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Pace-Based Clustering of GPS Data for Inferring Visit Locations
and Durations on a Trip
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SUMMARY Travel recommendation and travel diary generation appli-
cations can benefit significantly from methods that infer the durations and
locations of visits from travelers’ GPS data. However, conventional in-
ference methods, which cluster GPS points on the basis of their spatial
distance, are not suited to inferring visit durations. This paper presents a
pace-based clustering method to infer visit locations and durations. The
method contributes two novel techniques: (1) It clusters GPS points logged
during visits by considering the speed and applying a probabilistic density
function for each trip. Consequently, it avoids clustering GPS points that
are near but unrelated to visits. (2) It also includes additional GPS points in
the clusters by considering their temporal sequence. As a result, it is able
to complete the clusters with GPS points that are far from the visits but
are logged during the visits, caused, for example, by GPS noise indoors.
The results of an experimental evaluation comparing our proposed method
with three published inference methods indicate that our proposed method
infers the duration of a visit with an average error rate of 8.7%, notably
outperforming the other methods.
key words: clustering method, visit inference, place inference, duration
inference, GIS

1. Introduction

Mining knowledge from the large amount of travelers’ GPS
traces already available facilitates new travel recommenda-
tion and travel diary generation applications [1]–[3]. Some
of the most valuable pieces of information inferred from
GPS traces are from trip visits, i.e., temporary stays at loca-
tions doing activities that may be relevant for remembrance
and recommendation.

Many existing works have proposed methods to infer
visits, known as place-inference methods, and have eval-
uated the methods’ abilities to infer the location of each
visit [4]–[9]. However, to the best of our knowledge, no
study has been conducted to evaluate their ability to infer
the duration of each visit. We argue that inferring the du-
ration of each visit (i.e., the time spent during each visit)
is essential to answering travel recommendation and travel
diary generation queries. Here are several example applica-
tions:

• Recommendation of visits, and the trace followed dur-
ing the visits, that take a determinate amount of time;
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• Provision of the amount of time that travelers often
spend during a visit to a determinate location; and
• Generation of a detailed description of a past trip.

Among the existing works, clustering GPS points from
a trip’s GPS trace has been proven a useful and popular
method for inferring visit locations [4]–[7]. Inferring the
visit locations does not necessarily require the clusters to be
precise and complete, i.e., to include all and only the points
logged during each visit, because locations are usually in-
ferred using the center of each cluster. Inferring the visit
durations, on the other hand, requires the clusters to be pre-
cise and complete because durations are inferred using all
the points within each cluster. However, making precise and
complete clusters that represent both indoor and outdoor vis-
its has the following two main challenges for current place-
inference methods.

On the one hand, generating precise clusters, i.e., pre-
venting the clustering of GPS points not logged during vis-
its but logged close to visits, especially with visits to loca-
tions of different shapes (e.g., elongated, rectangular, circu-
lar) and different sizes (e.g., a downtown region and a mu-
seum, is a challenge. This is because place-inference meth-
ods usually cluster together all points within a radius (cir-
cular shape), that are predefined and the same for all trips,
in order to infer locations where travelers have spent a rela-
tively long time.

On the other hand, generating complete clusters, i.e.,
clustering GPS points logged during visits but dispersed
(e.g., when travelers move quickly during outdoor visits)
and far from the visits (e.g., when there is high GPS noise
during indoor visits), is also a challenge. This is because
place-inference methods usually consider the GPS points as
independent points in space.

These challenges generate two questions that, to the
best of our knowledge, have not been addressed in existing
works: (1) How good are current place-inference methods
when inferring the visit durations? (2) What techniques can
be applied to handle the challenges?

To answer these questions, we propose a pace-based
clustering method designed to infer the duration and loca-
tion of indoor and outdoor visits, and present a study con-
ducted on duration and location inference that evaluates our
proposed method and compares it to three published place-
inference methods. Our proposed clustering method ad-
dresses the challenges affecting the inferring of visit dura-
tions by applying the following two key ideas.
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First, the proposed method clusters GPS points using
a speed threshold in a fragmentation step. Since the dis-
tance between points is not considered, this avoids cluster-
ing points that are close to but unrelated to visits, and is able
to generate clusters of different sizes and shapes. In addi-
tion, a suitable speed threshold is computed for each GPS
trace, by using a probability density function (pdf) of the
traveler’s speed, to adjust the threshold to different kinds of
trips, such as trips done mainly by walk and done mainly by
car. As a result, the method can generate clusters that are
more precise.

Next, in a defragmentation step, the proposed method
merges clusters that belong to the same visit, and then com-
pletes the clusters using additional GPS points that were
logged during visits but not clustered, by considering their
temporal sequence, to cluster points that are logged during
visits but dispersed or far from the visit. As a result, the
method can generate clusters that are more complete.

