IEICE TRANS. INE. & SYST., VOL.E97-D, NO.3 MARCH 2014

601

[LETTER

iCruiser: An Improved Approach for Concurrent Heap Buffer

Overflow Monitoring*

Donghai TIAN™T"® Nonmember, Xuanya LI'"", Member, Mo CHEN', and Changzhen HU', Nonmembers

SUMMARY Heap buffer overflow has been extensively studied for
many years, but it remains a severe threat to software security. Previous so-
lutions suffer from limitations in that: 1) Some methods need to modify the
target programs; 2) Most methods could impose considerable performance
overhead. In this paper, we present iCruiser, an efficient heap buffer
overflow monitoring system that uses the multi-core technology. Our sys-
tem is compatible with existing programs, and it can detect the heap buffer
overflows concurrently. Compared with the latest heap protection systems,
our approach can achieves stronger security guarantees. Experiments show
that iCruiser can detect heap buffer overflow attacks effectively with a little
performance overhead.

key words: heap buffer overflow, multi-core technology

1. Introduction

Although buffer overflow problems have been well studied
for over two decades, there are still many related vulnerabil-
ities [11]-[13] that are being both discovered and exploited.
According to the National Vulnerability Database [2], more
than 300 buffer overflow vulnerabilities were reported in
2012. Once attackers exploit these vulnerabilities, they may
change the target program’s execution or even control the
victim’s entire system.

The main reason for buffer overflows is that the tar-
get program fails to check the buffer boundary when writing
data to its buffer. In general, there are two categories of
buffer overflows: stack-based and heap-based buffer over-
flows. In this paper, we focus on heap-based buffer overflow
detection.

Previous solutions to detect heap buffer overflows have
the following limitations: 1) Most methods impose high per-
formance penalties [1],[7],[9],[10]. 2) Some methods re-
quire recompiling the source code of the target program [7],
[9]. 3) Some methods only protect some specific libc func-
tions [10]. 4) Some methods rely on special hardware [8].

Manuscript received August 21, 2013.
Manuscript revised November 20, 2013.
"The authors are with Beijing Institute of Technology, China.
"The author is with State Key Laboratory of Information Se-
curity, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China.

T The author is with National Engineering Laboratory for Infor-
mation Security Technologies, Institute of Information Engineer-
ing, Chinese Academy of Sciences, China.

*This work is supported partially by the National High-
Tech Research Development Program of China under Grant No.
2009AA01Z433 and the Open Foundation of State Key Labora-
tory of Information Security (Institute of Information Engineering,
Chinese Academy of Sciences) under Grant No. 2013-4-1.

a) E-mail: donghaitad @ gmail.com

DOI: 10.1587/transinf.E97.D.601

Buffer Canary

Fig.1 Buffer structure.

Recently, Qiang et al. proposed a concurrent heap
monitoring framework, Cruiser [5], which enables detecting
heap buffer overflows efficiently without changing the tar-
get program. Although this method has made great progress
on heap overflow detection, it still has some limitations: 1)
The protected program and the associated monitor co-locate
in the same address space so that the attacker could disable
the monitor once the target program’s execution is hijacked
via a heap buffer overflow. 2) Since Cruiser simply relies on
XOR operations to generate canaries to guard heap buffers
(see Fig. 1), it is possible for attackers to recomputed and
recover the corrupted canaries. To address these problems,
Nick et al. presented a kernel-assisted heap protection sys-
tem [1], which checks the canaries during the kernel’s exe-
cution. Unfortunately, this system incurs considerable per-
formance degradation.

In this paper, we present an improved heap protection
system, iCruiser, which can detect heap buffer overflows
concurrently. iCruiser is implemented on the Linux system,
and it does not need any modification to the existing pro-
grams and OS kernel. Our approach makes the following
contributions:

e We propose an improved heap overflow detection ap-
proach. This method can provide stronger security
guarantees than current cutting edge heap protection
mechanisms.

e We leverage the secure canary generation, inter-process
communication mechanism and multi-core technol-
ogy to achieve concurrent and secure monitoring heap
buffer overflows.

e We design and implement a prototype of iCruiser based
on Linux. Evaluations show that our system can detect
heap buffer overflow efficiently.

