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Research on Software Trust Analysis Based on Behavior
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SUMMARY In this paper, we propose a new trusted modeling approach
based on state graphs. We introduce a novel method of deriving state-layer
from a system call sequence in terms of probability and statistics theory,
and we identify the state sequence with the help of Hidden Markov Model
(HMM). We generate state transition graph according to software execut-
ing process and pruning rules. Then, we separate local function graphs
according to software specific functions by semantic analysis. The state-
layer is a bridge between the basic behaviors and the upper layer functions
of software to compensate semantic faults. In addition, a pruning strategy
of formulating state graphs is designed to precisely describe each piece of
software functions. Finally, a detecting system based on our model is pro-
posed, and a case study of RSS software reveals how our system works.
The results demonstrate that our trusted model describes software behav-
iors successfully and can well detect un-trust behaviors, anomaly behav-
iors, and illegal input behaviors.
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1. Introduction

Along with the rapid development of application software
in many important fields, trust and security of software have
always been an important issue. Qu considers that it is a vi-
tal factor in estimating software trust whether software be-
havior is legal, permissible and expected[1]. In order to
analyze behavior trust, software behavior model should be
established for normal behaviors, through which untrusting
behaviors can be detected. Even though there are many sug-
gestions of establishing software behaviors models, they are
either too complicated to be implemented or lack semantic
analysis. Modeling method mainly includes sequence enu-
meration, machine learning, finite state automaton, etc. [2]—
[11]. Short system call sequences are used to represent soft-
ware behaviors in both sequence enumeration [3] and ma-
chine learning [6]. However, the calculation and storage
space grow explosively as the length of short sequence in-
creases. Automaton approach [7] establish finite state au-
tomaton model in terms of branching or looping structures
of program. The automaton usually contains system call, re-
turn addresses, virtual stack and other complicated features.
In spite of remarkable enhancement in accuracy, it leads to
high complexity and enormous storage needs.

All of these modeling approaches, system call is gen-
erally used to express software behaviors. Because it is an
interface to access OS (operating system), and seldom be

Manuscript received July 22, 2013.
Manuscript revised October 23, 2013.
"The authors are with Beijing University of Technology,
China.
a) E-mail: laiyingxu@bjut.edu.cn
DOI: 10.1587/transinf. E97.D.488

changed in different OS editions. But system call sequence
as software behavior expression directly will result in an ob-
vious problem: the model has no exact semantic informa-
tion, which will cause low accuracy. That is because that
system call is the basic behavior generated by OS, it cannot
describe software behavior thoroughly, and lacks analyzing
semantic relationship of system calls. In order to overcome
these difficulties, we try to extract a higher layer behavior
mode instead of system call sequence. Higher layer behav-
ior mode, called state, is frequent sequence pattern extracted
from system call sequence. Essentially, it reveals inner prop-
erties hidden in original system call sequence to compensate
semantic faults.

In this paper, a new modeling method, software be-
havior trust model based on state-layer, abbreviated as SB-
TMS, is presented in Fig. 1. In Fig. 1, the bottom layer is
the system call layer, which includes intercepted system call
sequence of the running application software in chronolog-
ical order. The middle layer is the state-layer, which con-
nects basic behaviors with upper functions of software to
compensate semantic faults. State is a group of strongly in-
terrelated system calls, associated with software function.
The top layer is the software behavior template based on
software function, includes a state transition graph and sev-
eral local function graphs. With the help of pruning rules,
state transition graph can depict the overall performance of
running software well. On the other hand, the local function
graphs, each of which represents one specific software func-
tion, present an entrance to analyze semantic relationship of
software.

The reminder of this paper is organized as follows.
Section 2 contains a review of related research. Section 3
presents implementation of software behavior trust model-
ing based on state-layer, and state-layer generating method
and pruning rules are stated in this section. System architec-
ture and experiment are given in Sect. 4. We summarize the
paper and give conclusions in Sect. 5.

2. Related Works

We begin by introducing software behavior model ap-
proaches which are based on short system call sequences.
Then, we discuss the development of automaton modeling
as well as state transition graph in our method. In the end,
we introduce current trend of modeling, especially in se-
mantic issues.

