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PAPER

A Concurrent Partial Snapshot Algorithm for Large-Scale and
Dynamic Distributed Systems

Yonghwan KIM†a), Nonmember, Tadashi ARARAGI††b), Member, Junya NAKAMURA†c), Nonmember,
and Toshimitsu MASUZAWA†d), Member

SUMMARY Checkpoint-rollback recovery, which is a universal
method for restoring distributed systems after faults, requires a sophisti-
cated snapshot algorithm especially if the systems are large-scale, since
repeatedly taking global snapshots of the whole system requires unaccept-
able communication cost. As a sophisticated snapshot algorithm, a partial
snapshot algorithm has been introduced that takes a snapshot of a subsys-
tem consisting only of the nodes that are communication-related to the ini-
tiator instead of a global snapshot of the whole system. In this paper, we
modify the previous partial snapshot algorithm to create a new one that
can take a partial snapshot more efficiently, especially when multiple nodes
concurrently initiate the algorithm. Experiments show that the proposed
algorithm greatly reduces the amount of communication needed for taking
partial snapshots.
key words: fault-tolerance, large-scale distributed system, concurrent
snapshot, checkpoint, rollback

1. Introduction

A distributed system consists of computational entities
(i.e., computers, usually called nodes) that are autonomous
and connected each other by asynchronous communication
links [5]. Nodes communicate with each other by exchang-
ing messages. Because distributed systems are prone to
faults, fault tolerance of distributed systems is a key goal.

Checkpoint-rollback recovery [7], [13], [16] is a univer-
sal method for restoring a distributed system from faults.
Each node periodically records its local state into non-
volatile storage from which it recovers its state when faults
occur. The stored state of a node is called a (local) check-
point, and restoring the node state to the checkpoint is called
a rollback.

From a system-wide viewpoint, each node has to re-
cover its state so that the states of all nodes form a consistent
global state [17] (or a global state without an orphan mes-
sage, which is a received message but does not be sent by
the sender). To avoid the domino effect of rollbacks [23] (or
an unbounded chain of rollbacks for attaining a consistent
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global state), nodes have to store their states cooperatively
so that the stored checkpoints form a consistent global state
of the whole system. The consistent global state formed by
the recorded checkpoints of the nodes is called a snapshot,
and the algorithm with which nodes record their checkpoints
cooperatively is called a snapshot algorithm.

Many sophisticated snapshot algorithms have been pro-
posed. As the size of a distributed system increases, the
efficiency of snapshot algorithms becomes more important.
In large-scale distributed systems, repeatedly taking global
snapshots of the whole system incurs unacceptable commu-
nication cost. Another important requirement of snapshot
algorithms is adaptability to dynamic distributed systems
like web services [10], for example, RosettaNet [12], where
nodes can freely join and leave the system at any time.
Related works: Chandy and Lamport [1] proposed a dis-
tributed algorithm for taking a (global) snapshot of a whole
system. This snapshot algorithm assumes that all the chan-
nels guarantee the FIFO property. Lai and Yang [20] and
Mattern [19] proposed snapshot algorithms for distributed
systems with non-FIFO channels. All the above algorithms
allow easy implementation and high efficiency, but still re-
quire O(n2) messages since every pair of neighboring nodes
exchanges messages, where n denotes the number of nodes
in the system. Thus, these algorithms are not applicable,
in practice, to large-scale distributed systems. While fur-
ther research reduces complexity by simplifying the taking
of snapshots (e.g. O(n logn)) [3], [6], [20]–[22], the scalabil-
ity of snapshot algorithms remains critical. Moreover, it is
impossible to apply these algorithms to dynamic distributed
systems where nodes can join and leave the system at any
time, which is common in a system like web-services.

Communication-induced checkpointing is an alterna-
tive approach to scalable snapshot algorithms [24]–[27].
Not all nodes are requested to record their checkpoints in
the algorithms, but some are, depending on the communi-
cation pattern. For distributed applications based mainly
on the local coordination of nodes, communication-induced
checkpoint algorithms can reduce the communication and
time required for recording the checkpoints of nodes. How-
ever, the recorded checkpoints provide no guarantee that a
consistent global state can be formed from the latest check-
points of the nodes. This forces each node to keep mul-
tiple checkpoints in its non-volatile storage and requires a
sophisticated method to find a set of checkpoints of nodes
that forms a consistent global state.
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To achieve scalability of snapshot algorithms, Moriya
and Araragi [2], [3] introduced a partial snapshot∗ of a sub-
system consisting only of communication-related nodes and
showed that the whole system can recover from faults by
restoring each node of the subsystem to the state in only
the latest partial snapshot. For taking a partial snapshot,
Moriya and Araragi [2], [3] also proposed a distributed al-
gorithm called the Sub-SnapShot (SSS) algorithm. In prac-
tical distributed applications, the number of nodes in a
communication-related subsystem is expected to be much
smaller than the total number of nodes. Therefore, SSS
algorithm can take a partial snapshot efficiently and thus
makes the checkpoint-rollback recovery applicable to large-
scale distributed systems. Another important advantage of
SSS algorithm is that it is applicable to dynamic distributed
systems (where nodes can join and leave the system), be-
cause each node needs no a priori knowledge of its adja-
cent nodes and augments the knowledge during the execu-
tion of SSS algorithm. Koo and Toueg [13] introduced a
communication-induced checkpoint algorithm applicable to
dynamic distributed systems, but it has to suspend the ex-
ecutions of applications while taking checkpoints to guar-
antee consistency. On the other hand, SSS algorithm frees
itself from this suspension by an elaborate operation on
communication-relation. Lastly, SSS algorithm satisfies the
strong consistency requirement just as Chandy and Lam-
port [1] does. That is, if a sender node records sending of
a message in its stored local state, then the receiver node
must record the message as a received or an in-transit one.

