed into one gzip-
compressed tar file with the checkpoint number as its base
name (e.g., 123.tar.gz). We refer to this compressed tar file
as a delta.

As soon as the delta is created, the Delta Uploader
places it in a public web directory of the development VM
and notifies the Virtual Disk Image Repository that a new
delta is available. The notification is sent as an HTTP re-
quest, which includes the URL of the delta, the checkpoint
number, and the MD5 checksum of the delta.

4.2 Virtual Disk Image Repository

The Virtual Disk Image Repository consists of three mod-
ules: the Update Receiver, Disk Image Manager, and Delta
Distributor. The Update Receiver receives a delta from the
delta transmission program described above. The Disk Im-
age Manager creates a new disk image. The Delta Distribu-
tor distributes the delta to all running serving VMs.

Table 1 Structure of fs events database table in development VM.

Field Type

id bigint(20)
time datetime
path varchar(256)
op varchar(16)
isdir tinyint(1)

4.2.1 Update Receiver

The Update Receiver is implemented as a Common Gate-
way Interface (CGI) script. When the Update Receiver re-
ceives notification of a new delta from the development ma-
chine, it first downloads the delta from the development
VM, and then calculates the MD5 checksum and verifies
that it matches the MD5 checksum value that the develop-
ment VM passed. Then, it launches the Disk Image Man-
ager and Delta Distributor to put the update into effect.

4.2.2 Disk Image Manager

The Disk Image Manager is in charge of creating a new
disk image. The Disk Image Manager makes use of Ama-
zon Elastic Block Storage (EBS), a volume of which can
be mounted in VMs. Aside from the EBS volume that is
mounted as its root disk, the Virtual Disk Image Repository
mounts an extra EBS volume that has the contents of the
previous disk image of the serving VMs. The Disk Image
Manager first applies the new delta to the virtual disk; it cre-
ates, updates, and deletes files on the virtual disk based on
the information included in the delta. Then, the virtual disk
is unmounted and a new EBS snapshot is created using an
AWS API call. After the EBS snapshot is created, the Disk
Image Manager registers it as an Amazon Machine Instance
(AMI), which is used to create a VM. The new AMI is also
registered to the Auto Scale feature, so that VMs that are
subsequently launched by Auto Scale can be launched from
the new AMI.

4.2.3 Delta Distributor

The Delta Distributor is in charge of transferring the delta
to all serving VMs. To hold the list of currently running
VMs, we prepare the “pubvms” table in the local MySQL
database. The structure of the pubvms table is shown in Ta-
ble 2. Pubvms includes the record id (id) and information
on running VM; hostname of the running VM inside and
outside Amazon EC2 (internal host and external host), the
ID of the running VM (instance id), the VM image version
used by the VM (image ver), and the time when the VM is
launched (launch time). Delta distribution is done in basi-
cally the same way as how the development VM transfers a
delta to the Virtual Disk Image Repository. The Delta Dis-
tributor notifies the availability of a new delta to all serv-

Table 2 Structure of pubvms database table on virtual disk image Repos-
itory.

Field Type

id bigint(20)
internal host varchar(128)
external host varchar(128)
instance id varchar(16)
image ver bigint(20)
launch time datetime



YAMADA et al.: EFFICIENT UPDATE ACTIVATION FOR VIRTUAL MACHINES IN IAAS CLOUD COMPUTING ENVIRONMENTS
473

Table 3 File types and necessary process operations.

File Type procfs File used for Determination Before File Update After File Update

Executable file of
/proc/[PID]/exe Stop process Start Process

running process
DLL used by

/proc/[PID]/maps Stop process Start Process
running process
File currently opened

/proc/[PID]/fd Stop process Start Process
by running process
File previously opened /proc/[PID]/openlog

- Restart Process
by running process (newly implemented)

ing VMs, using an HTTP request with the URL, checkpoint
number, and MD5 checksum value of the delta. We cur-
rently place the delta in a public web directory on the Virtual
Disk Image Repository, but it is possible to upload the delta
to a different server and give the URL for that server to the
serving VMs instead.

