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SUMMARY MapReduce is commonly used as a parallel massive data
processing model. When deploying it as a service over the open systems,
the computational integrity of the participants is becoming an important
issue due to the untrustworthy workers. Current duplication-based solu-
tions can effectively solve non-collusive attacks, yet most of them require
a centralized worker to re-compute additional sampled tasks to defend col-
lusive attacks, which makes the worker a bottleneck. In this paper, we try
to explore a trusted worker scheduling framework, named VAWS, to de-
tect collusive attackers and assure the integrity of data processing without
extra re-computation. Based on the historical results of verification, we
construct an Integrity Attestation Graph (IAG) in VAWS to identify mali-
cious mappers and remove them from the framework. To further improve
the efficiency of identification, a verification-couple selection method with
the IAG guidance is introduced to detect the potential accomplices of the
confirmed malicious worker. We have proven the effectiveness of our pro-
posed method on the improvement of system performance in theoretical
analysis. Intensive experiments show the accuracy of VAWS is over 97%
and the overhead of computation is closed to the ideal value of 2 with the
increasing of the number of map tasks in our scheme.
key words: result verification, computational integrity, MapReduce, open
system, integrity attestation graph

1. Introduction

MapReduce [1] computing paradigm becomes to play an
important role in data processing in various open comput-
ing environments based on cloud computing [2], volunteer
computing [3], [4], P2P system [5]–[7] and so on. Even the
intelligent mobile phones can be exploited to construct a
mobile computing platform of MapReduce [8]. Nodes in-
volved in an open MapReduce environment, however, might
come from different trust domains, with the potential threat
of malicious attackers or cheating motivation to gain bene-
fits. The existence of such nodes in the MapReduce frame-
work might compromise the accuracy of final results. There-
fore, it’s critical to build a trusted framework from untrusted
underlying computing resources in open mass data process-
ing environment.

Current studies in this area are mainly based on the re-
dundant computing principal, that is to dispatch task to mul-
tiple replicas, and vote on results to obtain correct ones [9].
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Such scheme, however, is insufficient to effectively prevent
collusive attacks. If malicious workers from the same collu-
sive group comprise most of the participants in replication
computing, the same false result can be obtained. Based
on this, VIAF introduced a trusted role known as the veri-
fier into the MapReduce framework to defend collusive at-
tack [10]. The false results provided by collusive nodes can
be detected by sampling the voted result and re-computing.
This method is able to solve the collusive attack at a certain
probability but requires the absolute trustworthiness of the
verifier. Besides, this verifier has to re-compute all sam-
pled tasks, and the results of mappers in the framework
cannot be submitted until they pass the verification. From
the perspective of scalability, this centralized verifier for re-
computation might be the potential bottleneck of parallel
computing.

Efficient verification without centralized verifier raises
great challenges to system design. First, it is critical to eval-
uate not only the trustworthiness of the computing result but
also that of the computing workers. Otherwise, the negative
influence of malicious workers plays a part throughout the
computation. Second, identification of malicious workers is
difficult, especially for the collusive attack mode. If collu-
sive attack occurs, workers that failed in the majority votes
cannot simply be identified as malicious. Third, for the scal-
ability, consideration must be given to the efficiency of both
attacker identification and job computation. The earlier the
malicious workers are excluded, the better performance will
be achieved. Meanwhile, the computation performance of
whole job shouldn’t be affected too much by the scheme.

To address these challenges, in this paper, we propose
VAWS (Verification-based Anti-collusive Worker Schedul-
ing), a method of deploying determined benign workers to
construct a collusion-resistant trusted MapReduce frame-
work over open resources without extra re-computation.
Consider that mappers constitute the majority of workers,
VAWS focus on verifying mappers and assigning reducers
and the master in the trusted domain. Based on the duplica-
tion verification, malicious workers are detected by analyz-
ing inter-node verification information, and excluded from
subsequent scheduling. Our major contributions are sum-
marized as follows:

(1) A Verification-based Anti-collusive Worker
Scheduling (VAWS) is proposed. VAWS is able to assure
the integrity of MapReduce execution with higher accuracy
without extra re-computation.
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(2) A malicious mapper identification method based on
Integrity Attestation Graph (IAG) is designed. Through the
analysis of the maximum clique problem (MCP) on IAG,
the malicious workers in both collusion and non-collusion
strategies can be effectively identified.

(3) A verification-couple selection method based on the
influence of malicious workers under IAG guidance is also
proposed. This method achieves high efficiency of locat-
ing malicious workers by determining inconsistency among
workers.

The basic idea of IAG is proposed in [11]. We made
modification on its definition to fit for our proposed attack
model. Furthermore, in order to accelerate the identification
rate, we proposed some heuristics to schedule replication
verification pairs. The IAG-based malicious worker iden-
tification and heuristics of verification-couple selection are
not specific to MapReduce, they could also be applied to
other replication-based verification system to detect mali-
cious workers with a high detection rate.

The paper is organized as follows. Section 2 presents a
system model of open MapReduce computing and a cheat-
ing model. Section 3 presents the design of the collusion-
resistant trusted scheduling method for mappers. Section 4
presents the theoretical analysis and experimental evaluation
as well as the comparison of the results with those obtained
in related studies. Section 5 provides a review of related lit-
erature. Section 6 presents the conclusions and suggestions
for future studies.