2. Overview of Our Approach

The goal of iCruiser is to build a system that achieves con-
current heap buffer overflow monitoring with stronger secu-
rity. Our high-level idea is consistent with previous canary-
based methods: just to add one canary word to the end of
each buffer, which is shown in Fig.1. Whenever a heap

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

602

Monitored Monitor

Program

Memory

Allocator Process

Fig.2 System architecture.

buffer is overflowed, the canary value will be corrupted. Dif-
ferent from the conventional methods, we utilize a a cryp-
tography method to generate secure canaries for different
buffers. By doing so, it is difficult for attackers to infer and
counterfeit the target canary value based on the other ca-
naries.

Once the canaries are set, the next step is to check the
integrity of these canaries. Traditional methods perform the
checks during the heap allocate and de-allocate operations,
which incur not only the performance overhead but also the
detection latency. For example, when the program inline
code performs the check, all the program’s other jobs will
be forced to wait. On the other hand, the heap overflows
will not be detected until the allocation and de-allocation
functions are invoked.

To overcome these problems, we propose to move the
detection code out of the target program by utilizing the
multi-core technology. In contrast to Cruiser [5] that places
the monitoring code in the same protected process, we cre-
ate a separate trusted process to monitor the protected pro-
gram by utilizing the IPC shared memory. Thanks to the
process isolation provided by the underlying OS, even if
the protected process is compromised, the attacker cannot
touch our monitor process. To ensure the protected program
allocating dynamic buffers from the shared memory region
that can be accessed by our monitor, we need to modify the
default memory allocator. Similar to Cruiser, we utilize an
express data structure to collect memory allocation informa-
tion. Based on this data structure, our monitor can swiftly
locate and check canaries.

The general architecture of our system is shown in
Fig. 2. The monitor runs in a different process from the mon-
itored program for self-protection. Before the monitored
program gets executed, we load our memory allocator first
instead of the original one. By doing so, our allocator can
intercept the memory allocate and de-allocate operations is-
sued by the monitored program. Moreover, the allocator will
map the heap memory area of the monitored program to our
monitor’s address space so that our monitor can access the
monitored program’s heap for concurrent monitoring.

3. System Design and Implementation

We have developed iCruiser, a prototype based on Linux
system to demonstrate our approach. We present our mem-
ory allocator in Sect.3.1. The concurrent monitoring ap-
proach is described in Sect. 3.2.

IEICE TRANS. INE. & SYST., VOL.E97-D, NO.3 MARCH 2014

3.1 Memory Allocator

Our allocator was implemented by modifying dlmalloc
2.8.3. The main function of our allocator is to hook the mal-
loc calls and then attach secure canaries to the end of al-
located buffers. To generate different canaries for different
buffers, a conventional method may first invoke the srand()
function to set a seed and then use the rand() function to
get a random integer as the canary value. However, fre-
quent invoking the rand() function would impose consid-
erable performance cost. More importantly, the rand() func-
tion typically returns a 16-bit number, which is cyclic and
predictable. As a result, attackers may figure out the canary
value.

To address these problems, we apply a cryptography
method for generating secure canaries. Specifically, we first
utilize a kernel module to extract a random number from the
entropy pool, which is maintained by Linux kernel. Then,
the random number is used as a secret key for RC4 [4] to
generate a rand stream of bytes. Finally, each 4 bytes of this
stream is used as a canary value for each allocated buffer. To
reduce the cost of canary generation, we generate a batch of
secure canaries and store them in an array of the monitored
program during its initialization. By doing so, we can sim-
ply obtain the canary from the array instead of regenerating
it by using the kernel module. Since each canary in the array
can be used only one time, we need to refill the array when
all the generated canaries have been used. To this end, our
allocator maintains a position pointer that points to the array
entry, which stores a canary for the current use. Whenever
the canary gets used, the pointer will be moved to the next
canary position. Once the pointer is moved to the end of
the array, our allocator will invoke the ioctl() system call to
inform the underlying kernel module to regenerate secure
canaries and then copy them into the user array.