A large number of researches based on short system
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Fig.1  The process of SB-TMS modeling.

call sequences, such as sequence enumeration, machine
learning, were presented in prior works. In sequence enu-
meration, S. Forrest used fixed length system call sequence
to describe normal software behavior in 1988. To overcome
inflexibility of fixed length, Wepsi proposed a Variable-
length model, called V-gram [4], which introduced variable-
length patterns to find sequence patterns of system calls.
HMM (Hide Markov Model) is the most representative ap-
proach in the field of machine learning. It describes local
correlation of system calls by Markov process. In Ref. [13],
the quantity of states in HMM was equal to that of system
calls (nearly 284), thus lead to higher complexity. To solve
the problem, Hoang [6] divided the whole system call se-
quences into several parts, each of which stood for a state,
thus reduced the quantity of states. Yin[14] used feature
vector, which is fix length short system call sequences, as
states to build a HMM. These improvements reduced com-
plexity to some extent, but it could not change the limitation
of HMM algorithm itself. In addition, these reducing state
quantity policies are assertive because system calls which
express same function may be separated into two states.

In this paper, our state layer generation is similar to
short sequence approach. We extract subsequences which
correspond to latent functions hidden in the long-term sys-
tem call sequence. The concept of subsequence has been in-
troduced in [15], which is integral and non-decomposable.
Unlike other general ways of pattern mining, our approach
employed probability statistics theory to find sequence pat-
terns will be discussed in Sect. 3.1.

Having extracted states, we expect our model describes
long-term correlations as automaton does. Automaton ex-
haustively captures the program structure, and transverses
branching or looping structures of the program, which en-
able us to identify long-term correlations. Sekar [7] used
system call together with its program counter to build fi-
nite state automaton model (FSA). To resolve impossible
path problem of FSA, Feng [8], [9] employed Vt-path model
based on abstracting call stack information. Then, he pro-
posed a corresponding static model, called VPStatic, which

Table 1  Main features and characteristics of modern modeling ap-
proaches.
Writers Main features Characteristics
Tian et al[16- Software  behavior ~ Use all features to establish model
20] and its effects on and detect deviation on it. The

computer approach has higher efficiency.

Identifies alerts correlation

Pao et al [21- IP address and time relations automatically by different

2] stamps approaches.
Behavior trace, Pr0p05§ cgncept of beha\{lor
. . semantic distance by matching
Yanget al [24] checkpoint and time- . .
behavior trace, checkpoint and
stamp .
time-stamp.
i};sotg: d Objﬁ_e;t; Define states based on system
Fu et al[25] objects, thus each state has been

parameters of system

calls assigned semantic information.

established automaton by analyzing source code. Con-
trasted to dynamic models, static models hold zero false
alarming and without impossible path. Then static-dynamic
hybrid approach, like Dyck[10] and HFA[11], becomes
more accuracy. Its drawback is complicated calculation, dif-
ficult in practical application. The root of problem is that a
single system call has no practical meaning. For the lack
of semantic analysis, distribution of automaton is loose and
cannot be merged in following process. Therefore, we ex-
tract states which are assigned semantic information instead
of system calls to address the problem. And then we estab-
lish state graphs according to the executed software process
to realize excellent description of long-term system calls. In
this method, computational complexity is reduced based on
our rules, by which low probability edges are reduced and
similar states are merged.

The trend of current modeling research focuses on two
hot issues. One is using different kinds of features (shown in
Table 1) to describe software behaviors, and the other is how
to assign semantic information in models. Tian [16]-[20] in-
troduced both software behavior (system call) and its effect
on computer environment, that is, what software behavior
does to computer system (CPU occupancy, memory occu-
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pancy and so on). Pao [21] employed alerts correlation rela-
tions to detect attacks from the Internet. Another tendency
of modeling is endowing semantic information to software
behaviors. Yang [24] proposed concept of behavior seman-
tic distance by matching behavior trace, checkpoint scene
and time-stamp. Fu[25] resolved system objects from pa-
rameters of system call and assigned semantic information
which system objects contain. Although the model preci-
sion is improved, it is time-consuming to obtain detail in-
formation of executed software. Moreover, the definition of
system objects is not very clear. Unlike their system object
analysis, our model performs semantic analysis according
to the extracted state layer. Each state corresponds to a la-
tent functional fragment. In addition, it is considered to add
semantic information in our state graphs at local and global
levels. The local function graph established according to lo-
cal functional template represents sensitive function, such
as login. While state transition graph globally reproduces
the overall process of execution, we will discuss this part in
Sect. 3.2.