The concepts underlying our proposed method and ex-
perimental results that confirm its feasibility have already
been presented in our previous work [10]. The most im-
portant difference with this work is that while our previous
work discussed only the location inference, this work dis-
cusses location and duration inference. The most important
feature of this work is its precise duration inference. More
specifically, this work is different in two main aspects.

The defragmentation step proposed in this work in-
cludes a new rule (referred to as the second rule) that en-
hances the inference of the durations of visits by dealing
with high GPS noise indoors, which was not one of the ob-
jectives of our previous work. In fact, the method proposed
in our previous work focuses on outdoor areas and subareas
of interest, while the method proposed in this work focuses
on indoor and outdoor visits.

The study presented in this work is different in that
it evaluates the duration inference, compares our proposed
method with existing methods, and identifies our method’s
shortcomings, which our previous work does not. Further,
the amount of GPS data evaluated in this work is twice that
used in the previous work.

The remainder of this paper is organized as follows.
Section 2 describes related work on place inference. Sec-
tion 3 defines the concept of a visit and discusses the re-
quirements of place-inference methods. Section 4 describes
our proposed pace-based clustering method. Section 5 ex-
plains the experimental evaluation and presents its results.
Section 6 discusses the results and the main shortcomings of
the evaluated methods. Finally, conclusions and directions
for future work are given in Sect. 7.

2. Related Work

In this section, we describe place-inference methods that
use coordinate-based systems such as GPS as source data.
Some place-inference methods use fingerprints (e.g., Wi-Fi
and GSM radio) as source data [11]. However, records from
travelers are more popular and available as GPS data than as

fingerprint data.
Wolf et al. conducted a study of a method to automati-

cally generate a travel diary [3]. Their study used GPS log-
gers installed on the participants’ cars and inferred a visit
when the logged car speed was zero or near-zero for more
than a short time period. A disadvantage of this method is
that GPS data from a mobile device carried while traveling
cannot be used.

Several works analyze GPS signal loss to detect vis-
its to indoor locations. Marmasse et al. proposed a place-
inference method that uses signal loss and distance between
successive GPS points to identify candidate visits [12]. Can-
didate visits are considered meaningful based on their fre-
quency. Ashbrook and Starner proposed a method that pre-
dicts users’ movements using a Markov model [4]. Their
method infers candidate visits at locations where the GPS
signal is lost for more than a certain time period and then
merges the candidate visits in a clustering step. A disadvan-
tage of these methods is that they are unable to infer visits
to outdoor locations.

Zheng et al. proposed a travel recommendation sys-
tem that implements a radius-based clustering method that
searches stay points [2], [13]. A stay point is a geographical
region where a traveler stayed for more than a certain period
of time within a particular distance. Although this method
can only generate clusters of a predefined radius, it can infer
both indoor and outdoor visits.

Kang et al. proposed a time-based clustering method to
infer the visits during a trip [5]. The method clusters all GPS
points within a particular radius and then prunes the clusters
using a particular time period to retain only the meaningful
visits. A step is used to merge near clusters. The novelty
of this method is that Kang et al. use a temporary buffer to
reduce the effects of GPS noise. By using a buffer, a new
cluster is closed only when a particular number of succes-
sive GPS points are outside the cluster.

Several works have studied a density-based clustering
method that implements the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm [7],
[14] to infer the visits during a trip. DBSCAN is a
well-known algorithm that can make clusters of arbitrary
shapes [15]. The method uses thresholds for the distance
(proximity) and number of points (density) in order to make
clusters and allow them to expand.

The place-inference method presented in this paper dif-
fers from existing works in two main ways.

First, our method clusters GPS points by analyzing
their speed, while existing works analyze their position or
density. Moreover, our method uses a threshold speed com-
puted using the pdf based on each GPS trace, while existing
works do not adjust the thresholds on the basis of each trip
but use the same thresholds for every input trip.

Second, our method merges clusters that belong to the
same visit, and completes the clusters with additional GPS
points logged during the visits but unclustered by consider-
ing their temporal sequence. In contrast, existing methods
do not consider the temporal sequence of the points when
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merging clusters and do not include additional points; they
simply join the points within the clusters. Further, our pro-
posed work merges clusters in order to avoid bad inference
in the duration caused by high GPS noise indoors. This is
in contrast to, for example, work done by Kang et al. [5]],
which merges clusters in order to join several clusters of
GPS points logged at very different time periods in the same
location, because their work considers all the different time
periods as the same visit.

Place-inference methods that use probabilistic cluster-
ing (e.g. [8], [9]) are outside the scope of our research.