2. Background and System Model

2.1 MapReduce in Open System

MapReduce is a framework of parallel data processing
model, consisting of a single master node and several worker
nodes. The master is responsible for job management and
task scheduling, while the workers perform tasks assigned
by the master. MapReduce process can be divided into two
phases: map and reduce. First, the input job is partitioned
into m tasks that are independent of each other during the
map phase. The master node dispatches these tasks to sev-
eral worker nodes (mappers) to perform parallel map oper-
ations. The computational result in this phase is called the
intermediate result. After map computation, all intermedi-
ate results are partitioned into different r parts. Every parti-
tion is assigned to a worker node to cast a reduce operation;
this worker is called a reducer. In the reduce phase, each
reducer reads a partitioned intermediate result from all nec-
essary mappers and casts a reduce operation to obtain a final
result.

The trustworthiness of participating nodes must be
guaranteed to exploit open computing resources to build a
MapReduce system. Given that the master and reducers typ-
ically constitute only a minority of workers, we assume that
they operate on trusted nodes whose computing results need
not be verified. However, many mappers are deployed to un-
trusted nodes; thus, certain measures must be implemented

Fig. 1 System model of MapReduce in open system.

to guarantee the integrity of the computing results and to en-
sure that only trusted results can be committed to the reduce
phase. The system model is shown in Fig. 1.

The common result verification method utilized on the
untrusted mappers is replication and voting. The result can
be committed to the next phase if and only if it wins the
majority vote. Such a scheme only evaluates the trustwor-
thiness of the computing result and not that of the com-
puting workers. However, if malicious workers participate
throughout the computing, their misbehaving results mag-
nify the probability that inaccurate results are accepted as
correct ones and induce more computing failure. So when
designing the verification scheme of mappers, it is critical
not only to protect the integrity of computation result, but
also to identify the malicious workers and exclude their neg-
ative influence.

2.2 Attack Model

The attackers in this system model are the malicious work-
ers supplying bad result to confuse the final output of the job.
They can be categorized into two types: non-collusive ma-
licious workers and collusive workers. Non-collusive ma-
licious workers misbehave independently, while collusive
ones may consult with each other and make an agreement.
For example, when they are assigned the tasks with same
input, they return the same results to avoid being detected
even if they return wrong. Otherwise, if they return inconsis-
tent results, their misbehavior turns to non-collusive mode,
which is easier to be detected, making them exposed and the
collusion meaningless. Thus, malicious workers from the
same collusive group always supply the consistent results—
that is, if they decide to misbehave, they may provide the
same false result. Otherwise, both workers do not misbe-
have and return the correct result.

Assuming that there are N mappers, including m mali-
cious ones (A = {A1, . . . , Am}), performing computing, each
malicious worker Ai has a corresponding collusive group Ci

which is a subset of A. The possible patterns of attacker’s
behavior are categorized as below.
I. Periodical Attackers

For a dispatched slice in this attack pattern, malicious
workers misbehave at fixed probability b (0 < b ≤ 1). When
b is 1, Ai always misbehaves. If the system dispatches a slice
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to several replicas in this case, the malicious replicas could
possibly misbehave through one of the following:

• Non-collusive attack: All replicas misbehave indepen-
dently and offer false results with a probability of b.

• Collusive attack: Malicious workers from the same
collusive group misbehave together with unique prob-
ability b, that is, they may provide the same false result
if they decide to misbehave, otherwise, both workers
do not misbehave. Malicious workers from different
groups misbehave independently with a probability of
b.

II. Strategic Attackers
In this pattern, the attackers previously know the repli-

cation strategy that how many replicas are used for verify-
ing a task. And only when the collusive attackers are sure to
hold over half number of all replicas and win the majority
vote of result verification, do they misbehave.

For the duplication-based verification approach in our
system designed in Sect. 3.1, both periodical attack and
strategic attack must be prevented.

3. VAWS Design

3.1 Approach Overview

The main idea of VAWS is a combination of replication ver-
ification and malicious worker identification, as illustrated
in Fig. 2. Duplication is utilized as a basic result verifica-
tion mechanism. The master allocates two mappers for each
data block to perform the computing. When the job is fin-
ished, mappers send the hash value of their intermediate re-
sults to the master. The master compares the two results. If
the results are identical, then they can be trusted and will
be copied by the reducer. Computing is considered a failure
otherwise, and the other two mappers are scheduled to com-
pute again. This procedure is repeated until the two results
match.

According to the attack model defined in Sect. 2.2,
given that the strategic attackers misbehave only if they

Fig. 2 Collusion-resistant mapper verification.

would process all the two replicas, we can send the task to
one replica first; the result from this replica must be obtained
before sending the task to the other replica. In this way, the
determination condition of strategic attacks is broken, and
attacks are blocked. So the key difficulty is to defend the
periodical attackers, especially in collusive mode.