3. Software Behavior Trust Model Based on State-
Layer

In this paper, we study software behavior under Windows
operating system, which provide users with Native APIs to
visit operating system. Consequently, 284 system calls in
Windows Operating System Services Descriptor Table will
be used to analyze software behavior.

SB-TMS modeling process is illustrated in Fig. 2. The
establishment includes three main steps: First, system call
sequences are intercepted in chronological order. Then, we
extract a higher layer, called state-layer, from system calls
sequence by pattern extracting. Last, we build state graphs
with the help of pruning rules, and extract sensitivity func-
tions.

Then, we introduce some basic concepts and notations
in this paper as follows.

Definition 1 State-layer State is sequence pattern derived
from system calls, denoted by S = (scy, sca, sc3, ..., s¢;),
i € N. All states form the state-layer set, denoted by SL =
(S],Sz,Sj;,...,S,‘), i€N.

Definition 2 State Graph (SG) SG can be classified
into two categories: local function graph (LFG) and state
transition graph (STG). STG and LFG consist of vertex
(V), edge (E) and weight (W), denoted by STG(V, E, W),
LFG(V, E, W) respectively, where V represents known state
set, denoted by V = {vy,v,,...,v,}. E is directed edge set
of V, which indicates relationship with each adjacent node,
denoted by E = {< vj,vx >,...,< v, v, >}. Wis a set of
occurrence frequency of E, each edge in E corresponds to a
weight, denoted by W = {w;;lw;; = ¢;j/c}, ¢;; is occurrence
number of < v;,v; >, ¢ is occurrence number of all edges.
Definition 3 Other notations Definition of weight devi-
ation, In-degree, Out-degree and State distance is shown in
Table 2.
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Fig.2  Construction of SB-TMS.
Table 2  Other notations.
Definition Description Notation
. The deviation degree between two
Weight . .
.. LFGs, we use Euclidean Distance to Aw
deviation M
describe it
For any v, in set ¥/ its in-degree is the
In-degree sum of the corresponding weights of  j;;*
edges whose end vertex is v,
For anyy. in set V, its out-degree is
1
Out-degree  the sum of the corresponding weights out”
of edges whose initial vertex is v,
State The distance between two different
. states, we use Euclidean distance to Ad
distance

judge the similarity of two states

3.1 State-Layer Derivation

To derive representative sequence patterns as states to il-
lustrate software behaviors, we present a novel technique
to identify optimal sequence patterns using statistics theo-
ries. Our State-layer generation includes two parts: repre-
sentative pattern selection and state identification based on
HMM.

3.1.1 Representative Pattern Selection

Representative pattern selection includes three major steps.
First, the long sequence is divided into many subsequences
according to the correlation each of two system calls. Sec-
ond, similar parts are classified to one group based on their
probability density. Third, we choose optimal subsequences
from each group as states. In this step, all subsequences
will be matched with the original sequence to find the most
optimal one.

Stepl Subsequence generation: Original system call
sequence is a long sequence in chronological order. In order
to extract optimal sequence pattern, we need to decompose
the long sequence into many small fragments. Generally,
system calls in a fragment expressed one function are re-
lated closely, while system calls in different function frag-
ment share low correlation. In our model, converting origi-
nal system call sequence into system call vectors, “1” or “0”
indicates whether or not the system call is present in system
call sequence. We use cross-correlation (shown in Eq. (1))
to measure correlation of two adjacent system call vectors.
The lower is cross-correlation, the poorer is correlation be-
tween them.