3. Inferring Visits During a Trip

In this section, we define relevant concepts used in the rest
of the paper. First, we define a visit and its attributes. We
then discuss the input and output as well as the requirements
of methods that infer visits during a trip.

3.1 Trip Visits

This work focuses on inferring visits during a trip, in partic-
ular, their location and duration attributes, which are defined
as follows:

Visit: A visit vT,P occurs when a traveler realizes mean-
ingful activities (e.g., having lunch with a friend), i.e., activ-
ities that may be relevant for remembering and/or recom-
mending, during one or more time periods on a trip T at
location P (e.g., a restaurant). Roughly, we consider vis-
its as the places a traveler would state when asked, “Where
have you visited?” after a trip. Let us imagine two trips.
TripA: The traveler went by car to a big downtown region,
and walked around for three hours, doing quick sightseeing
and window shopping without stopping. We consider that
TripA has one visit to a downtown region for three hours.
TripB: The traveler went by car to a big downtown region,
and walked around, stopping at a museum for one hour and
at a shop for 40 minutes. We consider that TripB has two
visits, a museum for one hour and a shop for 40 minutes.

Location of a Visit: The location of a visit vT,P is the
geographic region that contains location P, usually delim-
ited by a perimeter (e.g., a building, a park).

Duration of a Visit: The duration of a visit vT,P is the
total time spent at location P on trip T doing meaningful
activities. When a visit to a location occurs during different
time periods, the duration is the sum of all the time periods.
We consider the time spent doing an activity at a location as
the time difference between the moment the traveler enters
and the moment the traveler exits the perimeter.

3.2 Inference Methods

The place-inference methods considered in this research re-
ceive a GPS trace as input and return a sequence of GPS
point clusters as output. We define GPS point, GPS trace,
and cluster, and then describe the criteria we use to infer
visits from clusters below.

GPS Point: The GPS data obtained by a GPS logger
usually represents a GPS point as a 4-tuple of (latitude, lon-
gitude, altitude, time). In this work, we define a GPS point p
as a 4-tuple of (p.latitude, p.longitude, p.speed, p.time) that
represents the geographic location (latitude and longitude)
and speed of the traveler and the time the point is logged.
We estimate the speed of a GPS point by dividing the dis-
tance by the time difference from the previous GPS point
logged. The estimation has an error because the path length
between both points is approximated as the direct distance
between them without considering altitude, and the speed is
an average of the speeds used between both points. How-
ever, the error is small because the GPS points are logged
using a very short time interval (e.g., 5 s). In particular,
these estimation errors are negligible when we move slowly.
This is important because the accuracy of place inference
depends on travelers’ behaviors in slow-speed movements.

GPS Trace: A GPS trace represents the travel
trace of a trip. A GPS trace T is a sequence of n
GPS points pi(i = 1, . . . , n) sorted temporally as follows:
T = [p1, p2, . . . , pn], where pi.time < pi+1.time ∀1 ≤ i < n.

Cluster: A cluster of a GPS trace consists of a set of
GPS points from the GPS trace. The points in the cluster
may not follow the same order and may not be adjacent
within the GPS trace.

From Cluster to Visit: Each cluster returned by a
place-inference method represents a different visit during a
trip. However, when several clusters infer the same location
(as defined below), we consider that those clusters represent
the same visit.

From Cluster to Visit Location: A visit location is
inferred from a cluster as the geographic region at the clus-
ter’s center (e.g., by reverse geocoding or visual examina-
tion over map images). The cluster’s center is defined as the
average location of its GPS points.

From Cluster to Visit Duration: The duration of a
visit is inferred from a cluster as the sum of the time differ-
ence between each pair of GPS points in the cluster that are
adjacent within the input GPS trace. When a visit is repre-
sented by several clusters, the total duration is the sum of
the durations inferred from each cluster.

Some existing works propose inferring the duration of
a visit using the time difference between the first and last
GPS points in the cluster [5]. We argue that using only the
first and last GPS points may result in an inferred dura-
tion that differs significantly from the actual duration in two
cases: (1) when a traveler visits a location on a trip during
several time periods and (2) when a method clusters GPS
points that are close but unrelated to a visit.

3.3 Requirements

To infer the visits of a trip, we define two requirements
for place-inference methods, considering the two challenges
mentioned in the Introduction.

Requirement R1: Generate a precise cluster, i.e., a
cluster with just the points logged during a visit, even if the
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points form an arbitrary shape in the space.
Requirement R2: Generate a complete cluster, i.e.,

one with all the points logged during a visit, even if several
of the points are far or dispersed in the space.