To find the periodical attackers, the master records the
verification relationship of the two mappers that participate
in the verification and analyzes this information after a cer-
tain period, during which k times of replication verification
are done. Confirmed malicious workers are no longer sched-
uled. When a malicious worker provides a false result, one
of two situations could occur. First, if the other replica is
processed by a worker from the same collusive group, the
false result of the two nodes passes verification and slips
into the next phase. Second, if the other replica is processed
by a non-collusive worker, the results fail verification, and
the master has to reschedule two workers to perform com-
puting. Failure leads to a waste of computing resources. By
identifying and removing malicious workers as early as pos-
sible, rescheduling of computing resources can be prevented
and the accuracy of computing results can be improved.

3.2 Identifying Malicious Workers

To verify if a worker can be trusted, the consistency of the
actions of all workers participating in the computing must
be examined. Benign workers always offer the same results
as do malicious ones from the same collusive group. By
modifying the integrity attestation graph-based method pro-
posed in [11] and exploiting the periodic attack model, we
give the definition of integrity attestation graph for mappers
in an open MapReduce computing environment.

Definition 1: (Integrity attestation graph (IAG)) a
weighted undirected graph utilized to express the consis-
tency of results between mappers. The nodes in IAG rep-
resent the workers in map computing, and the edges denote
the consistency between two nodes. Edges have a value of 0
or 1, and the two nodes containing an edge form a verifica-
tion couple. If an edge between two nodes has a value of 0,
it means that the nodes have provided different results. Then
the two nodes form an inconsistency pair. When the edge
between two nodes has a value of 1, it means the two nodes
have not provided different results yet and are thus called a
temporary consistency pair.

Two nodes identified as inconsistent have a determined
inconsistent relationship forever, no matter what result will
be in the subsequent verification between them. However, if
two nodes are in a temporary consistent relationship, three
cases are possible. First, the two nodes have not been ver-
ified as a pair. Second, they are benign nodes or malicious
ones from the same collusive group; thus, they act in the
same way. Third, the two nodes belong to different groups
but the malicious node did not misbehave in the previous
verification between this pair. In the second case, the edge
between the two nodes is always 1. In the first and third
cases, additional verification tests can expose the inconsis-
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Fig. 3 Integrity attestation graph.

tency between nodes.
Figure 3 shows an IGA containing five mappers. When

two nodes 〈Mi,Mj〉 complete the same task and the two re-
sults match each other, the edge between the two nodes is
1; otherwise, the edge is 0. The temporary consistency pairs
in Fig. 3 are 〈M1,M2〉, 〈M2,M4〉, 〈M1,M4〉, and 〈M3,M5〉.
The other pairs are inconsistency pairs.

The verification couples composed of a benign node
and a malicious one finally form an inconsistency relation-
ship after a certain number of verifications because the mali-
cious node misbehaves with a certain probability. We utilize
the consistency clique to analyze the consistency relation-
ship between nodes.

Definition 2: (Consistency clique) the maximum
completed IAG sub-graph which has at least two nodes and
the value of every edge is 1. Nodes in the same consistency
clique provide the same results.

As shown in Fig. 3, after sufficient verification, IAG
indicates that M1, M2, and M4 form a consistency clique,
whereas M3 and M5 form another one.

Given that benign nodes always provide the same re-
sults, there is at least one consistency clique containing all
benign nodes [11]. Based on experience, we assume that
the number of benign nodes is larger than that of malicious
nodes. Thus, if a node does not belong to any maximum
clique with a number of nodes larger than �N/2�, the node
is definitely malicious [11]. So we transform the problem
of identifying malicious nodes into MCP based on IAG.
MCP is a classic NP complete problem that can be solved
by many algorithms. We employ the Bron-Kerbosch (BK)
clique-finding algorithm [12], [13] as an example.

In our algorithm, k pairs of nodes are first verified;
IAG is then modified accordingly. For a verification couple
〈Vi,Vj〉, if edge E(i, j) in IAG is 0, the pair is already incon-
sistent and the edge value requires no alteration. However, if
E(i, j) is 1 (i.e., the pair is temporarily consistent) and verifi-
cation nodes i and j provide different results this time, E(i, j)
is altered to 0 to illustrate that the two nodes are identified as
inconsistent. IAG can then be simplified, and the maximum
clique analysis algorithm BK MaxClique is adopted to ob-
tain all maximum cliques in IAG. The candidate mapper set
is then traversed. A node that does not belong to any max-
imum clique with the number of nodes larger than �N/2� is

Algorithm 1: malicious nodes identifying

Input:
IAG of the system, G = 〈V, E〉;
The verification relationship R of k pairs;
Candidate nodes set, PN;
Malicious nodes set, MN;

Procedure:
1: For each pairs 〈Vi,Vj〉 in R, do:
2: If E(i, j) == 1 && R〈i, j〉 == 0
3: Then
4: E(i, j) = 0;
5: Simplify G, delete all the nodes whose edges to all
other nodes are 0, and generate G’ that used for
maximum clique analysis;
6: Call BK MaxClique(G’), and get all maximum
cliques contained in G’, MCi;
7: Find all cliques with number of nodes larger than
�N/2�, MCb;
8: For each node Ni in PN, do:
9: If Ni does not belong to any MCb

10: Then
11: PN = PN − {Ni};
12: MN = MN + {Ni};

removed from the candidate set. The algorithm of malicious
nodes identifying through IAG is shown as Algorithm 1.

