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SUMMARY The numbers of files in file systems have increased dra-
matically in recent years. Office workers spend much time and effort
searching for the documents required for their jobs. To reduce these costs,
we propose a new method for recommending files and operations on them.
Existing technologies for recommendation, such as collaborative filtering,
suffer from two problems. First, they can only work with documents that
have been accessed in the past, so that they cannot recommend when only
newly generated documents are inputted. Second, they cannot easily han-
dle sequences involving similar or differently ordered elements because of
the strict matching used in the access sequences. To solve these problems,
such minor variations should be ignored. In our proposed method, we in-
troduce the concepts of abstract files as groups of similar files used for a
similar purpose, abstract tasks as groups of similar tasks, and frequent ab-
stract workflows grouped from similar workflows, which are sequences of
abstract tasks. In experiments using real file-access logs, we confirmed
that our proposed method could extract workflow patterns with longer se-
quences and higher support-count values, which are more suitable as rec-
ommendations. In addition, the F-measure for the recommendation results
was improved significantly, from 0.301 to 0.598, compared with a method
that did not use the concepts of abstract tasks and abstract workflows.
key words: file recommendation, file abstraction, abstract task, abstract
workflow, log analysis

1. Introduction

In recent years, the numbers of files in file systems used for
business have grown dramatically in step with the recent in-
formation explosion. As a consequence of this increase, of-
fice workers now spend much time and effort searching for
files that include documents and data required for their busi-
ness. For example, a white paper [1] reports that about 25%
of working time in offices is occupied by “search” tasks. It
is therefore important to find methods for reducing the time
wasted in ineffective and unproductive searching. Also, in
office, the searching targets are not limited to documents,
the abstract working processes which we call them abstract
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workflows in this paper are also being searched by users.
Collaborative filtering [2] is well known as an algo-

rithm for making recommendations. It predicts future ac-
tions or items based on information about the past ac-
tions or items of other users with similar behavior. The
collaborative-filtering approach can also be applied to file
recommendation. However, there are problems with the
original form of collaborative filtering. It only works with
files accessed in the past. In other words, the recommen-
dation systems based on collaborative filtering do not work
well on newly generated files. Moreover, collaborative fil-
tering does not handle well sequences that include elements
that are similar but not identical, or that have a different or-
dering of elements, because the algorithm uses strict match-
ing of elements in access sequences.

To solve these problems, we have proposed a method
for recommending files and types of operations on them,
such as open file and copy file, that supports creative busi-
ness processes as an operational tool [3]. In this paper, we
add a more detailed description of our proposed method,
more experiments and a more specific discussion on experi-
mental results.

In our method, we consider the abstract workflows for
a user. These are different from the ordinary workflows de-
scribed by users, being generated by mining the file-access
histories of the users. To recommend files and operations
on them to a user, our method reserves the extracted work-
flows in a database, and retrieves patterns that match the
current partial workflow of the user. To obtain good recom-
mendations, it is important to ignore small variations in the
matching process. In this paper, we introduce for the first
time the concepts of abstract files, abstract tasks, and fre-
quent abstract workflows. Abstract files are groups of simi-
lar files used for similar purposes, abstract tasks are groups
of similar tasks, and frequent abstract workflows are groups
of similar workflows, in which sequences of abstract tasks
appear frequently.

The differences between collaborative filtering and the
method that we propose in this paper are that we add the
concept of tasks to weaken the constraint of strict match-
ing for access sequences and we apply abstraction to files,
tasks, and workflows to handle newly generated files. Our
method first extracts the abstract tasks that are collections of
files and operations on them, and then extracts working pat-
terns as abstract workflows between the abstract tasks. Af-
ter extracting this information from logs, our method then
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identifies the abstract workflow that best matches the cur-
rent file-usage pattern of the user. This abstraction increases
the number of patterns that match flexible user behavior and
any newly generated files. Finally, our method recommends
a combination of files and operation types.