Methods that fail to fulfill requirement R1 tend to clus-
ter GPS points logged during a visit with unrelated points.
This may cause incorrect inference of the location, and the
inferred duration may be longer than the actual duration.
Methods that fail to fulfill requirement R2 tend to miss dis-
persed or far GPS points logged during a visit. This may
result in the inferred duration being shorter than the actual
duration.

4. Pace-Based Clustering

This section describes our proposed method, a pace-based
clustering method to infer visit locations and durations from
their GPS trace.

4.1 Overview

This method consists of three steps: (1) A fragmentation
step in which GPS points logged during visits from the in-
put GPS trace are clustered. (2) A defragmentation step in
which clusters are merged and completed with GPS points
logged during the same time period of a visit. (3) A visit ex-
traction step in which spurious clusters are discarded. The
three steps are described in detail in the following subsec-
tions.

Fundamentally, the method applies a probabilistic den-
sity function (pdf) of the traveler’s speed to find the traveling
paces used on a trip, and then clusters the GPS points logged
when travelers move at the slowest pace for more than a con-
siderable amount of time (e.g., 10 min). Considering the two
example trips described in the previous section; in TripA,
the traveler uses two traveling paces: car and walk. Because
walking is the slowest pace, the proposed method clusters
the sections of GPS trace where the traveler was walking for
more than a particular amount of time, i.e., the section of
the downtown region. In TripB, the traveler uses three trav-
eling paces: car, walk, and almost stopped. Because almost
stopped is the slowest pace, the proposed method clusters
the sections of GPS trace where the traveler almost stopped
for more than a certain amount of time, i.e., the sections of
the museum and the shop.

The key ideas underlying our proposed method and its
requirements are described below. They are motivated by
the two requirements defined in the previous section and the
following four observations, which were described in de-
tail in our previous work [10]: (1) Travelers usually move
at a slower pace during visits. (2) Speed thresholds may be
used to distinguish to some extent the different paces dur-
ing a trip (e.g., a pace is traveled at a speed below 5 km/h or
a speed between 5 km/h and 15 km/h). (3) The number of
paces and the speed thresholds that distinguish them often
varies for different travelers and trips (e.g., walking versus
driving trips). (4) When some of the points logged during

a visit are dispersed in the space, some clustering methods
tend to cluster the points that are not dispersed using more
than one cluster.

Key Idea 1: Considering requirement R1 and observa-
tions 1 and 2, the proposed method clusters the input GPS
points based on their speed (using a speed threshold). It en-
ables the generation of more precise clusters (R1) than exist-
ing methods because existing methods cluster all the points
within a radius (distance threshold).

Key Idea 2: Considering requirement R1 and obser-
vation 3, the proposed method uses a pdf that analyzes all
the GPS points’ speeds in order to automatically identify a
suitable speed threshold for a particular traveler and trip. It
enables the generation of more precise clusters (R1) than ex-
isting methods because existing methods use the same fixed
threshold for all travelers and trips.

Key Idea 3: Considering requirement R2 and obser-
vation 4, the proposed method merges clusters that contain
GPS points logged during the same visit, and completes
them with additional GPS points that were not in the clusters
but were logged during visits, by considering the sequence
of the GPS points in the GPS trace. It enables the genera-
tion of more complete clusters (R2) than existing methods
because existing methods merge clusters by simply joining
the points within the clusters.

The pdf imposes a requirement on the approach: it re-
quires that a relatively high number of GPS points represent
the slowest traveling pace. Therefore, two considerations
must be noted: (1) Input GPS trace should be logged in a
time interval, rather than a distance interval. In cases where
the GPS trace is logged in a distance interval, a preprocess-
ing step should interpolate the GPS points in a time interval.
(2) An input trip should be of a relatively long duration (e.g.,
more than 20 min) to distinguish the traveling paces. We be-
lieve trips are usually longer than 30 min. However, in case
of very short trips, a default speed threshold for the common
walking pace can be used (e.g., 7 km/h).

4.2 Fragmentation

The fragmentation step clusters the GPS points from the in-
put GPS trace. This step consists of the two procedures de-
scribed in detail in the following subsections.

4.2.1 Slowest Pace Retrieval

Given the input GPS trace T , this procedure retrieves a
speed threshold sThr that distinguishes the slowest pace
used in T , following the key idea 2. First, the procedure
builds the pdf f ′(s) of the traveler’s speed s from T . It then
returns the first local minimum of f ′(s) as the speed thresh-
old sThr. The function f ′(s) and its first local minimum are
defined below.

We define a cumulative distribution function (cdf) F(s)
and a pdf f (s) of the traveler’s speed s and a GPS trace T as
follows. In our experiments, we use a value �s = 0.5 km/h.
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Fig. 1 Probability density function f ′(s) of the GPS trace T1 (see Table 1
in Sect. 5), which primarily involved car travel.