Cov(X,Y) = E{[X - EQOI[Y - E(N)]}

Y R

(D

| 2<
=
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{ABCABCDUDTC CADUDTCAABZC}
A={1 00 10000 01 0001 100}
B={010 01000 O00O0O0O0TO0TO0OT1OQ0}
c={001 00100100010 001}
D={000 00011001100 00O0TO0}
(ABC ABC), DDCA), (DDCA),ABO
Step 1: Subsequences generation
A B Cc D
1 033 033 033 0.00
2 025 0.00 025 0.50
3 025 000 0.25 0.50
4 033 033 033 0.00
Group 1 (ABC ABC), (ABCOCO
Group 2 (DDCA), (D D C A
Step 2: Similar subsequences grouping
Pattern1l (A B C A B () H1 = -0.16
Pattern2 (D D C A) H2 = -0.15
Pattern3 (4 B C) H3 = —0.15

Statel (A B C); state2 (D D C A)

Step 3: Optimal subsequence (state) selection

Fig.3  An original sequence (ABCABCDDCADDCAABC). Step 1: In order to decompose the long
sequence into many small parts, we calculate Cov(A, B), Cov(B,C) ... by Eq.(1). As we can see
Cov(A, B) = 0.12, Cov(B,C) = 0.12, Cov(C,A) = 0.09, Cov(C,D) = —0.01 ... therefore, we break
at the place of C and D, A and D, A and A. In this way, the original sequence set is divided into four
subsequences. Step 2: we calculate probability density matrix according to step 1, get a 4 = 4 matrix.
Then we calculate Euclidean distance each other rows. As a result, we get two groups. Step 3: the result
of IE is: H(ABCABC) = —0.16, H(ABC) = —0.15, H(DDCA) = -0.15, therefore, we choose ABC as
the optimal pattern for groupl and DDCA for group 2.

where, X and Y are two adjacent system call vectors, E(X)
and E(Y) are their expected value respectively, and L is the
length of system call vector.

Consequently, the long sequence is broken at the place
where two adjacent system calls’ correlation is negative.
Figure 3 (step1) uses an example to demonstrate the process
of subsequence generation.

Step2 Similar subsequences grouping: After getting
many subsequences, we use probability density matrix to
classify similar subsequences into one group instead of tra-
ditional method of pattern mining (shown in Fig. 3 (step2)).
We calculate probability density of system calls in each
subsequence. A probability density matrix between subse-
quence and system call has been obtained. Then we calcu-
late Euclidean distance each two rows. The shorter is dis-
tance, the more similar are the two subsequences. There is
a direct correlation between the distance threshold and the
quantity of groups. Groups grow as the threshold increases,
so does the calculation complexity. For simplification, we
set a threshold, which can obtain enough states to stand for
running software completely, but also calculation is not too
complicated. According to many experiments, the threshold
is set as 25% of the maximum distance.

Compared with data mining, it is well suited to our
problem for the following three main reasons: (a) Grouping

is based on composition of subsequences, thus classification
accuracy is guaranteed. (b) It does not change the order of
original sequence, more suitable to describe functions. (c)
Each group represents a series of similar sequences. Com-
pared with rigid pattern mining, it reduces the quantity of
states.

Step3 Optimal state selection: In this step, we choose
an appropriate subsequence from each group as a state. The
candidate subsequences must have the following two prop-
erties: (a) they must describe the group accurately and con-
tains all inherent properties. (b) they can describe the orig-
inal long sequence accurately or to the greatest extent. In
order to describe properties of one group completely, we
choose subsequences which near to the average density of
each group as candidates. Then we calculate information
entropy (IE) of these candidate subsequences in the original
sequence by Eq. (2), the subsequences which has highest IE
will be the most optimal sequence patterns. The process is
shown in Fig. 3 (step 3).

H(X) = —Plog(P) 2

Here, P = occurrences number of subsequence in the
original sequence / (original sequence length / length of can-
didate subsequences).

It still remains a problem of similar states, when the
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Fig.4 (a) For any ¢; € E, if its corresponding weight w; < o, delete e;.
(b) For any s; € V, if int < o and out™ < o, delete v; as well as edges.

distance of two states (Ad) is very small. For instance, ABC
and ABCAB, we cannot merge it without context. We will
discuss it in Sect. 3.2.

3.1.2  State Sequence Identification Based on HMM

Next, we need to transfer the long system call sequence into
state sequence according to optimal states we have already
obtained. Simple sequence matching is rough and cannot
tolerate even slight variations. In this paper, we use HMM
as a bridge to connect system calls with states. The parame-
ters of HMM include observation vector set, hidden state set
and three distribution matrixes. We use three initialized dis-
tribution matrixes and each state to build a HMM by Baum-
Welch algorithm at first. And then system call sequences are
evaluated based on the given models by the forward back-
ward algorithm. At last, the optimal state will be elected by
comparison.