In this paper, we describe an evaluation of the proposed
method using real file-access logs. The evaluation results
indicate that our method extracts workflow patterns with
longer sequences and higher support-count values, which
are more suitable as recommendations. Here support-count
means the occurrence times of workflow patterns. More-
over, the results demonstrate that using the concepts of ab-
stract tasks and abstract workflows improves the quality of
the recommendations.

The remainder of this paper is organized as follows. In
Sect. 2, we describe our goal and approach. We then outline
our proposed method in Sect. 3. Details of the process of our
proposed method are described in Sects. 4 and 5. Section 6
reports on the experimental evaluation. Related work is pre-
sented in Sect. 7. Section 8 offers conclusions and proposals
for future work.

2. Goal and Approach

Figure 1 illustrates an example of the type of workflow pat-
tern we are investigating. We assume that user C creates a
new file “Ordering Instruction for Company Z.” The goal is
to predict the files required, for recommendation to user C.

In our approach, we search for similar patterns of op-
eration in logs and make recommendations based on them.
For example, the logs contain a history of user A accessing
the files “Ordering Instruction for Company X” → “Exam-
ple of an Estimate” → “Information of Product X.” Simi-
larly, user B accessed files “Ordering Instruction for Com-
pany Y”→ “Information of Product Y”→ “Example of an
Estimate.” In these two patterns, different files were ac-
cessed in different orders, but it is considered that users A
and B were doing essentially the same work. Therefore, we

Fig. 1 Assumed workflow pattern.

expect to extract an abstract pattern of work, namely “or-
dering instruction” → “example estimate file” or “product
information file.” Using this abstract workflow pattern, it
becomes possible to recommend files such as “Example of
an estimate” or “product information file” to user C.

3. Outline of Proposed Method

3.1 Overall View of the System

Figure 2 shows an overview of our method. The process
flow comprises two parts, namely the offline and online
parts, with the online part comprising two modules, namely
the monitoring and recommendation modules. While users
access files located on a file server, file-access histories are
stored in a log file. Our method extracts abstract tasks and
workflows from the log file, and reserves them in a database.
The method then monitors the current file accesses by a user,
and searches for workflows in the database that match the
access patterns of that user to infer the user’s current work-
flow pattern. Based on the inferred workflow, the method
recommends those files, together with operations on them.

The processing procedures are described in detail in
Sects. 4 and 5.

3.2 Workflow Model

In general, the orders of sequences of individual operations
will vary, even if the outlines of the workflows are the same.
To ignore such subtle differences in operational order in sim-
ilar workflows, we introduce the concept of an abstract task
as a group of similar combinations of file and operation, and
an abstract workflow as a sequence of abstract tasks.

(1) [Task]:

To extract tasks, we first determine a parameter, Time Gap
Between Tasks (TGBT). If there are no file operations by
a user during an interval longer than TGBT, we infer that
the previous task had finished before the interval and the
next task has started after it. Our method scans the separate
log of each user to find blank intervals longer than TGBT

Fig. 2 Overall view of the system.
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between log records. Each subsequence between gaps in
the log is then identified as a task. A task is the basic unit
in a working process’s workflow, and the ordering of file
operations within it is ignored. For example, from the log
below, we set TGBT = 3 minutes.

• Record 1: 12:00 [Open File A]
• Record 2: 12:01 [Open File B]
• Record 3: 12:10 [Open File C]
• Record 4: 13:00 [Open File D]

Three tasks will be extracted from these four records.

• Task 1: {[Open File A], [Open File B]}
• Task 2: {[Open File C]}
• Task 3: {[Open File D]}

(2) [Abstract Task]:

Next, in order to ignore small variations in between tasks,
we consider abstract tasks. An abstract task is a set of com-
binations of file and operation derived by clustering similar
tasks. First, we calculate the degree of similarity between
files. After calculating the similarity, files with high similar-
ity are grouped in a cluster. In the above example, we as-
sume that Cluster 1 contains File A and File C while Cluster
2 contains File B, Cluster 3 contains File D. We then cluster
similar tasks into groups as abstract tasks. Note that ab-
stract tasks are formed from file-clusters, not the individual
files. In terms of the abstract task, files and operational or-
ders with small differences are treated as the same work. In
the above example, three abstract tasks would be derived as
follows.