When the system begins to operate, PN contains all
nodes in V and MN is Φ. All edges in IAG have a value
of 1, indicating that all nodes are temporarily consistent by
default. After every k times of replication verification, the
algorithm is called once. The algorithm checks if malicious
nodes exist and removes them from the candidate set.

3.3 Verification Couple Selection

If two workers provide the same results during verifica-
tion, the workers are only identified as a temporary consis-
tent pair; inconsistency may be exposed in subsequent tests.
When the two workers provide different results, they are de-
terminately inconsistent. This result is unchangeable even if
additional verification is performed. Therefore, the incon-
sistency relationship in IAG must be determined as soon as
possible to quickly identify malicious mappers.

When a node is identified as malicious, the edges be-
tween this node and each of the others can be analyzed. As-
suming that the detected malicious node is Ai, if node B
forms an edge with Ai (with a value of 1), then the follow-
ing instances could occur: (1) Ai and B belong to the same
collusive group; (2) Ai and B belong to different collusive
groups but both did not misbehave; and (3) B is a benign
node, and Ai did not misbehave. If another node C forms an
edge with Ai (with a value of 0), then C must not belong to
the same collusive group as Ai. We define these two kinds
of nodes as follows.

Definition 3: Assuming that malicious nodes A1, . . . ,
As are found in IAG G = 〈V, E〉, then for every Ai (1 ≤ i ≤
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s), the other nodes can be divided into two groups (collusive
set S1 and opposed set S0) based on the edge values from
these nodes to Ai. S1 contains all the nodes that form an
edge with Ai (with a value of 1); that is, S1 = {b | b ∈
V, and E(Ai, b) = 1}. Nodes that form an edge with Ai (with
a value of 0) form set S0. S0 = {c | c ∈ V, and E(Ai, c) = 0}.

Theorem 1: For a malicious node Ai, the nodes in its
corresponding collusive group must also belong to S1(Ai).
The nodes in S0(Ai) do not belong to the collusive group of
Ai.

Proof: If node B belongs to the collusive group of Ai

and E(Ai, B) = 0, then it means Ai has provided different
results as that of B in a certain test. This contradicts the as-
sumption that the nodes are in the same group. Thus, the
value of E(Ai, B) has to be 1; that is, B belongs to S1(Ai).
Similarly, we can prove that the nodes in S0(Ai) are not con-
tained in Ai’s group.

�

The nodes in S1(Ai) may be the accomplices of Ai; how-
ever, the nodes in S0(Ai) must not be accomplices. Thus,
we select nodes from these two different groups to quickly
identify inconsistency among nodes. Based on Ai’s infor-
mation, we therefore select one node from the S0(Ai) and
select the other from S1(Ai) to increase the probability of
inconsistency detection.

When s malicious nodes have been identified in the
system, each of them contains certain information. We must
determine how many pairs corresponding to a malicious
node are required for verification when total k verification
couples are assigned. We define the malicious influence of
a node below.

Definition 4: (Malicious Influence) The malicious in-
fluence of a node depends on the scale of the collusive group
the node belongs to. The larger the scale is, the greater the
influence is. Assumed that there are m malicious node to-
tally, the malicious influence of malicious node Ai can be
evaluated as:

MInfl(Ai) =
|S1(Ai)|∑m

j=1 |S1(Aj)| (1)

Theorem 2: Given that IAG G = 〈V, E〉, where V con-
tains n nodes, including p benign nodes and n− p malicious
nodes, and the malicious nodes form s collusive groups.
The misbehavior probability of one malicious node is b
(0 < b ≤ 1), which is independent to other nodes and same
for all collusive groups. Then after a complete test (each
node is paired and tested with all other nodes in the graph),
the higher the expectation of MInfl of one malicious node is,
the greater the scale of its collusive group would be.

Proof: After a complete test (each malicious node Ai

has been paired and tested with all other nodes in the sys-
tem), Ai’s S1 is composed of three kinds of nodes: (1) mali-
cious nodes in its collusive group, and the number of these
nodes is denoted by Qi; (2) benign nodes, and during the
couple-verification with Ai, Ai did not misbehave. The

number of these nodes is denoted by X; and (3) malicious
nodes from other collusive groups, and during the couple-
verification with Ai, both the node and Ai did not misbe-
have. The number of these nodes is denoted by Y . Here
we assume that the probability that non-collusive malicious
workers return identical wrong results for a specific task
is 0.

Thus, the number of nodes in S1 of Ai is:

|S1(Ai)| = Qi + X + Y (2)

Where X is a binomial random variable with parameter
(p, 1 − b), and Y is a binomial random variable with param-
eter (n − p − Qi, (1 − b)2). Then the expectation of |S1(Ai)|
is:

E(|S1(Ai)|) = Qi + p ∗ (1 − b) + (n − p − Qi) ∗ (1 − b)2

Therefore, we have derived the Qi:

Qi =
E(|S1(Ai)|) − p ∗ (1 − b) − (n − p) ∗ (1 − b)2

1 − (1 − b)2

We assume that Ai and Aj belong to collusive groups i and j,
respectively, and E(MInfl(Ai)) ≥ E(MInfl(Aj)). According
to the definition of MInfl, we have E(|S1(Ai)|) ≥ E(|S1(Aj)|).
So,

Qi − Qj =
E(|S1(Ai)|) − E(|S1(Ai)|)

1 − (1 − b)2
≥ 0

Therefore, we obtain Qi ≥ Qj.