To facilitate our monitor to access the monitored pro-
gram’s heap for checking canaries, we make use of the IPC
mechanism to share the heap memory area with our mon-
itor process. Specifically, our allocator first invokes the
shmget() function to create an IPC shared memory region,
whose default size is 512 MB. Then, it invokes the shmat()
function to attach this shared memory region to its own ad-
dress space. On the other hand, we apply the same functions
shmget() and shmat() to get and then attach the same shared
memory region to the monitor process. To ensure the allo-
cated buffers only reside in the shared memory region, our
allocator will only allocate memory in the shared memory
segment but not in the traditional data segment. In addition,
we need to deal with a special case when a very large chunk
is requested. In this case, we may not find a proper chunk
with large size in the shared memory region. As a result, we
need to create another IPC shared memory region for this
allocation.

To notify our monitor further locate and check the spe-
cific canaries, we need to transfer the canary location and
value information to the monitor process. To this end, we

LETTER

Monitor Process

Monitored |

|
| |
Process : Ring : Deliver Monitor
, Buffer | Thread Thread
I K P |
N

Memory

Allocator

Table

|

|

|

|

|

Y Hash !
\ |
|

|

|

Fig.3 Concurrent monitoring mechanism.

utilize the Lamport’s ring buffer algorithm [6]. Since this al-
gorithm allows the single-producer (i.e., the monitored pro-
gram) and the single-consumer (i.e., our monitor) to access
the ring buffer concurrently, the canary information in the
buffer can be transferred efficiently.

When a buffer is freed, the corresponding canary infor-
mation transferred to the monitor becomes dated and should
be deleted. However, if our memory allocator releases this
buffer directly without notifying the monitor, it may result in
false alarms in that the dated buffer may be reused while the
monitor is checking this buffer. To deal with this problem,
our allocator just mark the target buffer with a tombstone
flag and transfer this information to the monitor for later re-
leasing the buffer.

3.2 Concurrent Monitoring

Once the canaries are set, our monitor is responsible for ac-
cessing the monitored program’s heap and then check the
canary. In order to improve our monitor’s performance, we
create two separate threads (i.e., deliver thread and moni-
tor thread) in our monitor process, which is shown in Fig. 3.
The deliver thread is used to copy the canary information
from the ring buffer to a hash table, by which the monitor
thread can quickly locate the canaries and then verify their
integrity.

Since the deliver thread and monitor thread may ac-
cess the hash table concurrently, we need to tackle the syn-
chronization problem. To this end, a conventional method
is to use a lock-based method. However, this method will
degrade the performance. To avoid using locks, we turn
to applying the lock-free hash table algorithm proposed by
Shalev and Shavit [6]. Although doing so can achieve good
scalability, the contention (i.e., insert and delete operations
on the same node) may still lead to considerable perfor-
mance overhead. Instead of relying on the existing methods,
we have designed a custom lock-free hash table algorithm,
which is shown in Fig. 4. Our algorithm supports a single
deliver thread to insert nodes into a hash table and a single
monitor thread to traverse this hash table and then delete the
nodes concurrently.

Similar to the traditional hash table, we resolve the
hash collision problem by using separate chaining. To deal
with the contention problems, we separate the insert and
delete operations in different areas. Specifically, when the
hash table is initialized, we introduce a empty node for each
hash table entry (Line 21~25). Then, we enforce each new

603

1 #define HASH_SZ 4096

2 #define hash_fun(x) (((x)>>12)"(x))&(HASH_SZ-1)
3

4 struct canary_info{

5 unsigned long addr;

6 unsigned int size;

7 unsigned long value;

8 1;

9

10 struct hash_item{

11 struct canary_info ca;
12 struct hash_item *next;
13 };

15 struct hash_item hash_tb[HASH_SZ];

16

17 void Insert_hashtable(struct hash_item *p)
18 {

19 int entry = hash_fun((p->ca).addr);