To know the currently running serving VMs, AWS pro-
vides users with an API call that returns a list of live in-
stances. However, we cannot use this information to simply
determine which VM is ready to provide service and is ca-
pable of receiving and handling deltas. This is because an
instance may still be in the middle of the boot procedure,
even if the API response shows the instance as a “running”
instance. In that phase, the VM fails to receive the delta.

To successfully send the VMs the delta, we also imple-
mented the VM Manager, which runs on the Virtual Disk
Image Repository. The VM Manager communicates with
running serving VMs to know that the VMs are ready to
provide service. When a new serving VM is launched, it
sends a LAUNCH message to the VM Manager as an HTTP
request. This is invoked by the Linux init script at the end of
the launch procedure. The LAUNCH message contains the
DNS host name of the VM, and the checkpoint number of
the disk image used to launch the new serving VM.

When receiving a LAUNCH message, the VM Man-
ager first checks if the disk image used for the launch is the
newest available one. If the disk image is outdated and a
new delta is already available, then the Virtual Disk Image
Repository notifies the serving VM of the delta, in the same
manner as that of the Delta Distributor. After the new delta
has been successfully applied to the new VM, a new record
is created in the pubvms table, and the new VM is registered
to the load balancer.

In reverse, when a serving VM is terminated, it sends a
STOP message to the VM Manager at the beginning of the
shutdown procedure. The request contains the host name
of the VM. The VM Manager deregisters the VM from the
load balancer and deletes the record in the pubvms table that
corresponds to the VM being shut down. The VM Manager
also has a “livecheck” feature, which periodically checks if
each serving VM is alive. This simply sends an HTTP re-
quest to each of the serving VMs to see if they return valid
responses. If a serving VM fails to return a valid response
within a certain amount of time, it is deregistered from the
load balancer, removed from the pubvms table, and termi-
nated via an API call. Auto Scale will launch a new VM if
necessary.

4.3 Serving VM

On each serving VM, the Process Manager receives an up-
date notification from the Virtual Disk Image Repository.
The Process Manager downloads the delta from the URL
specified in the notification, calculates the MD5 checksum
and verifies that it matches the MD5 checksum value that
was passed as a parameter of the notification. Then, for each
of the files that will be affected by applying the delta, either
as a created, updated, or deleted file, the Update Program
checks if any process operation is necessary.

To safely perform updates, a process must be stopped
before updating any of the following:

• an executable file of a running process,
• a file that is currently being opened by a running pro-

cess, or
• a file that is mapped to the address space of a running

process.

The Process Manager determines if the above files are
created, updated or deleted by traversing the process file
system (procfs). Table 3 lists files the Process Manager
reads. To check whether updated files are an executable
file of the running processes, we read a /proc/[PID]/exe
file. We also read /proc/[PID]/maps and /proc/[PID]/fd to
check whether updated files are being opened or mapped
into the address space by the process. In addition, we read
/proc/[PID]/openlog, which is newly implemented as de-
scribed later, to check whether the updated files are previ-
ously opened by the processes.

The Process Manager restores the process status across
update propagation. Before actually stopping the process,
the Process Manager collects metadata of the process, in-
cluding the working directory, the command line, the pro-
cess authority, the environment variables, and its root direc-
tory, to launch the process. After that, it stops the process by
sending a SIGTERM signal. The Process Manager restores
these metadata when it later restarts the process. The meta-
data, along with their sources within the procfs, are listed in
Table 4. Our approach conservatively stops and restarts pro-
cesses when its binary files are updated. This is because the
updated files might be used in the processes whose binary
files are older. In that case, the program could be crashed
due to the conflict of the updates. By using our approach, we
can easily avoid this situation without complicated mecha-
nisms.



474
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Table 4 Process metadata obtained and restored.