• Abstract Task 1: [Open File-Cluster 1], [Open File-
Cluster 2]
• Abstract Task 2: [Open File-Cluster 1]
• Abstract Task 3: [Open File-Cluster 3]

(3) [Abstract Workflow]:

Next, we define abstract workflows. An abstract workflow
is a sequence of abstract tasks. Similarly to the process ex-
tracting tasks, we first determine a parameter, Time Gap Be-
tween Workflows (TGBW). If there are no file operations
during an interval longer than TGBW, we infer that the pre-
vious workflow had finished before the interval and the next
workflow has started after it. In typical working patterns,
TGBW is much longer than TGBT. For the above example,
we set TGBW = 30 minutes and can extract two abstract
workflows that are sequences of the abstract tasks.

• Abstract Workflow 1: [Abstract Task 1] → [Abstract
Task 2]
• Abstract Workflow 2: [Abstract Task 3]

(4) [Frequent Abstract Workflow]:

Because large numbers of abstract workflows can be derived
from the file-access logs for the full range of office work,
it is useful to reduce the number of target abstract work-
flows by extracting patterns that occur frequently. We call

these frequent patterns of abstract workflow frequent ab-
stract workflows. In this paper, we adopt sequential-pattern-
mining technique BIDE+ [4] to derive the frequent abstract
workflows.

4. Offline Part

The aim of this part is to extract abstract tasks and fre-
quent abstract workflows from file-access logs. As shown
in Fig. 3, there are mainly 3 steps in offline part. Details of
each step of the offline part are described in the following
subsections.

4.1 Extraction of Tasks and Workflows

We first partition the log file in terms of user ID. Then as
mentioned in Sect. 3.2, we cut out tasks by parameter TGBT
and workflows by parameter TGBW. In Fig. 3, We partition
the log into six tasks and three workflows.

4.2 Abstraction of Tasks and Workflows

4.2.1 Calculation of Similarity between Files

To treat files with small differences as the same work, we
cluster similar files together. Here, cause we want to group
files used for the same purposes together, how to define the
similarity is important. Simply using the contents of the
files does not fit for our purpose. For example, there are
two ordering instruction files for different companies. The
contents vary a lot, because these two files are for different
companies. It is hard to group them together by contents in-
formation. But the files are both ordering instruction files, in
our method we want to cluster them together. To do this, the
copy relationship and the similarity in filenames are useful.

(1) [Copy-relation Similarity]:

It is reasonable to assume that files that have been copied
from the same template file will have a strong commonality

Fig. 3 Offline part.
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of purpose. The equation for calculating the copy-relation
similarity is

simCopy( f ilea, f ileb) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γsteps (i f copy
relationship
f rom f ilea to
f ileb exists)

0 (otherwise).

(1)

We assume that f ilea and f ileb have a copy relation-
ship between them. Here, steps is the number of transition
steps from f ilea to f ileb. γ is the attenuation coefficient.
In our experiment, we set γ as 0.9. For example, files “A,”
“B,” and “C” have the copy relation A→ B→ C. Files “A”
and “B” have a parent–child relationship. The similarity be-
tween A and B is 0.9. Files “A” and “C” have a grandparent–
grandchild relationship. The similarity between “A” and “C”
is attenuated to 0.81.

(2) [Filename Similarity]:

Another similarity between files is obtained from their file-
names. It is reasonable to assume that if files have similar
filenames and extensions, the degree of similarity between
them will be high. For example, it can be estimated that files
such as “ordering instruction f or company X.docx” and
“ordering instruction f or company Y.docx” have a simi-
lar commonality of purpose.