Although SSS algorithm has the above advantages, its
drawback is an inability to guarantee the strong consis-
tency of the partial snapshot it takes when multiple nodes
concurrently initiate SSS algorithm and the subsystems
communication-related to the initiators overlap. Each node
may need to confirm its local state at any time independently
from other nodes and this causes that two or more nodes ini-
tiate the snapshot algorithms (especially in the large-scale
distributed system) at the same time. Thus, resolving this
problem (two or more snapshot algorithms overlap) is nec-
essary to apply a partial snapshot algorithm to large-scale
distributed system. We call this problematic situation a col-
lision of SSSs. The collision of concurrent SSS algorithms
can be obviously resolved when concurrent initiations are
handled sequentially one by one, but algorithm efficiency is
severely degenerated. Spezialetti [14] and its improved vari-
ant by Prakash [15] solved the problem of concurrent initia-
tions. But their methods still target the creation of a global
snapshot, and while it may be partitioned into pieces for ef-
ficiency, they are not applicable to dynamic situations.
Contribution of this paper: In this paper, we resolve the
collision problem in SSS algorithm by presenting a new
partial snapshot algorithm called Concurrent Sub-Snapshot
(CSS) algorithm that can efficiently take a partial snapshot

∗In [14], part of a global snapshot is also called a partial snap-
shot, but the notion is completely different from that in SSS algo-
rithm, which is not a part of a single static global snapshot.

even when multiple nodes concurrently initiate the algo-
rithm. CSS algorithm successfully realizes an efficient solu-
tion for the collision problem by consistently merging two
concurrent SSS algorithm executions when a collision oc-
curs on a node. The initiators of the concurrent executions
communicate with each other to cooperatively combine the
executions, but the overhead for the combining process is
small. The experimental results prove that CSS algorithm
requires very small cost for resolving the collision problem,
compared with naive solutions.

The rest of this paper is organized as follows: Sect. 2
introduces our system model and defines the problem. Sec-
tion 3 presents our algorithm and experimental evaluations
are presented in Sect. 4. A conclusion is given in Sect. 5.

2. Preliminaries

2.1 System Model

In this paper, we consider distributed systems consisting of
nodes (or processes). Nodes share no common memory or
storage and communicate with each other asynchronously
by exchanging messages through the communication chan-
nels. Each node has its own local state which is charac-
terized it’s initial state and operation history [9]. An enor-
mous number of nodes can exist in the (large-scale) system
however the number of nodes is assumed to be finite. This
implies that a distributed algorithm which requires the com-
munication spread over all the nodes in the system is not
practical.

We assume the distributed systems are dynamic [28],
where nodes can frequently join and leave the system. This
means that the network’s topology is changeable and each
node never recognizes the entire system’s configurations.

Each node has a comparable unique identifier (ID)
drawn from a totally ordered set. The system is a fully con-
nected network where all the nodes can directly communi-
cate with all other nodes. All links used for the message
transfer are reliable and FIFO, so all the messages are even-
tually received and the messages sent using the same link (in
the same direction) are received in the order they were sent.
We assume an asynchronous distributed system, where mes-
sages experience finite but unpredictable delay.

We also assume that distributed systems considered
in this paper are applicable to checkpointing-rollback
paradigm. This means that the distributed systems can
restart executions from the restored snapshots, and thus we
exclude the distributed systems with real-time interactions
or human-interactions.

2.2 SSS Algorithm

Our work, CSS algorithm, is based on SSS algorithm that
creates a partial snapshot of a subsystem [2], [3]. We briefly
explain SSS algorithm before introducing CSS algorithm
(Sect. 3). SSS algorithm has the following properties. (a)
Snapshots are only created among communication-related
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nodes so that a rollback can only be done for the nodes re-
lated to a crashed node. Therefore, even if there are plenty of
nodes in a distributed system, SSS algorithm can efficiently
make a partial snapshot, and effectively achieve a rollback.
(b) SSS algorithm is applicable to dynamic distributed sys-
tems (where nodes can join and leave freely), because each
node doesn’t have to know the set of nodes in the system
beforehand. Since a set of nodes contained in a partial snap-
shot is dynamically determined during the execution of SSS
algorithm, it can cope with dynamic joining and leaving of
nodes.

To achieve the above properties, SSS algorithm traces
the communication-relation of the application algorithm:
when a node records its checkpoint, it only requests nodes
with which it has communicated to record their checkpoints.
To realize this strategy, each node nodei maintains a set
DS i, called a dependency set, of nodes with which it has
communicated (sent or received messages). The set deter-
mines neighbors of the subsystem for which a partial snap-
shot should be taken. When a node nodei receives an appli-
cation message from another node, say node j, or sends one
to node j, then the ID of node j is added to DS i. DS i always
includes its own ID, nodei.