Metadata procfs Source Restore Method

Working Directory /proc/[PID]/cwd chdir()
Command Line /proc/[PID]/cmdline execve()
User / Group /proc/[PID]/status setresuid(), setresgid()
Environment Variables /proc/[PID]/environ execve()
Root Directory /proc/[PID]/root chroot()

Note that an openlog file becomes quite large if a pro-
cess frequently opens and closes files. We can refresh the
length of the file by restarting the processes if the users want
to make the openlog size smaller.

The update program also checks if any process must be
restarted after updating the files. When updating a file that a
process has opened in the past, the process must be restarted
after the file is updated or deleted. Moreover, when creating,
updating, or deleting a direct child of a directory that was
opened by a process in the past, that process must also be
restarted.

To determine which process has opened which files in
the past, we have modified the Linux kernel so that each
process keeps a list of files that it opened. We have added a
new struct list head openlog member to the struct
task struct structure. Each element of the openlog con-
tains the device ID and the inode number of a file that was
opened by the process. Elements are added to the list when
the open() system call is called. When the fork() sys-
tem call is called, the entire list is copied from the parent
to the child, since at this point the context of the child is
simply a clone of the parent. When the execve() sys-
tem call is called, we clear the openlog list, except for
the elements that indicate the files that are still opened at
that point. The Process Manager can access the content
of the openlog of each process via procfs using the path
“/proc/[PID]/openlog”, where [PID] represents the process
ID.

After successfully restarting all the processes, the Pro-
cess Manager sends an “UPDATE SUCCESS” message to
the Virtual Disk Image Repository. This enables the VM
Manager to manage the checkpoint number of each serving
VM and the Delta Distributor to know that the serving VM
is ready to receive the next delta file.

A configuration file, written in the YML format, is read
prior to determining the necessary process operations. A
list of regular expressions, such as “/̂var/www/html/.+$”, is
found in this configuration file. Out of the files that will
be updated, all files that have a path matching one or more
of the listed regular expressions would be regarded as up-
datable without any process operation, and therefore they
will be ignored in the process operation determination steps
stated above.

4.4 Limitations

The target of our technique is on applications’ updates in
IaaS environments, which means that it does not manage any
kinds of software updates. We need to extend the prototype

to conduct system configuration updates, such as adding
a user, and OS kernel updates. It is also difficult for the
prototype to handle updates that involves system configura-
tion changes, and the fix of security vulnerabilities involv-
ing special administrative operations such as operations in
the single user-mode. Applying these updates is out of the
scope of this work.

We also note that the current prototype does not han-
dle any restarts of applications. For ease implementation,
our prototype sends signals to the target processes to restart
the processes. This means that the prototype does not take
into consideration the order of application restarting. Since
it restarts applications without the dependency between up-
dating applications, the applications which closely coordi-
nate with each other fail to restart. To successfully restart
them, we need to extend our prototype by specifying the or-
der of restarts of applications. For example, we associate
restart operations with process names in advance, and per-
form a restart operation when the process associated with
the operation is restarted for its update.

5. Experiments

We conducted all of our experiments in the US-East re-
gion of Amazon EC2. Unless otherwise stated, the VMs
we launched were m1.small instances, each having 1.7 GB
RAM, one 32-bit EC2 Compute Unit (equivalent to 1.7 GHz
Xeon). A 15 GiB EBS volume was attached to each of the
instances. We used Linux kernel 2.6.31.14, with a patch
applied to run user-provided Linux kernels on Xen, as spec-
ified by Amazon’s official documentation [6].

5.1 Synchronization Time

The goal of this experiment is to show that our method can
synchronize VMs in a shorter and more stable length of time
compared to the conventional method. We first compared
the time needed to synchronize VMs, using the conventional
disk-image-based method and our technique.