3.2 State Graph Generation

In order to build running software model, we will estab-
lish STG and LFG. STG is generated by traversing state
sequence directly. We scan state sequence (S1,S2,...,5,),
if the state has been already in set V, go on scanning the next
state, else it is put into set V. If a new edge appears, add the
edge in set E and its weight is assigned an initial value, else
adjust its weight. Go on scanning next state until the end.

We propose two pruning rules to simplify our graphs
for high accuracy, and one separating rule for semantic anal-
ysis.
Rulel: delete edges and states with low parameters

For any edge in set E, if its corresponding weight does
not over a threshold, we delete it to keep the graph clean
and tidy, deleting process is shown in Fig. 4 (a). For any v in
set V, neither its out-degree nor its in-degree over a thresh-
old, we delete both the vertex and all the edges connecting
to it, shown in Fig.4 (b). We set the threshold as 0.01, that
means the edge or state will be deleted because it occur-
rences only 1 time or less while other edges or states oc-
currence 100 times. The edge or state with low occurrence
frequency should be deleted. These edges or states may be
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Fig.5 Foranyv;andv; € Vif Ad;; < o, and adjacent v is same, v; and v;
will be merged. (a) Vertex: we choose the state which has a higher weight
as the new vertex. For instance, we choose S 4 as the new state. (b) Edge:
delete edges between v; and v, if exist; keep edges between v;, v; and other
vertexes and delete repeat edges. (c) Weight: base on the change of vertex
and edge. For instance, < v2,v3 >, < vp,v4 > is merged to < vp,v4 > the
new weight is wyg4 = wp3z + waq = 0.1 +0.2 = 0.3.

De@@@

— 02

b

Fig.6  The IM software contains three parts: connection, communication
and disconnection. STG of software is (a). For the specific function of
connection and disconnection, we establish local function graph (b), which
is similar with part (¢) in (a). In this way, STG is divided by two LFGs, (c)
and (d). (d)corresponds to function of communication.

from wrong identification by HMM or unstability of Win-
dows operating system. We delete them for two reasons:
one is that they are too instable to describe normal software
behaviors, the other is that they cannot describe abnormal
because they share nothing with virus and illegal intrusion.
Rule2: merge equivalent states

For any two states in V, if their distance is less than a
threshold and their adjacent states connected by edges are
same, we will merge these states. The process of merging
is shown in Fig. 5. As we have mentioned in Sect. 3.1, two
states with a small distance are equivalent states, which may
represent same function fragment, however, we are not sure.
Therefore, we solve the problem in the process of establish-
ing STG. If the similar states with same predecessor and
successor states, we merge them to simplify graphs. Ac-
cording to many experiments, the threshold is set as 25% of
the maximum distance.
Rule3: Separate LFG from STG based on specific func-
tion

In this rule, we propose a method of separating LFG
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from STG based on specific software function. Each LFG
represents one software function. The specific function
should be clearly defined and explicitly executed, such as
connecting server, user login or download. Clear semantic
information of LFG will help to detect loop attack. For in-
stance, the DoS/DDoS attack can be detected by LFG for it
always do the same step in circle.

The process of establishing LFG is the same as that of
STG. System calls are intercepted when software specific
function is executed independently, and a LFG is established
by stepl to step3. In Fig. 6, we illustrate an example of the
IM software.

4. Experiments

In this section, first we give system architecture for anomaly
detection (SB-TMSAD), and then present the detecting pro-
cess by a case study of RSS reader software. Finally, we
discuss detect performance of our model and give results.

4.1 System Architecture

Our framework is comprised of three main templates: State-
layer Derivation Builder (SDB), Rule-based State Graphs
Constructer (RSGC) and Graphs Detector (GD), as shown
in Fig.7. The dotted line denotes the detecting phase and
the solid line denotes the training phase.