We can treat filenames as sequences or sets, as the
smallest units are characters or words. We extract words
from filename by morphological analysis. If we treat file-
names as sequences, as the metrics for measuring the differ-
ence between two sequences, we can by finding the Longest
Common Subsequence (LCS) [5] or calculating the Leven-
shtein Distance [6]. If we treat filenames as sets, we can
compare two filenames by finding same 2-grams on charac-
ter level or use Dice’s Coefficient [7]. By comparing these
methods, we found that dividing filename into words ahead,
then compare filename sequences using the LCS is the most
stable way. The formula we use for calculating the file sim-
ilarity using filename is

simFilename( f ilea, f ileb) =
len(LCS ( f ilea, f ileb))

min(len( f ilea), len( f ileb))
∗ δ. (2)

Here, len( f ileX) means the number of words in file-
name of f ileX , min(len( f ilea), len( f ileb)) represents the
length of the shorter of f ilea and f ileb, and LCS ( f ilea

, f ileb) represents the LCS in the filenames for f ilea and
f ileb. If the extensions of f ilea and f ileb are different, we
lower their similarity by a multiplying parameter δ. In our
experiments, we set δ = 0.9.

Finally, the overall degree of similarity between f ilea

and f ileb is given by a linear sum of these two kinds of sim-
ilarities, namely

sim( f ilea, f ileb) =

α ∗ simCopy( f ilea, f ileb) +

β ∗ simFilename( f ilea, f ileb). (3)

α and β are weight parameters, From the experiments
described in Sect. 6, we set α = 2 and β = 1.

4.2.2 Abstraction of Files

Using the similarity between files, we apply agglomerative
hierarchical clustering [8] to the files. Abstraction of files
means replacing files, which appeared in the access log, with
the corresponding clusters.

4.2.3 Calculation of Similarity between Tasks

As described in Sect. 3.2 (1), by comparing each blank
time between two continuous file operations with parameter
TGBT, we separate the log into tasks. So each task repre-
sents a set of file operations. Tasks are the basic units in
a working process’s workflow. The mathematical definition
of tasks is as follows. AccessLog is the sequence of f ilex.

AccessLog = [ f ile1, f ile2, . . . , f ilen].
taski = [ f ile j, f ile j+1, . . . , f ilem], (1 ≤ j,m ≤ n),
where AT ( f ilek+1) − AT ( f ilek) < TGBT ,
( j ≤ k, k < m),
and AT ( f ile j) − AT ( f ile j−1) ≥ TGBT ,
and AT ( f ilem+1) − AT ( f ilem) ≥ TGBT .
Here, AT ( f ilex) means the access time stamp of f ilex.
We calculate the similarity between tasks by using the

similarity between files. The similarity between tasks is a
metric representing the degree of matching of two tasks in
terms of file operations. It is large when two tasks have
numerous abstract file operations in common. Here, we use
Dice’s Coefficient [7] to calculate the degree of similarity.
The formula for the similarity between taska and taskb is

sim(taska, taskb) =
2|taska ∩ taskb|
|taska| + |taskb| . (4)

4.2.4 Abstraction of Tasks and Workflows

As described in Sect. 3.2 (3), by comparing each blank
time between two continuous file operations with parameter
TGBW, we separate the log into workflows. We set TGBW
much longer than TGBT, so each workflow represents a se-
quence of tasks. The mathematical definition of workflows
is as follows. TaskS equence is the sequence of taskx.

TaskS equence = [task1, task2, . . . , taskn].
work f lowi = [task j, task j+1, . . . , taskm], (1 ≤ j,m ≤ n),
where AT (FF(taskk+1)) − AT (LF(taskk)) < TGBW,
( j ≤ k, k < m),
and AT (FF(task j)) − AT (LF(task j−1)) ≥ TGBW,
and AT (FF(taskm+1)) − AT (LF(taskm)) ≥ TGBW.
Here, AT ( f ilex) means the access time stamp of f ilex.

FF(taskx) means the first file in taskx. LF(taskx) means the
last file in taskx.

Based on the degree of similarity between tasks calcu-
lated in Sect. 4.2.3, we group tasks with a high degree of
similarity together in a cluster as abstract tasks. We set two
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thresholds to filter out small clusters and unnecessary items
inside clusters. First, only when a cluster contains more than
Minimum Number of Tasks (MNT) tasks, it will be treated
as an abstract task. Second, for each file inside a cluster,
only when its occurrences ratio is more than the Minimum
Emergence Ratio (MER), this file will be included in the
abstract task. For example, we assume that there are 3 tasks
grouped into the same cluster. If a file was used only in 2
tasks, this file’s occurrences ratio for this cluster is 0.67.