The scenario of the experiment is as follows. There
are nine serving VMs running in three availability zones:
three VMs on each of “us-east-1b”, “us-east-1c”, and “us-
east-1d”. We consider six different cases where we need
to update the software stack of the VMs. We summarize
our experimental details in Table 5. First, we ran Apache
web server. For the Web Content Update (Small) case, we
update the top page of the public web directory to the top
page of Wikipedia. This includes an HTML file, along with
the CSS files and image files referenced by the HTML file.
This is a simple update of a static web page, so no process
operation is necessary. Web Content Upate (Large) is basi-
cally the same as the previous case, except for the size. This
case transfers the full set of Apache documentation. Apache
Config Change is a case that changes the 404 error page of
Apache. This involves updating the main configuration file
of Apache and creating a new HTML file of the 404 error
page. On the serving VM, Apache needs to be restarted



YAMADA et al.: EFFICIENT UPDATE ACTIVATION FOR VIRTUAL MACHINES IN IAAS CLOUD COMPUTING ENVIRONMENTS
475

Table 5 Update cases for synchronization time experiment.

Case
Update # of Process AMI size [KB] AMI size [KB]

Size Update files Operations (before updates) (after updates)

Web Content Update (Small)
136 KB 15 none 425608 425712update top page (HTML / CSS / images)

Web Content Update (Large)
3.1 MB 27 none 425608 427830update entire website (HTML / CSS / images)

Apache Config Change
34.7 KB 2 Restart Apache 425608 425668update Apache confing file and 404 page

Servlet App. Update
1.7 KB 1 Restart Tomcat 503268 503278update Java class File

Servlet App. Install
9.9 KB 2

Restart Apache
503268 503282add new war file and Tomcat

Apache Update
1.5 MB 94

Stop Apache
503268 505696update Apache binary and related files during file update

after the file update, to enable the new configuration. In
the latter cases, we started Tomcat servlet engine. Servlet
Application Update is a case that updates a simple Servlet
application running on Tomcat. This updates a single Java
class file. Tomcat needs to be restarted after the file update.
Servlet Application Install is a case that adds a Servlet ap-
plication. This adds a single web application archive (WAR)
file. Apache configuration (mod jk configuration) will also
be changed so that HTTP requests to the new application can
be handed over from Apache to Tomcat. Both Apache and
Tomcat need to be restarted after updating the files. Finally,
Apache Update will update the executable file and related
files of Apache. We recompile Apache on the development
VM and transfer it to the serving VMs. On the serving VMs,
Apache must be stopped while files are being updated.

For the conventional method, we followed the below
steps.

1. Launch a development VM with the old software stack.
2. Update the development VM.
3. Stop the development VM.
4. Bundle an AMI from the development VM.
5. Launch nine serving VMs from the new AMI.
6. Terminate the old VMs.

Although the Virtual Disk Image Repository is not neces-
sary for the conventional method, we ran it to execute an ex-
periment script that goes through the above steps. Further-
more, for time measurement, the serving VMs were config-
ured to send LAUNCH messages to the Virtual Disk Im-
age Repository, as in the implementation of our system.
We started measuring time when making the API call for
stopping the development VM, and ended the measurement
when all nine serving VMs had been launched and had sent
LAUNCH messages to the Virtual Disk Image Repository.
Although AMI bundling can be conducted for running VM
instances, we have confirmed that this takes substantially
longer compared to stopping the VM first and then bundling.
We therefore stopped the development VM before bundling
an AMI.

For our proposed technique, we followed the below
steps.

1. Launch a development VM, with the old software
stack.

2. Update the development VM.

Fig. 3 Average time consumption for synchronization: Error bars indi-
cate range of individual results.