When a node nodei initiates SSS algorithm, it records
its local state and sends a marker with its ID to the nodes in
DS i at that moment. This node is called an initiator. When
a node node j, which is not an initiator, receives a marker
for the first time, it records its local state and forwards the
marker to each nodex in DS i. By this way, the marker is for-
warded to all nodes in the subsytem for which a partial snap-
shot should be taken. On receipt the marker, node j sends a
pair of its DS contents and ID (DS j, node j) to the initiator,
which maintains the union of the received dependency sets
(including its own) and the set of received IDs (including
its own). When the union of the dependency sets and the
set of IDs become equal, the initiator decides that the nodes
in the set constitute the subsystem where the partial snap-
shot should be taken. We call this a partial snapshot group
(dependency relation group, DRG). Based on this set, the
initiator informs each node node j of the set DRG j of nodes
from which node j should receive markers. This set can be
defined as follows: DRG j ={ nodex | node j ∈ DS x}

Recording application messages and finishing the snap-
shot algorithm are done in the same way as traditional al-
gorithms. Like as Chandy’s algorithm, SSS algorithm al-
lows the application algorithm to continue running during
execution of the snapshot algorithm. To guarantee consis-
tency, a node has to send a marker to another node that
isn’t contained in its DS before sending an application mes-
sage. When SSS algorithm is terminated, each node in DRG
clears its DS. With these procedures, SSS algorithm effi-
ciently allows a small portion of a consistent snapshot effi-
ciently. Thus, SSS algorithm can make the checkpoint cor-
rectly, even in a dynamic distributed system where the net-
work topology is never statically fixed. However, as stated
in Sect. 1, SSS algorithm does not guarantee consistency if
there is a collision in a node. Our proposed algorithm solves

this problem without sacrificing efficiency.

2.3 Problem Definition

Moriya and Araragi [2], [3] assume that two or more SSS
algorithms are NOT simultaneously executed on the same
node to guarantee the consistency of the partial snapshot.
However, in some distributed applications, each node may
need to initiate the snapshot algorithm independently from
other nodes in order to confirm its current local state and
commit the result of the requests. If each node can ini-
tiate the snapshot algorithm (become an initiator) at any
time, SSS algorithm hardly guarantees its consistency be-
cause two or more snapshot algorithms may be collided each
other. A naive solution to such a problem is that an initiator
of the snapshot algorithm informs every node in the system
of its initiation (i.e. broadcasting). However, the solution is
not practical, especially in a large-scale distributed system.
We define a collision of SSS algorithms on a node to be a
situation where two or more SSS algorithms are executed at
the same moment on the node.

Now we explain the problem of a collision in SSS al-
gorithm. Here we assume that two or more SSS algorithms
are operated independently and correctly. And that, each
node maintains only the latest checkpoint. Therefore, when
each node concurrently engages in two or more executions
of SSS algorithm, it will keep only the one of the check-
points created by the executions. Figure 1 shows two differ-
ent executions, where only the behaviors of two nodes nodea

and nodeb among many nodes in the system are illustrated.

Fig. 1 Concurrent executions of SSS algorithm.
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In the both executions, collisions occur at the two nodes be-
tween two SSS algorithm S S 1 and S S 2. First, we consider
the case that each node maintains the checkpoint recorded
by the execution that started the most recently (Fig. 1 (a)).
In this case, nodea maintains ckpta2 of S S 2 and nodeb does
ckptb2 of S S 1. Thus, if nodea and nodeb rollback for recov-
ery, nodea returns to checkpoint ckpta2 and nodeb does to
checkpoint ckptb2. Sending of message msgab is recorded
in ckpta2, however, msgab is NOT recorded (even as an in-
transit message) in ckptb2 since S S 1 takes a consistent par-
tial snapshot and sending of msgab is not recorded in ckpta1.
This violates the strong consistency of the snapshot algo-
rithm as mentioned in Sect. 1. Second, we consider the case
that each node maintains the checkpoint recorded by the ex-
ecution that terminated the most recently (Fig. 1 (b)). In this
case, nodea maintains ckpta1 and nodeb does ckptb2. Be-
cause S S 1 is terminated at ckpta4 in nodea and S S 2 is ter-
minated at ckptb4 in nodeb. By the observation similar to the
first case, ckptb2 records the receipt of msgab but ckpta1 does
not record the sending of msgab. This causes msgab to be an
orphan, which violates the consistency of the snapshot.

To guarantee the consistency, one possible approach is
to modify the rollback algorithm so that the nodes do not
necessarily return to their last checkpoints but return to some
adequate checkpoints to avoid such inconsistency. How-
ever, we need a sophisticated method for finding adequate
checkpoints. In addition, each node has to keep multiple
checkpoints, up to the number of nodes, while Chandy’s al-
gorithm and SSS algorithm require each node to store only
the latest checkpoint it takes. Thus, we lose the efficiency
achieved by Chandy’s algorithm and SSS algorithm. In this
paper, we take another approach. We modify SSS algorithm
so that concurrent SSS algorithm executions in collision are
combined to a single SSS algorithm execution. With this
merging, recording the latest checkpoint at each process is
sufficient and the original efficient rollback procedure can
be utilized. As we mentioned previously, we call our par-
tial snapshot algorithm Concurrent Sub-Snapshot (CSS) al-
gorithm.

3. Concurrent Partial Snapshot Algorithm

In this section, we introduce CSS algorithm that can com-
bine the concurrently executed SSS algorithms when a col-
lision occurs.

3.1 Overview of CSS Algorithm

CSS algorithm solves the collision problem by combining
two or more colliding SSS algorithms. In the CSS algo-
rithm, a representative node, called a main-initiator, is se-
lected among the initiators of the colliding SSS algorithms.
Then the main-initiator behaves as an initiator of the com-
bined SSS algorithms.

Figure 2 (a) shows two partial snapshot groups con-
currently executing CSS algorithm. Each group includes
a unique initiator and consists of nodes communication-

Fig. 2 Combining of two executions of SSS algorithm.