In our experiments, we set the parameters as MNT = 2
and MER = 0.5. For example, if tasks “a, b, c, d,” “a, b,
d,” and “a, b” are grouped into the same cluster, not all of
the files “a, b, c, d” would be put into the abstract task. We
would remove items whose occurrences ratio in tasks is less
than 0.5. In this case, only “a, b, d” would be put into the
abstract task.

After the task abstraction, we simply replace each task
in a workflow with the corresponding abstract task to obtain
the abstract workflow.

4.3 Extraction of Frequent Abstract Workflows

To remove any infrequent abstract workflows created as de-
scribed in Sect. 4.2.4, we extract those that appear frequently
as frequent abstract workflows by parameter Minimum Sup-
port Threshold (MST) of the workflow sequence. Parameter
MST means the minimum number of times a workflow ap-
peared. Since percentages are used as Minimum Support
sometimes, we denote it by MST to make clear the usage of
integer numbers. In other words, we only accept workflows
that appeared more frequently than MST, as frequent work-
flows. We use BIDE+ [4] as the sequential-pattern-mining
algorithm. The reason for choosing BIDE+ is that it outputs
only “closed sequential patterns,” which are sequences con-
taining no subsequences with the same support-count value.

5. Online Part

There are two modules in Online part. The aim of monitor-
ing module is to find matching abstract tasks and frequent
abstract workflows in database while monitors user’s cur-
rent operation. Recommendation module recommends files
and operations on them (e.g. open, close) to the user.

5.1 Monitoring Module

The aim of this module is to infer the user’s current task and
workflow by monitoring the user’s recent file-operations. As
mentioned in Sect. 3.2, even when users are doing the same
type of work, different files are usually being handled. For
this reason, we abstract files being operated on currently by
the user. We then estimate the abstract task and the frequent
abstract workflow.

(1) Abstraction of Files:

We abstract files by the method explained in Sect. 4.2.2. If

the user is accessing a file that has a corresponding file-
cluster, we simply replace the being accessed file’s filename
in the log by the corresponding file cluster. However, in
some cases, such as newly created files, some files do not
own corresponding file-clusters. In such cases, we first re-
place the file being accessed by the most similar file that
does have a corresponding file-cluster.

(2) Estimation of Abstract Tasks:

We estimate the current abstract task being operated on by
the user from the abstract files being accessed. We group
the abstract files being accessed into a task, and then com-
pare this task with tasks in the database to find the most
similar task. The comparison algorithm for abstract tasks is
described in Sect. 4.2.3.

(3) Estimation of Frequent Abstract Workflows:

After estimation of the abstract task, we estimate the fre-
quent abstract workflow. Because there are several abstract
workflows that contain the estimated abstract task, we score
each frequent abstract workflow in the database according
to these three criteria listed below. We call the workflow be-
ing operated on by the user workflow being accessed, and a
workflow in the database workflow in database.

• Degree of matching between workflow being accessed
and workflow in database
• Frequent occurrence score for workflow in database
• Number of possible tasks in workflow in database for

recommendation

Degree of matching between workflow being ac-
cessed and workflow in database: A higher score is set if
the degree of matching is high between two workflows. The
score is higher if the matching subsequence is longer.

Frequent occurrence score for workflow in database:
A higher score is set if there are many occurrences of the fre-
quent abstract workflow. A high frequent occurrence score
means that the workflow pattern has been reused many times
in the organization. We record this information while ex-
tracting workflows from the log.

Number of possible tasks in workflow in database
for recommendation: The number of possible elements for
recommendation in the workflow refers to the number of file
operations that have not yet been undertaken by the user.
When this number is high, because there is more informa-
tion available for recommendation, a higher score is set.

In Fig. 4, frequent abstract workflow “1, 2, 3”→ “4, 5”
was estimated from the abstract task “1, 2, 3.”