F(s) =
|{p|p.speed<s, p∈T }|

|T | (1)

f (s) =
d(F(s))

ds
=
|{p|s−�s<p.speed≤s, p∈T }|

|T | (2)

We consider that when a considerable number of GPS
points in a GPS trace have similar speeds they represent a
traveling pace used in a trip. Therefore, the local minimums
in the pdf are inferred as speed thresholds that distinguish
the traveling paces used in a trip. However, depending on
the GPS data and the �s value, there may appear small local
minimums that do not distinguish a traveling pace. There-
fore, we define a new function f ′(s) that smoothes function
f (s).

f ′(s) =
f (s−�s) + f (s) + f (s+�s)

3
(3)

Assuming that the input GPS trace represents a trip
over a considerable amount of time, any anomalous GPS
speed of a few points caused by GPS error does not signif-
icantly affect the pdf because those points are a very small
fraction of the total number of GPS points. Figures 1 and
2 show plots of function f ′(s) for the GPS traces T1 and
T22, respectively, described in Table 1 in Sect. 5. The fig-
ures show f ′(s) for 0 ≤ s ≤ 14 km/h and �s = 0.5 km/h. For
s > 14 km/h, the values of f ′(s) maintain the same tendency
and are not relevant.

The first local minimum in f ′(s) distinguishes the slow-
est pace used in a trip. It may be detected manually by ex-
amining the plot of f ′(s), although it is a subjective process.
We define the first local minimum as follows, in order to find
it automatically.

First local minimum: The minimum speed s that ful-
fills f ′(s−�s) > f ′(s) < (ϕ + f ′(s+�s)).

The dashed lines in Figs. 1 and 2 indicate the first local
minimum found automatically in the represented functions.
We use a small margin, ϕ = 0.0005, to compare f ′(s) and
f ′(s+�s) because they may have a similar value, as shown
in Fig. 1. In all the GPS traces evaluated, we observed that
the first local minimum is not related to the average speed
of the GPS trace. Indeed, in the GPS traces in Figs. 1 and 2,
the average speeds were 12 km/h and 3 km/h, respectively.

Fig. 2 Probability density function f ′(s) of the GPS trace T22 (see Ta-
ble 1 in Sect. 5), which primarily involved walking.

In this work, we use only the first local minimum in
f ′(s). Searching for more local minimums in f ′(s) allows
us to identify more traveling paces used in the trip. In our
previous work, two local minimums in f ′(s) are used to in-
fer and highlight on a map screen the areas and subareas of
interest of a travel trace [10].

4.2.2 Trace Sections Retrieval

Given the speed threshold sThr, retrieved in the first proce-
dure, and the input GPS trace T , this procedure returns a set
of clusters that represent sections of T , following the key
idea 1.

The procedure groups all the points in T with a
speed ≤ sThr into a set of clusters such that each cluster C
fulfills the two following conditions.

Condition C1: The cluster’s points are adjacent and
follow the same order as in T , i.e. T = [p1, p2, p3, . . . , pn],
C = [px, px+1, . . . , px+m], x ≥ 1, x+m ≤ n.

Condition C2: The minimum number of clusters
are used, i.e. C = [px, px+1, . . . , px+m], px−1.speed > sThr,
px+m+1.speed > sThr, pi.speed ≤ sThr ∀x ≤ i ≤ x+m.

4.3 Defragmentation

The defragmentation step merges and completes the set of
clusters SetC retrieved in the fragmentation step, following
key idea 3. This step consists of the following three points
that use the two rules defined below: (1) Sort the clusters
temporally in SetC in the order they are traveled. (2) Apply
the first rule to all clusters. (3) Apply the second rule to all
clusters.

First Rule: Two clusters CX = [pA, . . . , pB] and CY =

[pE, . . . , pF] that are adjacent within SetC are merged into
one cluster CXY = [pA, . . . , pF] when the sequence of points
S = [pB+1, . . . , pE−1] between CX and CY has an extension
smaller than a threshold extThr. The extension of a sequence
of points is computed as the sum of the Euclidean distance
between each pair of adjacent points.

The first rule avoids bad inference by completing the
clusters with dispersed points logged during visits, caused
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by the traveler walking at an irregular pace during a small
fraction of a visit to a large outdoor location (e.g., a big
park).

Second Rule: Two clusters CX = [pA, . . . , pB] and
CY = [pE, . . . , pF] that are adjacent within SetC are merged
into one cluster CXY = [pA, . . . , pF] when the centers of
each cluster are closer than a distance threshold distThr. The
center of a cluster is computed as the average location of its
GPS points.