�

From Eq. (2), we find that besides the number of Ai’s
collusive nodes, S1(Ai) can be affected by several random
factors, such as the random behaviors of Ai and other non-
collusive malicious nodes when doing the pair-wise verifi-
cation. So in terms of statistics, the decision based on the re-
sult of a single run of experiment is not deterministic. In this
situation, generally, the mean value of the results of multiple
repeated experiments is used to evaluate the effectiveness of
the indicator. In Theorem 2, we have proved that the scale
of a malicious node’s collusive group would be greater when
its expectation of MInfl is higher, so we have reasons to be-
lieve that the MInfl(Ai) is a good indicator of the scale of a
malicious node’s collusive group.

If totally k verification couples are required for veri-
fication, we allocate different quotas of couples according
to the malicious influence of every malicious node. More
verification couples are allocated for the nodes with greater
influence. Considering malicious influence, MInfl(Ai) ∗ k
verification couples are selected corresponding to malicious
node Ai.

We describe the algorithm of verification couples se-
lection as Algorithm 2. In the algorithm, we don’t use the
IAG-instructed scheduling (line 2–13) at all times. First, at
the beginning of execution, there is no malicious node iden-
tified in the system, so the algorithm above will randomly
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Algorithm 2: verification couples selection

1:If the set of malicious nodes is not empty, and the
number of newly identified malicious nodes by previous
call of Algorithm 1 is less than ε, Then
2: {
3: For each known malicious node Ai do:
4: evaluate S1(Ai) and S0(Ai);
5: For each known malicious node Ai do:
6: compute Ai’s MInfl(Ai);
7: According to each Ai’s MInfl(Ai), compute the
number of verification couples corresponding to Ai, i.e.
MInfl(Ai) ∗ k
8: Traverse the set of identified malicious nodes, and
for every node, do:
9: For i = 1 to MInfl(Ai) ∗ k do
10: Randomly choose node x in S1(Ai)

⋂
PN;

11: Randomly choose node y in S0(Ai)
⋂

PN;
12: Define 〈x, y〉 as a verification pair.
13: }
14: Else
15: Select k verification couples in PN randomly

select verification couples. Second, after sufficient couple
tests, almost all malicious nodes are found and the S1 set
of a malicious node is primarily composed of its collusive
nodes, which are identified and excluded from the schedul-
ing. If we only use the IAG-instructed scheduling, finally
there will be few nodes to select in S1. Thus, selecting cou-
ples randomly is more appropriate in this case. Here we
use ε, which is usually not bigger than 1, as the switch of
two selections. For example, if the value of ε takes 0.5, it
means that the random selecting will be used when there is
no malicious node newly detected in the recent two callings
of Algorithm 1. Generally, we make ε equal to 1, that is, if
no malicious node is newly identified in the recent calling of
Algorithm 1, the random selecting will be used.

Algorithm 2 facilitates the rapid identification of ma-
licious nodes by determining inconsistencies between allo-
cated replicas; however, the algorithm generates more com-
puting failures in the early stage of execution. As more ma-
licious nodes are found and removed, the efficiency of the
computation and the accuracy of the results are improved
significantly because the proportion of benign nodes is high.

4. Analysis and Evaluation

The performance of the proposed scheme is evaluated ana-
lytically and experimentally in this section. Analysis shows
that our scheme can effectively identify malicious workers
in collusive and non-collusive attacks. Compared with the
methods adopted in other studies, our method improves re-
sult accuracy and reduces overhead of verification. And our
method avoids centralized verification, which will cause a
bottleneck in performance.

4.1 Theoretical Analysis

The main performance indices of the computation environ-
ment with the verification scheme are analyzed in this sec-
tion to verify the effectiveness of the proposed method. The
efficiency in discovering inconsistency is compared between
the methods of our verification couple selection and the ran-
dom verification couple selection.

We evaluate the result verification mechanism of map-
pers based on two important performance indices: accuracy
and overhead. The accuracy (AC) of a map task is the prob-
ability that a task would provide a good result to the mas-
ter; the master would then release the result to the reducer.
The overhead (OH) of a map task is the average number of
executions launched by the worker for each task. AC is em-
ployed to evaluate the quality of the result released to the
reduce phase, and OH is employed to evaluate the efficiency
of computation. A good verification mechanism has high
result accuracy and low computation overhead.

Malicious nodes are identified and removed from the
mapper scheduling in our scheme. Performance is enhanced
by reducing the ratio of malicious workers. AC and OH at a
fixed ratio of malicious workers are analyzed, and the varia-
tion trend of these two indices at a reduced ratio of malicious
workers is presented.