3. Start synchronization by invoking the Delta Uploader
on the development VM.

We started measuring time when invoking the Delta Up-
loader. We ended the measurement when all nine serv-
ing VMs had finished the update procedures and had sent
UPDATE SUCCESS messages to the Virtual Disk Image
Repository. In both techniques, we repeated the measure-
ments 10 times from the top to the bottom in Table 5

The time measurement results are shown in Fig. 3.
They show that not only can our technique synchronize VMs
in an order-of-magnitude shorter time than the conventional
method, but the time it takes is very stable. The time the
conventional method takes can vary significantly, even for
the same workload. For example, the minimum time for
Servlet Application Install was 227 seconds, and the max-
imum time for the same workload was 1,127 seconds. We
also confirmed that necessary enhancement procedures were
adequately taken on the serving VMs.

Figure 4 and 5 exhibit breakdown of the time con-
sumption for the conventional and our method. As shown
in Fig. 4, the time consumption for the conventional method
consists of 3 factors; bundling an AMI from the develop-
ment VM, launching nine public VM, and terminating old
VMs. The time for terminating old VMs is similar in all
cases. Bundling time is longer and longer as the update size
is larger and larger. This is because the size of an AMI be-



476
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 4 Time consumption breakdown for the conventional method.

comes larger when more files are stored during the updates.
For example, bundling time in Web Update (small) is faster
than the other update cases since it just modifies one html
file. On the other hand, bundling an AMI in Apache Up-
date takes longer time because they create more new files
by Tomcat’s war file decompression and so on. The aver-
age time for launching VMs is longer because the launch-
ing time fluctuates largely when the size of AMIs is larger.
Since we can not analyze the internal behavior of the Ama-
zon EC2 cloud environment, we do not have any clue so far
why the launching time fluctuates so largely.

Figure 5 shows that the phases of our technique that
take longer time are distributing patches and applying them
to the serving VMs. The time required for our technique
consists of four factors; creating patches from the updates
conducted in the development VM, transferring the patches
to Virtual Disk Image Repository, distributing them from
the Virtual Disk Image Repository to the nine serving VMs,
and applying the patches to the VMs. Creating patches de-
pends on the number of file system operations. The longest
time required in creating patches is Web Update (large)
case in which file operations including deleting old apache’s
files and adding its newer files are performed. Transferring
patches takes shorter time in all cases since each patch is
not large. Time required for Distributing patches is simi-
lar in all cases. The time for applying patches depends on
the type of updates. For example, both the Web Update
cases are shorter than the other cases since any operation
is not necessary to activate them. Servlet Application Install
and Apache Update take longer time since the former needs
to restart Apache and Tomcat, and the letter stops and re-
sumes Apache before/after applying updates. Unexpectedly,
the time in Servlet Application Install is much longer. Our
expectation was that time for applying patches in Servlet
Application Install is similar to Servlet Application Update
since the necessary operations to activate the update in both
cases are to restarting Tomcat. This may be mysterious be-
havior in Amazon EC2 which takes longer time to assign
CPU time to some serving VMs.

Fig. 5 Time consumption breakdown for the proposed technique.

5.2 Overhead

5.2.1 Serving VM

We made amendments to the Linux kernel that runs on serv-
ing VMs so that it maintains a list of the files that each pro-
cess opened in the past, as explained in Sect. 4.3. Since our
modified kernel needs to maintain extra process information
compared to the vanilla kernel, the overhead imposed by our
modification may affect the overall performance of the serv-
ing VMs. Serving VMs provide service to end users, so any
observable overhead suggests degradation of the service and
therefore is not favorable.

We set up two server VMs, one with a vanilla kernel
and the other with our modified kernel. Note that even for
the vanilla kernel, we applied a patch to run a user-provided
kernel on Xen, as specified by Amazon’s official documen-
tation [6]. On each of the VMs, we set up a pseudo auction
site named RUBiS [7]. RUBiS comes with a client bench-
marking tool that is capable of evaluating performance scal-
ability. We set up RUBiS 1.4.3 on Tomcat 5.5.31, and used
Apache 2.2.17 as the HTTP server. We conducted a bench-
mark for 900 seconds and calculated the average throughput.