The second rule avoids bad inference by completing
the clusters with far points logged during visits, caused by
high GPS noise during visits to indoor locations.

4.4 Visit Extraction

This step computes the duration of the clusters returned by
the defragmentation step and discards the clusters with du-
ration shorter than a small time threshold, timeThr, e.g.,
10 min; these are considered spurious clusters. The remain-
ing clusters are the output of the method. Each remaining
cluster represents a visit, except when a visit occurs dur-
ing different time periods, in which case each time period is
represented by a different cluster. A time threshold is used
because the time spent in a location seems to be a strong
indicator of the importance of a visit [16]. This step is also
used in related work [4], [5].

5. Evaluation

This section compares our proposed method with three ex-
isting methods via an experimental evaluation.

5.1 Experiment Setup

The data used for the evaluation was logged in 22 trips
made on different days over a span of two years. Nine
trips occurred within urban areas, while the remaining 13
trips spanned urban and suburb areas. Regarding the trans-
portation mode, 16 trips were primarily by car, while the
remaining six trips included a considerable amount of walk-
ing combined with the car. The trips were made for sight-
seeing purposes. In particular, half of the trips comprised
mainly indoor sightseeing, i.e., visits to buildings such as
museums, and the other half of the trips comprised mainly
outdoor sightseeing, i.e., visits to wide open areas such as
parks. The information for each trip is shown in Table 1.

All the trips were recorded with a GPS logger (Qstarz
GPS Travel Recorder BT-Q1300) using a sampling rate of
5 s/point.

We determined the locations and durations of the vis-
its on each trip by visualizing each GPS trace on detailed
map and satellite images. The visualization included mark-
ers pointing to the center of the clusters inferred by the
evaluated methods to serve as cues. In this evaluation, we
only considered visits with duration of more than 10 min,
as is commonly used in related work [4], [5]. Consequently,
all the evaluated methods used a time threshold parameter

Table 1 Dataset used in the evaluation.

GPS
trace

Number
of GPS
points

Trip
distance

(km)

Trip
duration
(hours)

Number
of visits

Main features

T1 2387 40 5.8 5 urban car outdoor
T2 3450 93 7.0 6 urban car indoor
T3 1185 26 2.6 2 urban walk outdoor
T4 3530 62 6.1 5 suburban car indoor
T5 2704 15 4.0 5 suburban car outdoor
T6 4277 11 6.3 4 suburban walk outdoor
T7 3809 51 7.2 5 urban car indoor
T8 3618 107 5.8 3 suburban car outdoor
T9 3742 84 6.4 5 suburban car indoor
T10 1909 16 3.0 3 urban car indoor
T11 4044 118 5.8 2 suburban car outdoor
T12 1128 20 1.6 2 suburban car indoor
T13 3352 74 5.5 5 suburban car outdoor
T14 3318 62 7.0 3 suburban car outdoor
T15 3682 56 5.3 4 urban car outdoor
T16 4392 60 6.3 6 suburban car indoor
T17 3303 116 5.4 3 suburban car indoor
T18 5744 133 8.2 6 suburban car indoor
T19 2824 28 5.9 5 urban walk outdoor
T20 5849 177 9.2 8 urban walk indoor
T21 4887 76 6.9 3 suburban walk indoor
T22 833 4 1.2 2 urban walk outdoor

AVG 3362 65 5.6 4.2

SUM 73967 1429 122 92

timeThr set to 10 min.
We identified 92 visits from the dataset. The maximum

duration of a visit was 188 min and the average was 44 min.

5.2 Methods

We compared our proposed method with three methods ap-
plied in recent works, described in Sect. 2. The settings for
each method are described below. After experimenting with
various input parameters, we chose the parameters that pro-
vided the best results with our dataset.

Proposed Method. We set the input parameters ext-
Thr, distThr, and timeThr to 40 m, 120 m, and 10 min, re-
spectively.

DBSCAN Method. As a representative of density-
based clustering methods, we selected the place-inference
method that uses DBSCAN, which has been applied in sev-
eral works [7], [14]. We set the distance threshold and the
number of points threshold to 40 m and 40 points, respec-
tively. GPS traces may contain time gaps because the GPS
logger may stop logging when there is weak GPS signal in-
doors. The lack of GPS points may lead DBSCAN to an
incorrect estimation of the density of a cluster. To solve that
problem, we added a preprocessing step, which is also ap-
plied in previous works [7]. The preprocessing step fills the
time gaps with new GPS points generated by interpolating
location and time. We also added a post-processing step to
prune from the result the clusters that represent visits that
were shorter than the time threshold timeThr (10 min).