Our analysis model assumes a cloud environment con-
taining a large number of mappers, so the number of nodes
is so large that we can ignore the difference between with or
without replacement of mappers. It is assumed that there are
N mappers in the environment, M of which are malicious.
We define the ratio of malicious workers as r = M/N. M
malicious workers include both collusive and non-collusive
workers. For Simplicity, we define c as the portion of col-
lusive workers in M malicious workers. The misbehavior
probability of one malicious node is independent to others
and same for all collusive groups. The misbehavior prob-
ability is defined as b. Two collusive workers assigned the
same task misbehave at the probability of b. We assume that
malicious workers always know when they are assigned the
same task. For simplicity, here we assume the verification
couple nodes are randomly chosen.

We focus on collusive attacks in the discussion of the
accuracy of a map task. Since that each instance of mis-
behavior in the non-collusion strategy will be detected, the
accuracy of this case is always 1. In the collusive mode, the
same false result provided by two malicious workers will
pass the verification and is released to the reducer, thereby
affecting accuracy.

Accuracy is influenced under two cases:
a. When a task is assigned to two workers in the same

malicious group, the false result passes verification. The
probability of this case is r2c2b.

b. When the master detects an inconsistency, two other
replicas are scheduled; thus, accuracy relies on the accuracy
of the new schedule. Rescheduling occurs when (1) the ver-
ification couple of the schedule includes one benign worker
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and one malicious worker, and the malicious worker mis-
behaves; or (2) the verification couple includes two non-
collusive malicious workers, at least one of which misbe-
haves. Thus, the probability of rescheduling (RP) is

RP = 2(1 − r)rb + 2r2(1 − c)(1 − (1 − b)2) (3)

We obtain the cheat probability (CP) of a map task by com-
bining the two cases.

CP = r2 · c2 · b + RP ·CP

Therefore,

CP =
r2c2b

1 − 2(1 − r)rb − 2r2(1 − c)(1 − (1 − b)2)

Given that AC = 1 −CP, we obtain

AC = 1− r2c2b

1 − 2(1 − r)rb − 2r2(1 − c)(1 − (1 − b)2)
(4)

OH can be calculated with the same principle. In our model,
rescheduling occurs when the master discovers the inconsis-
tency. The probability of rescheduling is equal to (3). The
OH of rescheduling is 2+OH. Otherwise, OH is 2 because
rescheduling is unnecessary. Thus, adding these OH values
yields

OH = RP · (2 + OH) + (1 − RP) · 2
Therefore, we derive OH as

OH =
2

1 − 2(1 − r)rb − 2r2(1 − c)(1 − (1 − b)2)
(5)

Figure 4 shows the simulated relationship between the
ratio of malicious workers and AC based on (4) when b is
0.5, while c gets 0.5 and 1.0. Reducing the ratio of malicious
worker (r) significantly improves accuracy. When c is equal
to 1, accuracy increases by 13% as r is reduced from 0.45
to 0.10. Figure 5 shows the simulated relationship between
r and OH based on (5) when b is 0.5 and c gets 0.5 and 1.0.
Reducing r significantly reduces overhead. Overhead drops
from 3.3 to 2.2 with the reduction of r from 0.45 to 0.1.

We compare the proposed verification couple selection

Fig. 4 Accuracy vs malicious worker ratio.

method’s efficiency in discovering inconsistency with that
of random couple selection. If we select two replicas ran-
domly under the same assumption as above, the probability
of inconsistency is equal to (3). In our method, the other
nodes are divided into two sets (S1(Ai) and S0(Ai)) based
on the verification relationship of the nodes with a certain
malicious node Ai. For simplicity, following discussion is
based on the assumption that each couple among the map-
pers in the environment has already been verified at least
once. There are three cases when a node belongs to S1:
(1) the node is in the same collusive group as Ai; (2) the
node is a benign node, and Ai does not misbehave during
couple verification with this node; (3) the node is a mali-
cious node and non-collusive with Ai, and both the node and
Ai do not misbehave during couple verification with these
two nodes. The nodes in S0 are either of the following two
cases: (1) the node is a benign worker, and Ai misbehaves
during couple verification with this node; (2) the node is a
malicious node and non-collusive with Ai, and at least one of
the nodes and Ai misbehave during couple verification with
these two nodes. Thus, the expectation of the numbers of
the elements of S1(Ai) and S0(Ai) are

E(|S1|) = nrc − 1 + n(1 − r)(1 − b) + nr(1 − c)(1 − b)2

E(|S0|) = n(1 − r)b + nr(1 − c)b

In the proposed method of verification couple selection, an
inconsistency pair can be determined in the following three
procedures:

(1) The node selected in S1 is in the same collusive
group as Ai, and this node misbehaves during couple verifi-
cation of this time.

(2) The node selected in S1 is benign, whereas the node
selected in S0 is malicious and misbehaves during couple
verification of this time.

(3) The node selected in S1 is non-collusive with Ai and
misbehaves during couple verification of this time.

Combining all the above cases, the probability of in-
consistency discovery of our method is

InC DRours =

(
nrc− 1
E(|S1|) +

n(1− r)(1− b)
E(|S1|) ∗ nr(1− c)b

E(|S0|)
+

nr(1 − c)(1 − b)2

E(|S1|)
)
∗ b

Fig. 5 Overhead vs malicious worker ratio.
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Fig. 6 Comparison of inconsistency discovery probability.