Fig. 3 Combining of two executions of SSS algorithm.

related to the initiator and each snapshot group is NOT fixed
currently. If there is a communication-relation between two
nodes that belong to different partial snapshot groups, the
collision will occur between these two groups. Note that ei-
ther this communication-relation can be created after initiat-
ing the snapshot algorithm, or this communication-relation
can already exist in the same snapshot group that is initiated
by two or more different initiators. The node that is related
to another group’s node recognizes the collision when re-
ceiving a new marker with different initiator ID. The node
that detects the collision informs its group’s initiator (this
informing message will be forwarded to main-initiator of
the group). If the initiator has not determined its partial
snapshot group yet, the two executions of the SSS algorithm
are combined. The initiator directly communicates with the
other initiator to decide which initiator should be the main
initiator of the combined SSS algorithm: the initiator with
a prior ID becomes the main initiator. The other initiator
is called a sub-initiator. The sub-initiator generates a logi-
cal link to the main-initiator that is called a main link. This
process is depicted on Fig. 2 (b). After the selection of the
main-initiator, the sub-initiator passes the information (DSs
and node IDs) it has collected and forwards incoming infor-
mation to the main-initiator.

If another collision occurs between the combined SSS
algorithm and another SSS algorithm, the combining is per-
formed exactly in the same way, as depicted in Fig. 3. Note
that the local state to be stored as a checkpoint of a collided
node is the one at the time when the node received a marker
for the first time. This way of storing achieves consistency
and avoids deadlock. In the selection of the main-initiator,
an additional procedure is performed (not mentioned here)
to avoid deadlock. The details are explained in Sect. 3.3.

Our previous work, SSS algorithm, guarantees the effi-
ciency of taking snapshot even if the system is large-scale,
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because SSS algorithm should be executed on the small sub-
system consisting of communication-related nodes. This
implies that the complexity of the snapshot algorithm is in-
dependent from the scale (the number of nodes) of the whole
system. CSS algorithm, based on SSS algorithm, also pre-
serves this property obviously. However, even the scale of
the subsystem is same, higher efficiency might be expected
by CSS algorithm because it can take the snapshot of the
subsystem concurrently with two or more initiators.

3.2 CSS Algorithm

In this section, we give the pseudo codes of CSS algorithm.

Variables of each node
init : Stores an initiator’s ID. The value is initially ⊥. When
a node receives a marker and the value of init is ⊥, then it is
set to the initiator ID of the marker. When the execution of
CSS algorithm on the node terminates, init is initialized to
⊥ (for the next execution of CSS algorithm).
MainLink : Stores the main-initiator’s ID. The value is ini-
tially ⊥. When the node initiates CSS algorithm, then the
value is set to its own ID. When the node becomes a sub-
initiator after it combines with another execution of CSS al-
gorithm, the MainLink is set to the ID of the main-initiator.
WaitFlag : A Flag variable to consistently select a main-
initiator when the collision occurs.
RcvMkList : This set variable stores the IDs of the nodes
from which the node received markers.
DS : This set variable stores the IDs of the nodes in its De-
pendency Set.
DSSender : This set variable is used only by an initiator to
store the IDs of the nodes from which DS information was
received.
MustRcv : This set variable stores the IDs of the nodes from
which the node has to receive markers (before termination).
AllDS : This set variable is used only by an initiator to store
the union of the DSs it received.
MsgQ : This message queue stores the messages received
during the process to resolve the collision. The stored mes-
sages are processed after the collision is resolved.
FinFlag : A flag variable to determine termination. Value
will be TRUE when Fin message is received.
msg : The set variable to store currently received messages.
This variable includes not only message’s type but also at-
tached parameters and sender’s ID.

We use one constant variable, self, which stores each
node’s own ID.

Messages: Messages for CSS algorithm have the form of (<
Message type, Parameters>, Sender). The message types
are listed below. The Sender is the ID of the sender. We
introduce the following three types of messages for taking
a snapshot and an additional five types of system messages
for handling a collision.
<Marker, Initiator>Marker message. Parameter Initiator
denotes the initiator’s ID.
<DSinfo, localDS, DSfrom> A message to send its own

DS (all the nodes communication-related to this node) to
the initiator designated in the marker.
<Fin, DRGinfo> Termination message. Parameter
DRGin f o is the node list from which each node has to re-
ceive markers (before termination).
<NewInit, CollidedNode, 2ndInit> A informing message
of detecting a different snapshot algorithm. The message is
delivered to the main-initiator from a collided node (or the
node detecting a collision). CollidedNode is the collided
node’s ID, and 2ndInit is the ID of the initiator that caused
the collision (the ID is contained in the marker that caused
the collision). If the initiator (the destination of NewInit
message) has already become a sub-initiator, the message is
relayed to the main-initiator using MainLink.
<Accept, Initiator, 2ndInit> A message which implies
combining is possible. When a main-initiator receives a
NewInit message and decides that these two SSS algorithms
should be combined, it sends Accept message to the collided
node.
<Combine, CollidedNode, 1stInit> A informing message
of combining two different snapshot algorithms. When a
collided node receives an Accept message, it sends Combine
message to the node that sent Marker message that caused
the collision. In the same way as NewInit message, if the
destination has already become a sub-initiator, it relays the
message to the main-initiator using MainLink.
<CompInit> A message for compare the priority between
two initiators’ ID. When a main-initiator receives Combine
message, it sends CompInit message directly to the other
main-initiator to compare their IDs.
<InitInfo, DSInfo, SenderInfo> A message from a sub-
initiator for notifying its information (including DS main-
tained) of a main-initiator. When two algorithms are com-
bined, the main-initiator with low priority (now becomes a
sub-initiator) sends InitIn f o message to forward the DS in-
formation and the DS senders’ list it collected to the main-
initiator with high priority.