Kang Method. To represent time-based clustering
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methods, we selected the place-inference method proposed
by Kang et al. [5]. We set the radius threshold, the time
threshold timeThr, and the size of the buffer to 200 m,
10 min, and 2 min, respectively.

Stay Points Method. To represent radius-based clus-
tering methods, we selected the simple and quick place-
inference method applied by Zheng et al. [2], [13]. We
set the time threshold timeThr and the radius threshold to
10 min and 200 m, respectively.

5.3 Metrics

We evaluated the inferences of each method as follows.
First, for each method and trip, we matched the returned
clusters with the actual visits considering the location, i.e., a
visit was matched to all the clusters with an inferred location
that is the visit location. We then evaluated the accuracy of
the visit location inference for each trip using precision and
recall metrics, which are defined as follows:

Recall =
Mv
S v

(4)

where Mv is the number of visits matched to at least one
cluster and S v is the number of visits during a trip.

Precision =
Mc
S c

(5)

where Mc is the number of clusters matched to a visit and
S c is the number of clusters computed for a trip.

Finally, we evaluated the accuracy of the visit duration
inference for each visit using the percentage of duration er-
ror metric, defined as follows:

Percentage o f duration error = 100 ∗ |AD−ID|
AD

(6)

where AD is the actual duration and ID is the inferred dura-
tion of a visit.

5.4 Experimental Results

The results of the visit location inference are shown by the
chart in Fig. 3. The chart shows the average recall and preci-
sion computed for each trip. Because our proposed method
and DBSCAN have similar results, Figs. 4 and 5 show the
micro-precision and micro-recall, i.e., the results for each
GPS trace. To show the charts clearer and focus on the cases
of bad inference, Figs. 4 and 5 do not show the GPS traces
where precision and recall are both perfect (value 1).

The results of the visit duration inference are shown in
Fig. 6. The distribution of the percentage of duration error
computed for each visit is represented as follows. The box
plot displays the interquartile range (the boxes), the median
number (the horizontal lines in the boxes), and the average
(the diamonds next to the values). The max and min values
(whiskers) are not represented in the plot in order to show
the other values clearly. The minimum value of the percent-
age of duration error was zero for all methods. The maxi-
mum value of the percentage of duration error was 164%,

Fig. 3 Results of the visit location inference.

Fig. 4 Detailed recall results.

Fig. 5 Detailed precision results.

Fig. 6 Results of the visit duration inference.
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Table 2 Frequency of errors caused when inferring visit locations and
durations.

Error
type

Bad
inferences

Frequencya

Proposed
method

DBSCAN Kang Stay Points

ER1

Bad recall
(visit not
found)

1 visit
(1.1%)

2 visits
(2.2%)

4 visits
(4.3%)

3 visits
(3.3%)

High (> 30%)
percentage of
duration error

0 visits
(0%)

0 visits
(0%)

3 visits
(3.3%)

0 visits
(0%)

ER2

Bad recall
(visit not
found)

0 visits
(0%)

0 visits
(0%)

5 visits
(5.4%)

3 visits
(3.3%)

High (> 30%)
percentage of
duration error

2 visits
(2.2%)

4 visits
(4.3%)

7 visits
(7.6%)

4 visits
(4.3%)

ER3
High (> 30%)
percentage of
duration error

2 visits
(2.2%)

6 visits
(6.5%)

3 visits
(3.3%)

8 visits
(8.7%)

ER4
Bad precision
(spurious
cluster)

5 clusters
(5.3%)

6 clusters
(6.1%)

16 clusters
(15.5%)

11 clusters
(10.9%)

aNumber and percentage of visits and clusters with errors
inferred by the methods.

214%, 214%, and 171% for the proposed, DBSCAN, Kang,
and Stay Points methods, respectively.

5.5 Error Analysis

To understand in more detail the cases of bad inferences in
our evaluation, we analyzed the errors made by the eval-
uated methods. We identified the following four types of
errors:

Visit differentiation error (ER1): The visit differen-
tiation error provides a cluster containing the GPS points
logged during multiple visits.

Visit accuracy error (ER2): The visit accuracy error
provides a cluster containing GPS points logged during a
visit as well as GPS points logged right before and after the
visit.

Visit completion error (ER3): The visit completion
error provides a cluster containing only a portion of the GPS
points logged during the visit.

Visit identification error (ER4): The visit identifica-
tion error provides a cluster containing GPS points that do
not seem to be a visit (e.g., crossroads, traffic lights, com-
mutation, stops, or slopes).

The frequency of each type of error is shown in Table 2.

6. Discussion

In this section, we discuss the results of our evaluation and
the main shortcomings of the methods evaluated. We also
consider the two requirements discussed in Sect. 3 and the
four errors identified in Sect. 5.