In training phase, SDB transfers intercepted system call
sequence to state sequence by Stepl to Step3 in Sect.3.1.1.
Then the state sequence is sent to RSGC to build state graph
template, which is according to the software execution pro-
cess and Rulel to Rule3. In detecting phase, the structure of
detection system is similar to that of training system. Sys-
tem call sequences are collected in real time and transferred
to state sequences according to standard state set generated
by SDB. Instead of building SG template, they are detected
by Graphs Detector (GD), which aims at detecting anomaly
via SG template generated by RSGC. In GD, tested SG is
compared with the SG template. Based on detection rules,
untrusting behavior can be observed.
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4.2 Case Study

In this paper, we select a widely used RSS reader software,
AgileReader, to validate our model. AgileReader allows a
user to read news which is subscribed from the Internet. It is
composed of user login dialog, reading interface, a database
which records user information as well as behaviors and a
user recommendation system.

4.2.1 AgileReader Modeling Based on SB-TMS

Given the characteristic of AgileReader, that is, database
recording always come along with user reading, no clear
boundary between them, AgileReader only can be described
as login function and reading function. Finally, we build
STG(V, E) which performs the whole process of user using
AgileReader and a LFG(V, E, W) for login which is clearly
defined. As shown in Fig. 8, the weight (W) should be in-
cluded in STG, it is helpful to simplify STG by Rulel and
Rule2. In detecting, the tested software is compared with
STG by Rule4. Only vertex (V), edge (E) are compared with
STG template, the weight is not necessary, so in Figs. 8—10
and Fig. 13, the weight in STG is ignored.

(b) LFG (login graph) for RSS

Fig.8 16 states are derived from system calls and STG (a) is built by
SDB. The specific function of RSS is login. Therefore, LFG (b) is built and
marked in STG (the dotted rectangle in (a)). In this way, STG is naturally
comprised of two parts: login part and normal reading part.

Normal System State-layer

call sequence | Derivation Builder

Rule-based State
Graphs Constructer |

7

7

Software

Standard state set

v

State graph template Rule table

v

Tested System
call sequence

Graph Detector

Fig.7  System architecture of SB-TMS for anomaly detection (SB-TMSAD).
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Fig.9  Add a new function- refreshing, which is not included to RSS SG
template, the unexpected behavior is detected by new states and seven new
edges. The red hollow node represents new state while the dotted lines in
red represent new edges.

Fig.10  Strcpy() buffer overflow attack. Software is executing injected
code, this attack is detected by new states and five new edges.

4.2.2 AgileReader Detection Based on SB-TMSAD

In detecting, tested SG is contrasted with standard STG and
LFG template by the following two rules. Rule4 is for
matching states and edges of STG. Rule5 is for matching
standard LFG and semantic rules.

Ruled4: A tested STG,(V,,E), V, = {(vi,va,...,v,}, E, =
{e1,ez,...e,},n € Nisbuilt. Suspicious behavior is detected
by

(1) New states dv; € V, butv; ¢ V

(2) New edges de; € E, bute; ¢ E

New behaviors which not include in the STG template
are considered as un-trust behaviors, such as code injec-
tion attack. But un-trust behaviors may not be malicious.
Because based on the definition of trust, any unknown be-
havior which is not accord with the software behavior tem-
plate will be detected. The unknown behavior includes ma-
licious behavior, new behaviors caused by software updat-
ing (some applications always are updated automatically)
and etc. Rule4 cannot distinguish these unknown behaviors.
Due to they violate the definition of trust, it should be found
early to inform administrator. If the application’s version is
upgraded, the administrator can decide update the behavior
template.

For example, we add a new operation in AgileReader:
refresh the news we are reading. It is a new function which
is not included in SG template. By Rule4, we can find an
unexpected state and 8 edges in Fig. 9.

Code injection attack, which injects a piece of code into
the running process firstly, and then try to use control flow
transfer instructions (such as function calls) to execute the
injected code. So the executing process must include new
system call point or relevant instructions, which will result
in new states or new edges, and can be detected based on
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Fig.12  Tested LFG.

Rule4. For example, the buffer over flow attack executed on
AgileReader is shown in Fig. 10.

If no suspicious behaviors are detected by Rule4, the

tested software should be detected by Rule5.
Rule5: Tested LFG,(V,, E,, W,) are built, V, = {vi,vp,...,
vt E; = ler,ea,....en), W = {wi,wa,...,w,}, n € N.
Suspicious behavior is detected by YV,, E, € LFG(V, E, W)
and AW =W, -W>o.