20 struct hash_item *htable;

21 if(hash_tb is not initialized){

22 for(int i=0; i<HASH_SZ; i++){

23 memset (hash_tb,0,sizeof(struct hash_item)*
HASH_SZ); //Initialize empty nodes

24 }

25 %

26 htable = &hash_tb[entry];
27 if((p->ca).size==0){ //Update a node size

28 struct hash_item *cur = htable->next;
29 while(cur!=NULL){

30 if((cur->ca).addr==(p->ca).addr){
31 (cur->ca).size = 0;

32 break;

33 }

34 cur = cur->next;

35 }

36}

37 else{ //Insert a node

38 p->next = htable->next;

39 htable->next = p;

40 3

41 }

42

43 void Monitor ()

44 {

45 for(int i=0; i<HASH_SZ; i++){

46 struct hash_item *htable = &hash_tb[i];
47 struct hash_item *p = htable->next;
48 int count = 0;

49 while(p!=NULL){

50 Check_hash_item(p);//Check a buffer canary
51 if((p->ca).size==0 && count!=0){
52 Release ((p->ca).addr);

53 Delete_hash_item(p);

54 }

55 P = p->next;

56 count++;

57 }

58}

59 3

Fig.4 Concurrent monitoring algorithm.

node will be inserted into the hash table following the first
empty node (Line 37~40).

When a buffer is freed, the corresponding node in the
hash table should be removed because the related canary in-
formation becomes out of date. To delete the dated node,

604

the deliver thread can perform this task directly. Instead of
relying on the deliver thread, we utilize the monitor thread
to carry out this deletion. In this way, the deliver thread
can transfer the canary information efficiently. To mark the
dated node for later deletion, we set the size field of the node
as zero (Line 27~36). Then, the monitor thread can check
the node size to determine whether this node should be re-
moved. Since the insert operations are always carried out
following the first empty node, the deletion operations to
be performed on the second node may result in contention
problems. To tackle this issue, the marked node is delayed
to get removed when it is no longer the second node (Line
51~54).

It is worth noting that our monitor should release the
corresponding buffer before deleting the dated node (Line
52~53). For this purpose, the monitor should follow the
allocator’s rule to manipulate the metadata that is stored be-
fore the target buffer. Specifically, if the target buffer is not
very large, we just mark the associated chunk that contains
this buffer as available and then place it in the corresponding
bin'. In particular, if the adjacent chunk is also free after the
target chunk is released, then we coalesce these two adjacent
chunks into one larger free chunk. Different from the orig-
inal buffer release operations performed by dlmalloc allo-
cator, we do not reclaim the allocated memory pages when
the top contiguous chunks become free. The benefit is that
the additional complex operations can be avoided. On the
other hand, if the target buffer is within a very large chunk
that is allocated separately via the IPC shared memory, our
monitor will destroy this memory region.

4. Evaluation

In this section, we evaluate both the detection effectiveness
and the performance of iCruiser. All the experiments are
carried out on a Dell PowerEdge T410 work station with
two 2.13G IntelXeon E5606 CPUs and 4 GB memory.

4.1 Effectiveness

We evaluate the effectiveness of iCruiser for heap buffer
overflow detection with the SAMATE Reference Dataset
(SRD) [3]. Particularly, we select 12 test cases on heap
buffer overflows from this dataset. The experiments show
that all these heap overflows are successfully detected by our
system. Moreover, we exploit two recent heap buffer over-
flow vulnerabilities (i.e., libHX [11] and Lynx [12]). Specif-
ically, these two vulnerable programs are first monitored by
iCruiser, and then we utilize the corresponding heap over-
flow exploits to launch attacks. Our system detects these
two overflow attacks by identifying the corrupted canaries.

"The dlmalloc allocator divides the heap memory into con-
tiguous chunks with various size. The free chunks with the same
size are kept in a doubly linked list, which is called a bin.