To avoid the unlikely chance of a client VM and server
VM residing on the same physical machine, in which the
performance of the client and the server may affect each
other [8], we placed the server VM and client VM in dif-
ferent availability zones. We launched the server VM in
the “us-east-1c” availability zone and the client VM in the
“us-east-1d” one. In addition, to ensure that any bottleneck
in the throughput measurement was not due to the perfor-
mance of the client VM, we used the c1.medium VM in-
stance, which has 5 EC2 Compute Units, as the client VM.

The results are shown in Fig. 6. The average through-
put using our modified version of the Linux kernel was
40.04 requests per second, while the average throughput us-
ing the vanilla kernel was 39.67 requests per second. From
these results, we conclude that our modification to the ker-
nel does not impose observable overhead and therefore does
not degrade server performance.



YAMADA et al.: EFFICIENT UPDATE ACTIVATION FOR VIRTUAL MACHINES IN IAAS CLOUD COMPUTING ENVIRONMENTS
477

Fig. 6 Results for serving VM overhead experiment.

Fig. 7 Results for development VM overhead experiment.

5.2.2 Development VM

The File Update Watch process runs on the development
VM to watch and record all the events on the file system,
as described in Sect. 4.1.1. This can impose performance
overhead on the development VM. Although the develop-
ment VM itself does not provide service to end users and
therefore its performance is not as important as that of the
serving VM, we conducted an experiment to ensure that the
overhead is at an acceptable level for a development envi-
ronment.

To measure the overhead, we measured the time it takes
for the development VM to compile the Apache web server,
while both running and not running the File Update Watch
process. We compiled Apache version 2.2.17 with default
configurations. The time taken to complete the make com-
mand 10 times was measured for both cases. We believe
this time measurement to be a strict scenario for our system,
considering all the file creation and deletion that occurs dur-
ing the compilation process.

The average time consumption for one make is shown
in Fig. 7. When the File Update Watch process is running,
compilation takes 157.33 seconds, which is approximately
30.4% more than the compilation time of 120.65 seconds
when the File Update Watch process is not running. We be-
lieve this overhead to be acceptable for a development envi-
ronment.

If the developer needs to handle a heavy workload in
minimal time, he or she may choose to use a high-end in-
stance with higher instance-hour price. This would only
slightly affect the overall cost because, unlike serving VMs,
only one VM needs to be launched as a development VM.
In addition, it only has to be running during the actual de-
velopment.

6. Discussion

In our current implementation, we transfer the entire content
for files that were updated. This may be inefficient when a
large file was partially updated. To solve this problem, we
transfer sub-file incremental data for file updates, using a
delta encoding algorithm as rsync does. The challenge here
is how to correctly apply an encoded delta to serving VMs
since the file may be amended differently on each serving
VM. To deal with this problem, we plan to keep the original
copy of the file whenever a file is first amended on a serving
VM. In this case, the delta encoding data can be computed
against the original copy, making it possible to distribute
same data to all VMs. As this method would impose ex-
tra overhead on serving VMs, there needs to be a threshold
based on the file size, to decide whether or not delta encod-
ing is necessary.

Even if our technique is employed, we have to prepare
newer VMs and redirect clients requests to them, i.e. rolling
upgrade, in a situation that a service provider has to uphold
the SLA guarantee. In our technique, some updates incur
downtime caused by restarting applications, which can be
critical in services requiring high availability. In such situ-
ations, we have to configure a load balancer to successfully
perform a rolling upgrade in activating updates that need to
restart processes.

The current prototype enforces all serving VMs to
download the delta directly from the Virtual Disk Image
Repository. This style is not be scalable for the number of
serving VMs since access to the Virtual Disk Image Repos-
itory is increased and then it becomes a bottleneck. To
address this issue, we can distribute the delta using cloud-
based data storage, such as Amazon Simple Storage Ser-
vice (S3). Amazon S3 could be sufficiently scalable for dis-
tributing deltas to hundreds or thousands of serving VMs,
as Amazon claims that S3 is able to “provide the same
highly scalable, reliable, secure, fast, inexpensive infrastruc-
ture that Amazon uses to run its own global network of web
sites [9]”.