Algorithm 1 and 2 represent the pseudo codes of CSS
algorithm. Figure 4 shows the flow of the messages from
Marker to CompInit when a collision occurs between two
different executions of CSS algorithm.

Fig. 4 Message flow for handling a collision in CSS algorithm.
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Algorithm 1 Pseudo Code of CSS Algorithm
1: procedure Initialize() � Initialize Snapshot Algorithm
2: MainLink← self
3: send(self, <Marker, self>) � send Marker to itself
4: end procedure

5: procedure OnReceive(<Marker, ?init>, ?sender)
� when Marker is received

6: if init = ⊥ then � receipt of the first Marker
7: Store Local State
8: init← ?init
9: RcvMkList← RcvMkList ∪ { ?sender }

10: send(?init, < DS in f o, DS>) � send current DS to the initiator
11: send(∀nodei ∈ DS, <Marker, ?init>) � broadcast Marker
12: else if init = ?init then � second or later Marker
13: RcvMkList← RcvMkList ∪ { ?sender }
14: if FinFlag then
15: TerminationCheck()
16: end if
17: else � collision has occurred
18: MsgQ.enqueue(msg) � store Marker to the message queue
19: send(init, <NewInit, self, ?init>)

� notify the initiator of collision
20: end if
21: end procedure

22: procedure OnReceive(<DSinfo, ?localDS, ?DSfrom>, ?sender )
� when DS in f o is received

23: if MainLink = self then � case of the main-initiator
24: AllDS← (AllDS ∪ ?localDS) � to update group node list
25: DSSender← DSSender ∪ ?DSfrom � record sender node’s ID
26: if !WaitFlag then
27: TerminationCheck() � cannot terminate during combining
28: end if
29: else � message forwarding to the main-initiator
30: send(MainLink, <DSinfo, ?localDS, ?DSfrom>)
31: end if
32: end procedure

33: procedure OnReceive(<Fin, ?DRGinfo>, ?sender)
� when Fin is received

34: MustRcv← DRGinfo
35: FinFlag← TRUE � FinFlag is ON
36: TerminationCheck()
37: end procedure

38: procedure OnReceive(<NewInit, ?nodei, ?init>, ?sender)
� when NewInit is received

39: if MainLink = self then � case of main-initiator
40: if WaitFlag then � waiting condition
41: MsgQ.enqueue(msg)
42: else if DSSender ⊂ AllDS then � group is not decided yet
43: send(?nodei, <Accept, self, ?init>) � permit for combine
44: DS← ( DS ∪ ?init )
45: WaitFlag← TRUE
46: end if
47: else � message forwarding to the main-initiator
48: send(MainLink, <NewInit, ?nodei, ?init>)
49: end if
50: end procedure � continue to Algorithm 2

In pseudo codes, lines 1 to 3 represent the initiation of
the snapshot algorithm. Each node can be an initiator by
sending Marker to itself. Note that procedure Initialize()
can be executed at any time by any nodes.

Lines 4 to 20 show the procedure executed when the

Algorithm 2 Pseudo Code of CSS Algorithm (Cont.)
51: procedure OnReceive(<Accept, ?initi, ?init j >, ?sender)
52: � when Accept is received
53: receive( MsgQ.Dequeue( msg(<Marker, ?initq >, ?nodeq ) )
54: send(?init j, <Combine, self, ?initi > );
55: � notifying collision and combining to opponent initiator
56: send(?nodeq, <Marker, ?initq > ) � reply marker
57: end procedure

58: procedure OnReceive(<Combine, ?nodek, ?init>, ?sender)
59: � when Combine is received
60: if MainLink = self then � case of the main-initiator
61: if self < ?init then � self is prior to the opponent initiator
62: �WaitFlag is ignored to resolve the deadlock problem
63: send(?init, <CompInit> )
64: � the opponent will become sub-initiator
65: else � opponent initiator is prior to self
66: if WaitFlag then �WaitFlag is ON
67: MsgQ.Enqueue(msg)
68: � wait for the previous combine process
69: else � case of being sub-initiator
70: send(?init, <InitInfo, AllDS, DSSender>)
71: MainLink← ?init
72: end if
73: end if
74: else � forwarding message to MainLink
75: send( MainLink, <Combine, ?nodek, ?init> )
76: end if
77: end procedure

78: procedure OnReceive(<CompInit>, ?sender )
� when CompInit is received

79: send( ?sender, <InitInfo, AllDS, DSSender> )
80: MainLink← ?sender
81: WaitFlag← FALSE
82: Process the messages in MsgQ
83: end procedure

84: procedure OnReceive(<InitInfo, ?AllDS, ?DSSender>, ?sender)
� when InitIn f o is received

85: AllDS← (AllDS ∪ ?AllDS)
86: DSSender← (DSSender ∪ ?DSSender)
87: � apply opponent’s DS and Senders to maintain combined group
88: WaitFlag← FALSE
89: TerminationCheck()
90: end procedure

91: procedure TerminationCheck()
92: if MainLink=self then � case of the main-initiator
93: if AllDS ⊆ DSSender then
94: send(∀nodei ∈ AllDS, <Fin, {node j | node j sent the marker

to nodei} >)
95: end if
96: else � all other nodes except main-initiator
97: if MustRcv ⊆ RcvMkList then
98: terminate algorithm
99: end if
100: end if
101: end procedure