6.1 Method Comparison

6.1.1 Inferring Visit Locations

In Fig. 3, it can be seen that our proposed method and
the DBSCAN method provide similar recall and precision,
which is better (closer to 1) than the other two methods. In
particular, from the results shown in Figs. 4 and 5, we can
assert that our proposed method and the DBSCAN method
provide better results when the GPS traces are by car, in ur-
ban areas, and with mostly outdoor visits. Moreover, in GPS
traces with mostly outdoor visits, the DBSCAN method has
better recall and our proposed method has better precision.
We therefore state that our proposed method and the DB-
SCAN method can infer the locations of visits better than
the other two methods.

The main reason for this is that only our proposed
method and the DBSCAN method are able to generate clus-
ters of arbitrary shapes, i.e., fulfill requirement R1. The
Kang method can merge clusters to form different shapes
but only those that are larger than its radius threshold. The
Stay Points method can only generate clusters with a circu-
lar shape. Consequently, Table 2 shows that the Kang and
Stay Points methods more frequently result in the two types
of errors related to requirement R1, ER1, and ER2, causing
bad recall. Our proposed method and the DBSCAN method
produce ER4 errors less frequently. This is because the spu-
rious clusters they generate are smaller and often discarded
in their final step.

6.1.2 Inferring Visit Duration

In Fig. 6, it can be seen that our proposed method has a bet-
ter dispersion (the interquartile range is narrower and closer
to zero) and a better average percentage of duration error
(closer to zero). Therefore, we can state that our proposed
method achieves the best inference of visit duration.

The main reason for this is that only our proposed
method is able to generate clusters that include far or dis-
persed points, i.e., best fulfill requirement R2, by applying
the two rules of the defragmentation step. Consequently, Ta-
ble 1 shows that the proposed method less frequently results
in the error related to requirement R2, ER3, causing a high
percentage of duration error. The Kang method produces
ER3 errors in a few cases because it tends to generate large
clusters that include the dispersed points. However, gener-
ating large clusters causes the Kang method to frequently
produce ER2 errors, causing a high percentage of duration
error.

6.2 Method Shortcomings

6.2.1 Bad Inferences of Visit Location

The four methods yielded poor recall when a traveler walked
between two close visits. In that situation, the methods
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tended to generate an ER1 error because the distance and
duration of the walk were short.

The four methods yielded poor precision when the trav-
eler went slowly or even stopped for a few minutes be-
tween visits because of obstacles such as crossroads or traf-
fic lights. In this situation, the methods tended to generate
an ER4 error because the GPS points have high spatial den-
sity and low speed.

6.2.2 Bad Inferences of Visit Duration

The four methods provided a high percentage of duration
error when inferring the durations of visits in two situations.

On the one hand, when the traveler walked to a location
near a visit, the methods tended to generate an ER2 error.
This is because GPS points unrelated to visits were close to
a visit. This situation causes a high percentage of duration
error, especially when the visit duration is short (e.g., less
than 30 min).

Conversely, when the traveler walked quickly during
a visit across a large location (e.g., a park), the methods
tended to generate an ER3 error because the points become
dispersed.

6.3 Visit Location Size versus Duration

One other notable observation from our evaluation is that
bad inference of the size of a visit location does not always
imply bad inference of the visit duration. For example, a
method may infer that the region of a visit location is twice
the size of the actual region, but it may infer the visit du-
ration with only a few seconds of error. The visit duration
is inferred with a small error when travelers move quickly
(e.g., by car) outside the visit locations. In this case, a few
hundred meters can be traveled in less than a minute.

7. Conclusions

In this paper, we presented a pace-based clustering method
to infer the visits during a trip from its GPS trace. We argued
that inferring the duration of each visit is essential to an-
swering queries for travel recommendation and travel diary
generation applications. Our proposed method contributes
two novel techniques for inferring visit location and dura-
tion. The techniques allow the method to generate clusters
of arbitrary shapes, omitting points that are close but unre-
lated to visits, and clustering far or dispersed points logged
during visits. Evaluation of our proposed method revealed
two main results: (1) Our proposed method infers a visit
duration with an average error of 8.7%, while the best of
the three evaluated existing methods inferred visit duration
with an average error of 13.4%. (2) Our proposed method
inferred a visit location with a recall and precision compa-
rable to the best of the other three evaluated methods.

In future work, we plan to apply various kinds of map
data to avoid the shortcomings detected in the evaluated

methods. Using polygon map data that represents the de-
limited perimeters of buildings and parks may help to dis-
tinguish the GPS data logged during the same visit and dif-
ferent near visits. Conversely, road and transportation map
data may help to distinguish actual visits from situations that
appear to be visits (e.g., time spent at crossroads and traffic
lights).
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