IEICE TRANS. INE. & SYST., VOL.E97-D, NO.3 MARCH 2014

B Cruiser @iCruiser

Execution time

Fig.5 SPEC CPU2006 performance (normalized to the execution time
of native Linux).

4.2 Performance

To evaluate the performance of our system, we execute the
SPEC CPU 2006 Integer benchmark suite, which is shown
in Fig.5. Compared with the original program, our system
introduces a little performance overhead. In specific, the
average performance overhead is 13.8%. In addition, we test
the performance of the recent work, Cruiser. Compared with
this system, the additional overhead added by our protection
system can be negligible.

5. Related Work

Compared with our previous work Kruiser [14], there are
three major differences in this work: (1) The protection tar-
gets are very different. Kruiser focuses on kernel-level heap
buffer overflow monitoring, while our work aims at user-
level heap buffer overflow detection. (2) The concurrent
monitoring algorithms are quite different. Kruiser does not
fully solve the synchronization problem, but it makes use
of the double-check scheme to detect the unsynchronized
states. On the contrary, we design a custom lock-free hash
table algorithm to eliminate the synchronization issue in this
work. (3) Kruiser requires some modification to the OS ker-
nel and depends on the virtualization technology to achieve
kernel heap buffer monitoring, while our approach does not
need to modify the OS kernel and leverages the existing OS
facilities to detect user heap buffer overflows.

6. Conclusion

In this paper, we present iCruiser, an improved heap
buffer overflow detection system. We exploit secure canary
generation, IPC shared memory and concurrent monitoring
algorithm, which allows us to monitor heap buffer overflows
efficiently with stronger security guarantees. Moreover, our
protection system does not require modifying the target pro-
grams, so it can be deployed easily. Our evaluations show
that iCruiser can detect heap buffer overflows effectively
with good performance.

References

[1]1 N. Nikiforakis, F. Piessens, and W. Joosen, “HeapSentry: Kernel-

LETTER

(2]
[3]

[4]
(51

(6]

(71

[8]

assisted protection against heap overflows,” 10th International Con-
ference on Detection of Intrusions and Malware & Vulnerability As-
sessment (DIMVA), 2013.

NIST. National Vulnerability Database. http://nvd.nist.gov/, 2012.
NIST. SAMATE Reference Dataset. http://samate.nist.gov/SRD,
2012.

Wikipedia. RC4. http://en.wikipedia.org/wiki/RC4, 2012.

Q. Zeng, D. Wu, and P. Liu, “Cruiser: Concurrent heap buffer over-
flow monitoring using lock-free data structures,” Proc. 32nd ACM
SIGPLAN conference on Programming language design and imple-
mentation (PLDI), 2011.

L. Lamport, “Proving the correctness of multiprocess programs,”
IEEE Trans. Softw. Eng., vol.SE-3, pp.125-143, 1977.

T.-C. Chiueh and F.-H. Hsu, “RAD: A compile-time solution to
buffer overflow attacks,” 21st International Conference on Dis-
tributed Computing Systems (ICDCS), 2001.

N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
enforcement of application security policies using tagged memory,”

(91

[10]
[11]
[12]
[13]

[14]

605

8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2008.

M. Zhivich, T. Leek, and R. Lippmann, “Dynamic buffer overflow
detection,” Proc. 11th Annual Network and Distributed System Se-
curity Symposium (NDSS), 2004.

E.D. Berger, “HeapShield: Library-based heap overflow protection
for free,” University of Massachusetts Amherst, Tech Report, 2006.
SecurityFocus, libHX ‘HX split()’ remote heap-based buffer over-
flow, 2010.

SecurityFocus, Lynx browser ‘convert to idna()’ function remote
heap based buffer overflow, 2010.

SecurityFocus, Mozilla Firefox and Seamonkey regular expression
parsing heap buffer overflow, 2009.

D. Tian, Q. Zeng, D. Wu, P. Liu, and C. Hu, “Kruiser: Semi-
synchronized non-blocking concurrent kernel heap buffer overflow
monitoring,” Proc. 19th Annual Network and Distributed System Se-
curity Symposium (NDSS), 2012.