Our analysis model assumes a cloud environment that con-
tains a large number of workers, specially, mappers. So due
to the large value of n, here we can simplify the equation as:

InC DRours =

(
rc
Δ1
+

(1 − r)(1 − b)
Δ1

∗ r(1 − c)b
Δ2

+
r(1 − c)(1 − b)2

Δ1

)
∗ b (6)

where:

Δ1 = rc + (1 − r)(1 − b) + r(1 − c)(1 − b)2

Δ2 = (1 − rc) ∗ b

The probability of inconsistency discovery of random selec-
tion is

InC DRrandom = 2r(1−r)b+2r2(1−c)(1− (1−b)2) (7)

Figure 6 shows the simulated probabilities of inconsistency
discovery based on (6) and (7) when r has different values.
We let c = 1 and b = 0.6. It is showed that our method
achieves higher probability.

4.2 Experimental Evaluation

Firstly, to test the effectiveness of our proposed scheme in a
large scale cluster, we deployed the simulation experiment
environment with 100 mapper nodes. Three performance
indices were tested in the simulation experiments: (1) the
detection rate of malicious workers and the (2) accuracy
and (3) overhead of a map task. Detection rate is the por-
tion of identified malicious worker out of the total malicious
workers. It is utilized to evaluate the efficiency of malicious
worker discovery based on IAG.

We tested detection rate both in collusive and non-
collusive attack strategies, with different values of misbe-
having probability b and malicious worker ratio r. For sim-
plicity, we assume that in a collusive attack mode, only one
collusive group exists (c = 1), while in a non-collusive at-
tack, all malicious workers are not collusive (c = 0). The
algorithm of malicious nodes identifying is employed after
every 10 couples’ verification. Figures 7 and 8 show the
relations between the number of verification couples and
the detection rate of malicious workers, both in collusive

Fig. 7 Relations between number of verification couples and detection
rate of malicious workers (with different b).

Fig. 8 Relations between number of verification couples and detection
rate of malicious workers (with different r).

Fig. 9 Accuracy vs number of map tasks.

and non-collusive attacks, when r and b take different val-
ues. It is showed that our method has the same effectiveness
in detecting malicious workers on both collusive and non-
collusive attack modes. In Fig. 7, r is fixed at 0.3, and the
detection rate becomes higher when b increases, because the
malicious worker is easier to misbehave and to be discov-
ered. In Fig. 8, the value of b is fixed at 0.5, and the figures
show that the higher r is, the better the detection rate is, be-
cause more malicious workers are easier to form the clique
and to be detected.

Next, we tested the influence on AC and OH when the
total number of map tasks varied. Figure 9 shows AC un-
der different amounts of map tasks when malicious worker
ratio r and probability of misbehaving b have different val-
ues. In general, the larger the amount of tasks is, the higher
AC is. Given that almost all malicious workers are identi-
fied and removed in the earlier stage of execution, the suc-
ceeding tasks are executed only by benign workers. Thus,
the mean accuracy of the entire task rises when more tasks
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Fig. 10 Overhead vs number of map tasks.

Fig. 11 Comparison of detection rate with different ε.

are involved. For a fixed number of tasks, an increase in r
reduces accuracy owing to more collusion happening; an in-
crease in b improves accuracy because the malicious work-
ers are easily exposed. Figure 10 shows OH under different
numbers of map tasks. OH is the mean number of replica-
tions required to compute a map task. Similarly, OH de-
creases when the total number of tasks is increased. For a
fixed number of tasks, an increase in r increases OH because
identifying all malicious workers becomes more difficult; an
increase in b increases OH because rescheduling is easier to
occur. After approximately 3000 tasks done, our scheme
discovers all malicious workers, hence the succeeding task
is computed only by benign workers. Then we achieve high
performance where AC is nearly 100% and OH is close to
the ideal value of 2.

Next, we tested the influence on the performance when
ε takes different values in Algorithm 2. We take the value of
ε as 1 and 0.5 respectively. In Fig. 11, it is showed that with
smaller numbers of verification couples, the detection rate
with lower ε is higher, for Algorithm 2 is called more times.
With increasing number of couple tests, the difference of
detection rate is not apparent. Since there are more times
of rescheduling when ε takes a lower value, the overhead is
higher when ε takes value of 0.5, as shown in Fig. 12.

For comparison, we also tested the accuracy and over-
head in the simulated SecureMR and VIAF verifications.
The master randomly selects verification couples in Se-
cureMR; in VIAF, a trustworthy role called verifier is in-
troduced to conduct a sampling test on the same result. All
the three schemes are based on the assumption that the num-
ber of benign nodes is larger than that of malicious nodes.
In the experiments, the total number of tasks takes value of
5000, 10000, and 15000. The malicious ratio r is 0.4, and

Fig. 12 Comparison of overhead with different ε.

Fig. 13 Comparison of the accuracy.