Marker is received. If the node which received the Marker
has no initiator (line 6), it stores its local state to stable stor-
age and broadcasts Marker messages to its communication-
related nodes. After broadcasting, the node should receive
the replying Markers of broadcasted Markers (line 12).
These replying Markers will be recorded (line 13) to de-
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termine termination of the snapshot algorithm.
Collision of two snapshot algorithms is found when

the node received Marker with an attached different ini-
tiator ID (line 17). The node which detects the collision
notifies its original initiator (ID stored in variable init) of
collision and opponent initiator’s ID by NewInit message
(line 19). This NewInit message will be forwarded through
MainLink (line 48) if the initiator received the NewInit mes-
sage is not a main-initiator. The main-initiator which re-
ceived NewInit message checks whether DRG is fixed or not
(line 42). Remember that DS i includes nodei itself (men-
tioned in Sect. 2.2), thus DSSender is proper subset of the
AllDS unless all nodes in AllDS send their DS to the ini-
tiator. If DRG is not fixed, the initiator sends Accept mes-
sage to combine the two collided snapshot algorithms. Note
that the opponent initiator never terminates its snapshot al-
gorithm because the node which detects the collision didn’t
send any replies to received markers. Moreover, the initiator
which sends Accept message to the opponent initiator can-
not terminate the snapshot algorithm without receipt of a
replying message of Accept message(CompInit or InitIn f o
message) because it adds the opponent initiator’s ID to its
DS (line 44) and WaitFlag is true (line 45).

The node that received Accept message sends Combine
message to the Marker’s sender (lines 51 to 57). Same
as NewInit message, Combine message will be forwarded
through MainLink (line 75) if the initiator that received the
Combine message is not a main-initiator. Unless WaitFlag
is true, the main-initiator compares its own ID’s priority and
the opponent’s priority. If its ID is prior to the opponent’s
ID, CompInit message should be sent. If not, InitIn f o
should be sent and its MainLink should be updated to the
opponent’s ID. However, even though WaitFlag is true, if
its own ID is prior to the opponent ID (line 61), it sends
CompInit message to the opponent to aviod deadlock (de-
tails will be mentioned in Sect. 3.4).

Procedure TerminationCheck() (line 91 to 101) should
be executed for checking termination of the snapshot algo-
rithm. After terminating algorithm (line 98), all variables
will be initiated to the initial values and DS information be-
fore initiating snapshot algorithm will be cleared.

3.3 Technical Discussion of CSS Algorithm

In this section, we give proof sketches for the correctness
of CSS algorithm. First, we show that it will eventually ter-
minate without deadlock. Next, we prove that the partial
snapshot obtained by it is consistent.

Deadlock Problem and Solution
In CSS algorithm, node IDs are compared among

main-initiators to decide a new main-initiator for the com-
bined partial snapshot. However, if two combining proce-
dures occur on a main-initiator in parallel, and the initia-
tor becomes a sub-initiator for one combining before the
Combine message reaches the main-initiator of the other,
then it causes an inconsistent situation. To prevent this

Fig. 5 Example of deadlock.

problem, the main-initiator that permits combining must not
become a sub-initiator by another CSS algorithm until the
CompInit message is received. However, the introduction
of this waiting condition can cause a deadlock. For instance,
in Fig. 5, three main-initiators are waiting for replies from
each other. To solve this deadlock problem, CSS algorithm
uses an exception handling of a waiting condition. Even if
a main-initiator is in a waiting condition, it replies with the
CompInit message to the opponent main-initiator if the op-
ponent’s ID priority is lower than itself.

In Fig. 5, three main-initiators enter the waiting state
and wait one another. In this case, at least one main-initiator
has a higher priority than the its waiting main-initiators. For
example, let the main-initiators of groups 1, 2, and 3 have
IDs α, β, and γ respectively, where the priority level is α >
β > γ. In this case, initiator α receives the Combine mes-
sage from initiator γ and initiator α learns that initiator γ
should become a sub-initiator after combining. After ini-
tiator α sends CompInit to initiator γ, initiator γ leaves its
waiting condition and the deadlock is released. In this man-
ner, if such a waiting state occurs, at least one node even-
tually receives Combine message from a main-initiator with
a lower priority. Therefore the deadlock is avoided by this
exception handling operation.

Snapshot Consistency

Theorem 1. The combined partial snapshot obtained by
CSS algorithm is consistent.

Proo f sketch.We show that any partial snapshot obtained by
CSS algorithm can also be obtained by SSS algorithm exe-
cuted for distributed systems running the same application.
Because the consistency of the partial snapshot by SSS al-
gorithm has already been proven in [2], [3], we deduce that
the partial snapshot by CSS algorithm is consistent. For any
given execution of CSS algorithm, we can construct an exe-
cution of SSS algorithm that obtains the same partial snap-
shot. To help understanding, we show a construction exam-
ple that deals with the messages employed in partial snap-
shots: Application messages, markers, dependent set infor-
mation (DS ), termination messages and system messages
for handling the collision.

Consider the execution of CSS algorithm in Fig. 6.
Each nodei starts a snapshot algorithm at ckpti1 and ter-
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Fig. 6 Execution example of CSS algorithm.

Fig. 7 SSS algorithm simulation.

minates taking a checkpoint at ckpti2. In this execution,
two partial snapshot algorithms are individually initiated at
ckptb1 of nodeb and ckptd1 of noded. They collide on nodec

and are combined. In the combining, nodeb becomes a
main-initiator because of its higher priority on the node’s ID.
Each nodei except for the initiators begins the snapshot al-
gorithm and stores its local state when it receives the marker
for the first time at ckpti1. The main-initiator terminates the
partial snapshot algorithm when it broadcasts termination
messages, and each nodei, except the main-initiator nodeb,
terminates when it receives the termination message and re-
ceives all the markers that the node has to receive. The
termination messages include the node list and each nodei

has to receive the markers from the nodes in the node list.
Then, each node can determine which message links should
be recorded, where the messages received between ckpti1
and ckpti2 are stored as in-transit messages. Each node must
store the message link state in its checkpoint to achieve con-
sistency.