7. Related Work

Various research has been conducted on storage systems
specialized for virtualized environments. Ventana [10] is a
virtualization-aware file system. It enables the administrator
to update shared files, and the change will immediately be-
come effective on other VMs that share the file. However, it
does not help select administrative operations to propagate
updates, such as application restarts and OS reboots.

Parallax [11] is a block-level virtualization of a storage
system. It is a distributed file system constructed of an array
of storage VMs, which reside on the same physical hosts as
the VMs that they serve. It is capable of creating snapshots
very frequently, e.g., every 10 ms. This quick snapshot-
taking functionality may be used to shorten the time taken
to create disk images in an IaaS environment. Thus, we



478
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

can complementarily use both Parallax and our technique
to shorten update time.

Snowflock [12] provides VM fork, which is very sim-
ilar in sprit to the UNIX process fork. VM fork creates
child VMs, each having the full state of the parent VM.
Snowflock is able to create replicas of a VM in subseconds,
through lazy state replication and multicast distribution of
states. Since Snowflock is a mechanism for efficiently cre-
ating VM replicas, it does not focus on VM updates.

A single system image (SSI) provides a single logical
computing environment on an array of physical computers.
With SSI, the administrator does not need to manage multi-
ple serving VMs, which would eliminate the need for a uni-
versal way of synchronizing VMs. MOSIX [13]–[15] pro-
vides SSI at the OS level. It is implemented as a modifica-
tion of the Linux kernel, and MOSIX transparently migrates
processes from overloaded machines to underutilized ma-
chines. Factored operating system (fos) [16] is an OS that
runs on multiple cores and VMs, capable of scaling up and
down while providing SSI. Although these systems provide
high manageability, we have to greatly modify the current
cloud platforms that consist of system virtualization. This is
quite difficult and sometimes impossible due to high engi-
neering costs.

vNUMA [17] provides SSI at the VM level. vNUMA
runs on multiple hypervisors running on separate physical
machines. It also provides a virtual NUMA machine, so the
OS that runs on it must be a NUMA-aware OS. It provides
high portability, since any NUMA-aware OS such as Linux
can run on it. Experiment results showed that it can scale out
on various workloads. However, vNUMA is not capable of
increasing and decreasing the number of physical nodes that
compose its system. Therefore, using vNUMA in a cloud
would sacrifice elasticity.

8. Conclusion

This paper presented a technique to synchronize VMs with
less time and lower administrative burden. Our proposal,
Virtual Disk Image Repository, automatically creates a new
disk image from incremental update information, thus en-
abling us to send only the updated files via the Internet. It
also distributes the updates to the serving VMs. Our tech-
nique reduces administrative burden of applying updates to
all running serving VMs by running a kernel-level mech-
anism that performs necessary operations such as applica-
tion restarts and OS reboots, based on the types of updated
file. Experimental results for Amazon EC2 showed that our
technique can synchronize VMs in an order-of-magnitude
shorter time than the conventional disk-image-based VM
cloning method. Our technique also correctly selects and
performs necessary operations to activate updates.

References

[1] Amazon Web Services LLC, “Amazon Web Services,” http://aws.
amazon.com/

[2] Amazon Web Services LLC, “Amazon Elastic Compute Cloud
(Amazon EC2),” http://aws.amazon.com/ec2/

[3] B. Cho and I. Gupta, “New algorithms for planning bulk transfer via
Internet and shipping networks,” Proceedings of the 30th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS
’10), pp.305–314, June 2010.

[4] B. Cho and I. Gupta, “Budget-constrained bulk data transfer via In-
ernet and shipping networks,” Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing (ICAC ’11), pp.71–80,
June 2011.