If vertexes and edges in tested LFG,(V,, E,,W,) are
same with LFG(V, E, W) template, but the weight deviation
AW is larger than threshold, we judge the tested software as
untrusting. In this way, loop attack, such as DoS/DDoS at-
tack and user’s illegal input attack can be detected. Loop at-
tack is a type of attack which use a plenty of inputs to use up
system resources, such as establish a lot of network connec-
tions, user repeatedly login or maliciously download. The
resource exhausting attack cause great harm because server
cannot deal with legal requirements at that time. More im-
portantly, it is hard to be found because it complies with
normal states and edges in STG template. By Rule5, we can
find this kind of abnormal.

As shown in Fig.8, AgileReader contains two func-
tions: login and reading. We used a fuzzy testing tool
to login for 254 times in 2 minutes. A suspicious se-
mantic relationship graph is shown in Fig. 11. The tested
LFG,(V,, E;,W,) is shown in Fig. 12. Vertexes and edges in
tested LFG,(V,, E,, W,) are the same as LFG(V, E, W) tem-
plate, but for AW = W, — W > o, we can detect the un-trust
behavior by Rule5.

4.3 Detect Performance and Results

While AgileReader is running for 30 minutes, 6821 sys-
tem calls and 842 states are intercepted. For local function
graph, login is repeated 50 times, 837 system calls and 112
states are obtained. State selection reduces the numbers of
original data. As we can see in Table 3, the number of state
is nearly one eighth of that of system calls, thus save a lot of
computing time.

The detection results of our model are shown in Ta-
ble 4. We use software security tool-Fortify, to find
some vulnerabilities of AgileReader. The vulnerabilities are
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Table 3  The number of system calls and corresponding states.

Our method Original sequences

Aei

gileReader System States System State
calls calls
number numbers

number number

STG 284 16 6821 842

LFG 284 2 837 112

Table4  SB-TMS model attacks detection results based on AgileReader.
vulnerability Attack description ~ Result  Performance
New operation Add . refreshing R Figure 9

function
. Add open-file . .
New operation function v Figure A-1(a)
CWE ID 676 Strepy() - buffer Figure 10
overflow
LoadLibraryA()
CWE ID 253,690 return null pointer N Figure A-1(b)
overflow
OnBnClickedOk()
CWE ID 120,131 backdoor dan Figure A-1(c)
injection
Login action
Repeated login appears for a long Figure 12
time

marked by Common Weakness Enumeration (CWE), which
is community-developed dictionary of software weakness
type. Then we take advantage of these security problems
to create attacks and detect them by our trusting model.
The detail performance is shown in appendix. We can see
from Table 4, when the corresponding attacks occur, the new
states and edges appear clearly. In Fig. 13, buffer over flow
attack which will cause huge damage to the users is detected
as well. Every subtle change of system calls will be detected
by our model. For repeated login attack, we will detect it by
our semantic relationship analysis. This kind of attack can
only be detected from a semantic approach. As a result, the
traditional way of modeling which using system call infor-
mation directly, such as V-gram, FSA, HFA, even the mod-
ern models, SBTTM [19], SBO [25] are undetectable.

5. Conclusion

The proposed method made the following contributions: (a)
It suggested a novel method of abstracting state-layer, which
revealed the inner properties of software behaviors and re-
duced the computation complexity at the same time; (b) It
established state graphs, which vividly described the process
of executed software in terms of the pruning strategy; (c)
It assigned semantic information to local function graphs.
With semantic relationship analysis, wrong semantic attack,
such as illegal input attack, would be found. The experimen-
tal results showed that our trusting model could successfully
detect un-trust behavior in the tested software, anomaly be-
haviors and illegal input behaviors.
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Appendix

(a)Add a new function- openfile, which is not included in RSS, the
unexpected behavior is detected by eight new edges

(c¢) OnBnClickedOk() function holds a hidden danger, that is, it may
write to memory out of boundary and then execute malware. We inject
backdoor dll through it and detect new state and edges

Fig.A-1  The performance of states when anomaly occurs. ((a) (b) and
(c) correspond to the anomaly in Table 4). The red hollow node represents
new state while the dotted lines in red represent new edges.
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