Next we explain how the corresponding execution (the
SSS simulation) of SSS algorithm is constructed from a
given CSS algorithm execution. The SSS simulation has the
same checkpoints as an original execution of CSS algorithm,
while keeping the dependency of the application messages.
Figure 7 shows the SSS simulation of the CSS algorithm ex-
ecution in Fig. 6. We assume that the transfer pattern of the
application messages is the same at both the CSS execution
and the SSS simulation to make identical system behavior.
We show the construction by using this example. In the SSS
simulation, a virtual initiator V-Init is introduced to the orig-

inal distributed system. At any time, V-Init can send virtual
application messages (dummy messages) that have no effect
on the application (i.e., they are ignored when received). In
the SSS simulation, V-Init sends two dummy messages to
nodeb and noded before initiating the snapshot algorithm to
establish a communication-relation. First, we assume that
V-init initiates SSS algorithm at ckptv1 and sends markers
to nodeb and noded because of the communication-relation
created by the two dummy messages. In this simulation,
markers from V-init can be received at the exact same timing
with the CSS execution (ckpti1 in Fig. 6) because the mes-
sage delivery can be delayed arbitrarily in the asynchronous
distributed system. Therefore, the initiating time of each
node is the same as the CSS execution example. Next, in
the CSS execution (Fig. 6), the markers initiated by nodeb

and noded are replaced by the markers from V-Init. The ini-
tiator value contained in them is changed to V-Init. There-
fore the destinations of the DS information messages are
also changed to V-Init. The order of the arrivals of the DS
information messages at V-Init can be decided arbitrarily.
We assume that the snapshot group of the CSS algorithm
execution of Fig. 6 is the group of all nodes. Accordingly,
in the SSS simulation, V-Init terminates the partial snapshot
algorithm when it receives DS information messages from
all the nodes. In Fig. 7, V-Init terminates the algorithm at
ckptv2 and broadcasts the termination messages to all the
other nodes. Finally, each node nodei except V-Init termi-
nates the algorithm at ckpti2 when it receives the termination
message.

We show that the SSS simulation is a possible execu-
tion of SSS algorithm. The markers and the DS messages
are clearly enabled at their sending, and don’t contradict the
event dependencies. In the SSS simulation, each termination
message depends on all of the DS messages each of which
depends on ckpti1. In the CSS execution of Fig. 6, the termi-
nation of the main initiator (nodeb) depends on all of the DS
messages after the communication of the collision-handling
messages, and the termination of the nodes other than nodeb

depends on its termination. On the other hand, the DS infor-
mation message of each nodei depends on ckpti1. In the CSS
execution, each ckpti2 depends on all of ckpt j1. Therefore,
we assume that each nodei receives the termination message
at ckpti2 in the SSS simulation without producing any con-
tradiction on event dependency. As those, the SSS simula-
tion presents one possible execution of the SSS algorithm.

Finally, we show that the two partial snapshots are the
same. To ensure that, we show the following three claims:
(a) The set of nodes participating in the partial snapshot
(snapshot group) by CSS algorithm is the same as that by
SSS algorithm. (b) For any node, a local state recorded by
CSS is the same as that by SSS. (c) For any node, the state
of every message link recorded by CSS is the same as that
by SSS. For each nodei, ckpti1 in the SSS simulation and
ckpti1 in the CSS execution occur at the same time relative
to the events of receiving application messages, and then the
recorded local states are identical among them. This proves
(b). Similarly, all corresponding DS information messages
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are the same between the two executions. In the SSS sim-
ulation, all the DS messages are received by V-Init and the
order of receiving them can be decided arbitrarily, because it
does not affect the event dependency. Then we can assume
that the order is same as the order of receiving DS informa-
tion messages by main initiator nodeb in the CSS execution.
As a result, in the SSS simulation, V-Init decides the same
snapshot group as nodeb does in the CSS execution. Then
condition (a) is satisfied. Last, ckpti1 and ckpti2 of both exe-
cutions occur at the same timing between the two executions
relative to the events of receiving application messages, and
their snapshot groups are identical. Then the recorded mes-
sage links and their contents are exactly the same between
them. This implies condition (c).

4. Performance Evaluation

In this section, we present our experimental results to show
the practical performance of CSS algorithm.

We evaluated our proposed algorithm with the follow-
ing experiments; two kinds of latency experiments and one
throughput experiment. In the first latency experiment, we
compared the response times among the following three sys-
tems; one taking NO checkpoint, another taking checkpoints
with SSS algorithm, and the other taking checkpoints with
CSS algorithm. To evaluate the overhead of our snapshot al-
gorithm, we made experiments with changing the frequency
of sending requests and taking checkpoints. In the second
latency experiment, we compared the response times be-
tween two systems; one taking checkpoints with SSS al-
gorithm and the other with CSS algorithm. In this exper-
iment, we controlled the collision ratio to check the effect
of collisions on the response time. In the throughput ex-
periment, we compared two systems: NO checkpoints and
checkpoints with CSS algorithm.

Our experiment was made for two different scales of
distributed systems: 12 PCs and 36 PCs to confirm the scal-
ability of our system.

4.1 Experiment Environment

As we mentioned in the introduction, a partial snapshot al-
gorithm works efficiently when it is applied to dynamic and
large-scale distributed systems such as web-service [29] sys-
tems specified by W3C [11]. For the performance evalua-
tion of our algorithm, we implemented a sample application
of market place that is the standard benchmark Testbed for
W3C’s web-service platform [30].