5.2 Recommendation Module

The aim of this module is to recommend files and operations
based on the estimated abstract task and frequent abstract
workflow. If we know about the user’s current abstract task
and frequent abstract workflow, we can identify and recom-
mend subsequent abstract tasks. However, a frequent ab-
stract workflow is a sequence of abstract tasks, while an ab-
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Table 1 Information about extracted workflows.

Proposed method Comparative method
Number of records in log 7358
Number of files 1421
Number of file-clusters 645 -
Average size of file-clusters 2.203 -
Number of tasks 306 -
Average sequence length for tasks 2.680 -
Number of workflows 416 1375
Average sequence length for workflows 3.236 2.834
Average support-count value for workflows 5.370 3.864

Fig. 4 Online part.

stract task is a set of pairs of operations and file-clusters.
Each file-cluster contains several files. The problem is how
to rank the recommendation candidates. Therefore, the pro-
posed method extracts the last access time stamp of each
file, ranking files belonging to the same file-cluster by most
recent access time stamp.

6. Experiments

The goal of our experiment is to investigate the effectiveness
of the features of our proposed concept, namely the abstrac-
tion of tasks and workflows. Before that, we tune parameters
to investigate their influence on the recommendation results.

6.1 Comparative Method

Because we want to investigate the effectiveness of the fea-
tures of our proposed concept, we set up a method that
did not use abstract tasks for comparison. The compar-
ative method simply extracts sequences of file operations
as workflows and calculates those that are frequently used
for recommendation. More specifically, the comparative
method uses the same TGBW parameter as the proposed
method to identify sequences of file operations from the log.
The comparative method also applies the same sequential-
pattern-mining algorithm BIDE+ to extract frequent work-
flows. In the recommendation algorithm, because the com-
parative method does not use the concept of a task, it
matches directly the current workflow sequence with fre-

quent workflows in the database for workflow estimation,
and then recommends file operations that have not yet been
used in this workflow.

6.2 Data

The experimental data came from actual file-access logs
provided by a commercial organization. There are 22 users
in our log data. The record term is about 8 months and 9917
records and 1750 files are recorded in the log data. The user-
names, access time stamps, file paths, and operation type are
recorded in the time series. Examples of operation types are
“checkout,” “checkin,” “update,” and “view.”

We split the log in a ratio of 70% to 30%. The first 70%
of the log was for learning tasks and workflows and the other
30% was for evaluation. Table 1 shows the log information
about the first 70% part log. We divided the log for evalua-
tion in terms of user IDs, using the same TGBW parameter
to obtain workflows as used by the proposed method and
created 151 test cases.

6.3 Evaluation Scheme

Each test case is a workflow sequence. For each test case,
the n records (in the experiment, we set n = 2) from the
beginning were input into our recommendation system to
acquire a set of recommendation results. The remaining
records in the test case were used as a correct answer set
(the “examinees set”). By matching the examinees set and
the results set, we obtained values for Precision, Recall, and
F-measure.

A comparison between the proposed method and the
comparative method was then made using the average values
for all test cases.

6.4 Parameter Tuning

We investigate how these parameters influence the recom-
mendation result and to find the optimal values for them.
The basic approach to parameter tuning was to adjust the
target parameter while keeping other parameters fixed. The
value giving the highest average F-measure for all of the 151
test cases is then the optimal parameter value. We tune all
parameters in our proposed method, and found parameters
α, β, γ and δ are not sensitive while TGBT , TGBW and
MS T are sensitive. Here we describe how these sensitive
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Fig. 5 Comparison of workflow characteristics.

parameters influence the recommendation result.
Parameter TGBT influences abstract tasks directly.