[5] GitHub Inc., “Inotify Tools,” https://github.com/rvoicilas/inotify-tools/
wiki/

[6] Amazon Web Services LLC, “Enabling User Provided Kernels
in Amazon EC2,” http://ec2-downloads.s3.amazonaws.com/user
specified kernels.pdf, Sept. 2010.

[7] Rice University, “RUBiS: Rice University Bidding System,” http:
//rubis.ow2.org/, Oct. 2004.

[8] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
Off my Cloud! Exploring information leakage in third-party com-
pute clouds,” Proceedings of the 16th ACM conference on Computer
and communications security (CCS ’09), pp.199–212, 2009.

[9] Amazon Web Services LLC, “Amazon S3,” http://aws.amazon.com/
s3/

[10] B. Pfaff, T. Garfinkel, and M. Rosenblum, “Virtualization aware file
systems: Getting beyond the limitations of virtual disks,” Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2006), pp.353–366, May 2006.

[11] D.T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M.J. Feeley, N.C.
Hutchinson, and A. Warfield, “Parallax: Virtual disks for virtual
machines,” Proceedings of the 3rd ACM European Conference on
Computer Systems (EuroSys ’08), pp.41–54, April 2008.

[12] H.A. Lagar-Cavilla, J.A. Whitney, A. Scannell, P. Patchin, S.M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan,
“SnowFlock: Rapid virtual machine cloning for Cloud computing,”
Proceedings of the 4th ACM European Conf. on Computer Systems
(EuroSys ’09), April 2009.

[13] L.O. Barak A. and S.A., “Scalable Cluster Computing with MOSIX
for Linux,” Proceedings of 5th Annual Linux Expo (Linux Expo
’99), pp.95–100, 1999.

[14] A. Barak and A. Shiloh, “The MOSIX Management System for
Linux Clusters, Multi-Clusters, GPU Clusters and Clouds,” http:
//www.mosix.org/pub/MOSIX\ wp.pdf, 2010.

[15] S. McClure and R. Wheeler, “Mosix: How linux clusters solve real
world problems,” Proceedings on the 2000 USENIX Annual Tech-
nical Conference (ATC ’00), p.32, June 2000.

[16] D. Wentzlaff, C. Gruenwald, III, N. Beckmann, K. Modzelewski,
A. Belay, L. Youseff, J. Miller, and A. Agarwal, “An operating
system for multicore and clouds: Mechanisms and implementa-
tion,” Proceedings of the 1st ACM symposium on Cloud Computing
(SOCC ’10), pp.3–14, June 2010.

[17] M. Chapman and G. Heiser, “vNUMA: A virtual shared-memory
multiprocessor,” Proceedings of the 18th USENIX Security Sympo-
sium (USENIX ’09), pp.15–28, June 2009.



YAMADA et al.: EFFICIENT UPDATE ACTIVATION FOR VIRTUAL MACHINES IN IAAS CLOUD COMPUTING ENVIRONMENTS
479

Hiroshi Yamada received his B.E. and
M.E. degrees from the University of Electro-
communications in 2004 and 2006, respectively.
He received his Ph.D. degree from Keio Uni-
versity in 2009. He is currently an associate
professor of the Division of Advanced Informa-
tion Technology and Computer Science at To-
kyo University of Agriculture and Technology.
His research interests include operating systems,
virtualization, dependable systems, and cloud
computing. He is a member of ACM, USENIX

and IEEE/CS.

Shuntaro Tonosaki received his B.E. and
M.E. degrees from Keio University. His re-
search interests include virtualization and cloud
computing.

Kenji Kono received the BSc degree in
1993, MSc degree in 1995, and Ph.D. degree
in 2000, all in computer science from the Uni-
versity of Tokyo. He is an associate professor
of the Department of Information and Computer
Science at Keio University. His research inter-
ests include operating systems, system software,
and Internet security. He is a member of the
IEEE/CS, ACM and USENIX.