The scales of experiment environment, 12 PCs and 36
PCs, might seem to be relatively small for a large-scale mar-
ket place. However, the scales are enough for our evalu-
ation because the communication of market place are done
among (dynamically changing) independent small groups of
nodes, and then the number of the nodes that joined each
partial snapshot is relatively small. Moreover, if we increase
the frequency of partial snapshots, the size of the groups
becomes smaller. Actually, for those scales, partial snap-

Fig. 8 Structure of implemented web-service.

Table 1 Specifications of PCs.

Number of PCs 12 or 36
CPU Intel Core i3 2100 (3.1 GHz)
RAM DDR3 4 GB
HDD S-ATAII 500 GB
OS CentOS 5.7

Platform Apache Tomcat 6, Axis2 1.4.1

shots seldom spread to the entire system in a reasonable fre-
quency, for example, each timing that a task of a client is
completed.

For the experiments, we implemented a standard ap-
plication of a web-service system: a shopping supply chain
consisting of several service nodes (servers). In this appli-
cation, customer nodes send requests to several store nodes.
When a store node receives a request from a customer, it be-
gins to process the received request and exchanges message
between warehouse and factory nodes if necessary. Note
that some nodes do not communicate with warehouse or
factory nodes and this implies that the dependencies among
nodes might be generated or not. The structure of our appli-
cation is depicted in Fig. 8.

The system environment is shown in Table 1.
In the following, we show the setting of each experi-

ment and the experimental results.

4.2 Latency by request and checkpoint frequency

In this experiment, snapshot algorithms are initiated by two
customers for every fixed number of requests that they have
received. We call this interval a checkpoint interval. To con-
trol the frequency of requests, we set up a new node called
a coordinator node. Requests are issued to customers in a
round-robin fashion by the coordinator node at every fixed
time interval. We call the interval at which requests arrive
a customer request interval. For the system with SSS algo-
rithm, an initiator can begin a new execution of SSS algo-
rithm after the terminations of the snapshot algorithms initi-
ated by other customers to avoid a collision. In both the sys-
tems with SSS and CSS, after its own initiation, the initiator
has to wait for the termination before processing the next
request to confirm the commitment of the previous requests.
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Fig. 9 Result of latency experiments.

In the experiment, we measured the average response times
of the requests by changing the frequency of the requests
and the checkpoints whose frequency is controlled by the
request and checkpoint interval. Of course, the more fre-
quent checkpoints are taken, the less nodes are involved in
each checkpoint because the extent of dependency among
the nodes through communication has not much grown. Af-
ter that, we measured the average response times of the re-
quests. The result is shown in Fig. 9.

From this result, the difference of the latencies among
the three systems is slight, except when the request and
checkpoint intervals are short. This means that the over-
head of CSS and SSS algorithms for checkpointing can be
ignored compared with the normal operation of applications.
In the high frequency (high processing load) case, the colli-
sion ratio is increasing and the response of the system with
SSS is delayed.

4.3 Latency by collision ratio

The basic setting of the experiment is the same as the first
one. We fixed the checkpoint interval to every five requests
and the request interval to 900 ms. For the system with CSS
algorithm, we call the ratio of the occurring collisions be-
tween partial snapshots the collision ratio. In this exper-
iment, we changed the collision ratio by manipulating the
timing of initiating the checkpoint algorithm for one of the
customers. For example, if the coordinator node sends the
checkpoint request to an initiator just after the other node
initiates the snapshot algorithm, they will collide. On the
other hand, if the coordinator node sends the checkpoint re-
quest to an initiator after sufficiently long time to complete
the checkpoint by the previous initiator, they will not col-
lide. We changed the timing of sending the checkpoint re-

Fig. 10 Average response time by changing collision ratios.

quests to vary the collision ratio by holding specified check-
point frequencies.

Figure 10 shows the average response times of both
systems with CSS and SSS algorithms by changing colli-
sion ratios. The response time of SSS algorithm increased,
but CSS decreased because the system with SSS algorithm
and a high collision ratio has to wait for a long time until the
previously scheduled checkpointings, and the processing of
subsequent requests are blocked. On the other hand, in the
system with CSS, even if a collision occurs, the collided par-
tial snapshots are combined. From a different point of view,
the resulting snapshot is divided and processed in parallel.
Therefore, we conclude that the advantage of speed up by
this parallelization exceeds the merging overhead, and fast
response is achieved.

4.4 Throughput

The setting of this experiment was the same as that of la-
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Fig. 11 Result of throughput experiments.

tency. We evaluated the processing capacity by this through-
put experiment. The result is shown in Fig. 11. The ex-
tra consumption of resource by SSS and CSS algorithms
is almost the same. However, after the resource limit, the
throughput capacity of the system with SSS algorithm is ex-
hausted faster. Because of the high collision ratio around
the limit, requests are blocked and exceeding demands for
resource consumption are accumulated.

5. Conclusion

We proposed a concurrent partial snapshot algorithm CSS.
This algorithm makes it feasible to take snapshots of large-
scale and dynamic distributed systems characterized by the
participation of a prodigious number of nodes. CSS algo-
rithm can deal with situations called collisions in which two
or more algorithms are simultaneously executing on a sin-
gle node. Any node in a distributed system can initiate the
partial snapshot algorithm. We implemented a virtual web-
service and used it to evaluate CSS algorithm. In an envi-
ronment with frequently overlapping algorithms, CSS algo-
rithm operated efficiently. Therefore, we expect that it can
efficiently support the fault-tolerance of large-scale dynamic
distributed systems.
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