The optimal TGBT value was 150 seconds. We obtained
2301 tasks for TGBT = 150. When TGBT was very large
(900 seconds), we obtained only 217 large tasks. If an ab-
stract task is too large, some unrelated file operations will
inevitably be grouped in the same task, thereby reducing
the Precision. For the TGBW parameter, we tested from 10
minutes to 6 hours and found the optimal range was found
to be 30 minutes–1.5 hours. Too large a TGBW value will
connect unrelated workflows into an excessively long work-
flow and reduce the Precision. On the other hand, too small
a TGBW value will split up a genuine workflow, thereby
reducing the Recall value. The optimal MS T value is 2.
MS T = 1 would imply that we ignore the process of extract-
ing frequent abstract workflows, with all abstract workflows
being used directly (as the frequent abstract workflows) in
our proposed method. We found that, for MS T = 1, the rec-
ommendation results were very poor in comparison to those
for MS T = 2. The reason is that there are many infrequent
abstract workflows that are unsuitable for direct recommen-
dation. Conversely, too high an MS T value will eliminate
too many abstract workflows, making some test cases unable
to return recommendation results.

6.5 Comparison between the Proposed Method and the
Comparative Method

Table 1 shows the information about tasks and workflows
extracted from the logs when using these parameter val-
ues. We compared the workflows extracted by the proposed
method with the comparative method; we found that the
number of workflows for the proposed method was less than
for the comparative method, but the average sequence length
and average support-count values for the proposed method
were greater. This is because similar workflows were settled
on as the one frequent abstract workflow in the proposed
method.

Furthermore, we can show the differences in work-
flows by using Fig. 5. In this bubble chart, the horizontal
axis represents the occurrence value (support-count value)

Fig. 6 Comparison of precision, recall, and F-measure for all test cases.

for workflows, the vertical axis represents the number of
file operations in workflow sequences (sequence length),
and the size of the bubbles represents the number of work-
flows. Note that comparative method’s bubbles are more
concentrated in the lower left corner than proposed method’s
bubbles, which means that the workflows extracted by the
comparative method have smaller support-count values and
shorter sequence lengths. Workflows with a small support-
count value (a score of 2, for example) are more contingent
and tend not to be reusable working patterns. In addition,
workflows with small sequence lengths are undesirable be-
cause of the small amount of information available for the
recommendation. Our proposed method can extract work-
flows with higher support-count values and greater sequence
lengths than the comparative method. In other words, the
workflows extracted by our proposed method have higher
support-count values and are more suitable for making rec-
ommendations, thus, improving the recommendation accu-
racy greatly.

We now describe the recommendation results for the
evaluation experiment that used test cases created from the
remaining 30% of the log. Figure 6 shows the average Preci-
sion, Recall, and F-measure for all 151 test cases. Note that
the proposed method performs much better than the com-
parative method for all metrics. In particular, the F-measure
score was improved from 0.078 to 0.341. The reason for this
large difference is that the numbers of test cases that can
be recommended are overwhelmingly different. As shown
in Fig. 7, because the comparative method can only recom-
mend files that have been used in the past, only 25.8% of
the test cases (39 out of 151) returned a result. On the other
hand, because of our proposed method’s abstract file opera-
tions, the proposed method can recommend files from simi-
lar file operations undertaken in the past. This enables more
files to be available for recommendation. About 57.0% of
the test cases (86 out of 151) returned results.

For the rest 43.0% test cases, our method did not give
any recommendation. It is impossible and not necessary to
make recommendation for all file accesses. If there is no pat-
tern of meaningful workflows for the current file access, it is
not appropriate to give any recommendation for it. In other
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Fig. 7 Number of test cases that output results.

Fig. 8 Comparison of precision, recall, and f-measure for test cases that
output results.

words, the proposed method finds out the general working
process pattern and makes proper recommendation only in
the case user doing some meaningful workflows. It means
that we assume the documents are shared inside the orga-
nization and the recommend target user is executing some
meaningful workflows. It is the applicable scope of our rec-
ommend method.

It is difficult to distinguish actual meaningful work-
flows in the test cases. However, the experiments demon-
strate that 57.0% of file accesses in the test cases are chosen
as the target of recommendation. It indicates that the file ac-
cess logs used for the test cases are good examples for the
applicable scope of our recommend method.

We should now focus on the test cases that returned re-
sults, when comparing the two methods. The experimental
results are shown in Fig. 8, where the proposed method still
performs considerably better than the comparative method.
The reason for this is considered to be the quality of the
workflows used in the recommendations. We therefore
investigated the average support-count value for frequent
abstract workflows that are used in the recommendations.
The comparative method’s average support-count value for
frequent abstract workflows is 4.833, while the proposed
method’s value is 20.186. We can conclude that the pro-
posed method’s workflows have higher support-count val-
ues and more suitable for making recommendations, which

will improve the recommendation accuracy greatly.

7. Related Work

There are a number of studies on extracting information
from access logs such as Web-access and file-access logs
to enable recommendations.

WRAPL [9] is for recommending Web pages using
Web-access logs. WRAPL focuses on Web pages recom-
mendation, not file recommendation. Even if we were to
apply their method to file recommendations, their method
does not make abstractions on files and there is no concept
of tasks. It is difficult to obtain valid recommendation re-
sults. Okamoto et al. also proposed a Web-page recommen-
dation method using Web-access logs [10]. By extracting
patterns in combinations of multiple attributes of the ac-
cessed pages, their method can also recommend new Web
pages. Although each Web page is abstracted in their study,
there is no concept of abstract tasks.

Tanaka et al. proposed a personalized document rec-
ommendation system [11]. The system gives a recommen-
dation based on these tendencies via collaborative filtering.
In this system, documents viewed at the same time or within
a short period of time are considered to be related to the
same working unit for the same purpose. For this reason,
they partition the access logs using the time gap between
two records. In their experiments, the time gap was set to 30
minutes. We adopted this idea when extracting tasks from
logs.

Another file recommendation system was proposed by
Lai et al. [12]. Their work proposes recommendation meth-
ods based on the knowledge-flow (KF) model. KFs are sim-
ilar to the workflows in our approach. There are two differ-
ences between their work and our proposed methods. First,
the aims of file abstraction are different. In their work, each
file is converted into a set of keywords inside it. Therefore,
files with similar topics (keywords) are grouped together.
As discussed in Sect. 4.2.1, it is not useful to group files for
the same purpose of use together. On the other side, we
group files not depending on topics, but the purpose of use,
which is more suitable for extracting meaningful workflows.
Second, in Lai et al., the definition of similarity between
files is different from that in our method. In addition, their
study groups similar files and then calculates KFs (work-
flows) directly, whereas our proposed method first groups
similar files into tasks and then calculates the sequences of
tasks as workflows. In other words, the definitions of work-
flows in their work and in our approach are different. By
introducing the concept of abstract task, our method can ex-
tract patterns with difference in order.

Instead of file recommendations, Odagiri et al. pro-
posed a method called FI [13] for file searching. The ap-
proach of the FI method is that files always being accessed
simultaneously will have a high degree of similarity. This
idea could be applied to improving our calculation algorithm
for similarity between files in the future.

SUGOI [14] is for searching files using file access logs.
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SUGOI finds related files using file-access logs. In their
study, a task is defined as the file set containing related files
in simultaneous use. However, their method does not per-
form abstraction on tasks, which is the main difference from
our study. Their method considered the operations of Re-
name, Move, and Copy when calculating the degree of rel-
evance between tasks, which is similar to our method for
calculating the degree of similarity between files that have a
copy relationship between them.

8. Conclusion and Future Work

In this paper, we propose a method to extract frequently
used abstract-workflow patterns from the history, and rec-
ommends files and operations by monitoring the current
workflow of the target user. There are two points in our pro-
posed method. First, our proposed method is able to extract
general patterns, which are more suitable for making recom-
mendations by abstracting such files. Another point is that,
the proposed method introduces abstract tasks to eliminate
sequential relations inside tasks.

We have evaluated the proposed method using actual
file-access logs. The results of these experiments demon-
strate that our proposed method can extract workflow pat-
terns with longer sequences and higher support-count val-
ues than a method that does not use the concepts of ab-
stract tasks and workflows. Consequently, the F-measure
of the recommendation results was improved significantly
from 0.301 to 0.598.

In the future, we plan to consider a better algorithm for
partitioning logs instead of simply using a fixed time. This
might involve using information such as the frequency and
type of operations.
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