Fig. 14 Comparison of the overhead.

the probability of misbehaving b is fixed at 1. The system
has only one collusive group (c = 1). The verification proba-
bility of tasks in VIAF is 20%, while it is 100% in other two
schemes. The results are showed in Figs. 13 and 14. Since
there is no attestation on malicious nodes in SecureMR, its
AC is the lowest and the OH is the highest. In Fig. 13, the
three results of AC of our proposed scheme are a bit higher
than those of VIAF. In Fig. 14, although OH of mappers
in VIAF is lower than ours, another overhead (>20%) in-
duced by the centralized the verifier exists in VIAF. In the
experiment of VIAF, we set the quiz threshold to 1 and only
20% tasks were verified. So if we use more quiz tests or
set verification probability higher, its AC will be higher than
ours. But consequently, the centralized overhead of VIAF
will also increase a lot in those cases, which may cause a
bottleneck in performance.

Secondly, to evaluate the overhead in terms of execu-
tion time, we create a prototype of our mapper scheduling
mechanism with Hadoop 0.20.2 [14]. We deploy 12 ma-
chines to construct a MapReduce environment; one is run-
ning as both the master and worker, the others are running
as workers. All hosts has similar configurations of hardware
and software, which is with Intel(R) Core(TM)2 DUO CPU
2.66 GHz, 512MB of memory and 20GB disk, and CentOS
release 5.5 and Sun JDK 6. The experiments are conducted
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Fig. 15 Comparison of execution time.

by using Hadoop WordCount application. The complete job
requires 60 map tasks and 25 reduce tasks. The data size is
1G. The number of malicious mappers is 4 and the misbe-
having probabilities of malicious nodes are fixed at 1. We
implement both algorithms of malicious nodes identifying
and verification couples selection mentioned in the previ-
ous section. The master utilizes the algorithm of verification
couples selection to select the verification couples in the task
assignment. After every 20 couples’ verification, the algo-
rithm of malicious nodes identifying is employed to search
for malicious workers.

The results are showed in Fig. 15. We compared
the execution time with the naive MapReduce and the
Commitment-based SecureMR. Comparing with the naive
MapReduce, the performance overhead caused by our ver-
ification mechanism is about 56%. And the execution time
in our scheme is higher than that in the Commitment-based
SecureMR (about 4%). The extra overhead of our scheme
includes: (1) Duplication of computation tasks, (2) the de-
lay of task launching in order to defend strategic attackers,
(3) the re-computation overhead of tasks that don’t pass-
ing the duplication test, and (4) the overhead caused by the
malicious nodes identifying and by the selection and exe-
cution of k verification couples. As to the Commitment-
based SecureMR, the first and second factors of overhead
are same to ours, and there is no extra overhead of malicious
nodes identification and the selection of verification couples.
But rescheduling in that scheme happens more times than
ours, which brings more overhead, while the overhead of
rescheduling in our scheme will be gradually reduced with
the increasing number of tasks.

5. Related Works

The result verification of outsourcing is an emergent topic
along with distributed computing modes. Replication and
voting features [15] for redundant computing are applied
such that multiple computing nodes will perform the same
job; the result is accepted when it is submitted by more
than half of the total nodes. Sampling techniques ad-
dress the resource cost of replication, involving result-based
sampling [16] and test job injection sampling [17]. With
sampling techniques, computation results are verified and
trusted with a certain probability. Checkpointing deals with
result verification for sequential computation [18].

Currently, research studies concerning result verifica-

tion for mass data processing of MapReduce focus on the
computation integrity of different levels. Considering the
untrustable SPs, Chu Huang et al. proposed a watermark in-
jection method to verify if the computation is completed
correctly [19]. For the untrustable participating nodes in
an open MapReduce environment, Wei Wei et al. proposed
an integrity protection mechanism called SecureMR, which
uses two-copy replication to verify the result in the map
phase [9]. Yongzhi Wang and his colleagues introduced
the verifier role in the MapReduce computing model [10],
which samples and re-computes the results passed the repli-
cation verification, to defend collusion attack. Z. Xiao et al.
used a set of trusted auditing nodes to record the results gen-
erated by various phases of MapReduce [20]. The cheating
nodes can be located by re-computing the results.

Different from previous work, our research focuses on
the identification of malicious mappers in both collusive and
non-collusive attack strategies without introducing the cen-
tralized re-computing verification.

The IAG is first used in [11] to detect the malicious
components in the data streaming process. But the research
focuses on finding the different potential attack patterns. In
our research, the IAG-based method is used to detect mali-
cious mappers in the open MapReduce system, and the def-
inition of IAG is modified according to our proposed attack
model. Furthermore, in order to accelerate the identification
rate, we proposed some heuristics to schedule replication
verification pairs.

6. Conclusion

In this paper, we have presented the design of VAWS, a
trusted worker scheduling framework of MapReduce over
open system. VAWS detects collusive attackers and assures
the integrity of data processing without extra centralized re-
computation. We propose a method of identifying malicious
mapper based on IAG, and design the verification-couple se-
lection method based on the influence of malicious work-
ers with IAG guidance. Theoretical analysis and experi-
ment results show that our method can effectively detect
malicious workers under both collusive and non-collusive
attacks. Compared with other related methods, our method
achieves higher accuracy while imposing only a low over-
head computation. For this study is based on the assump-
tion that reducers are trusted, we will focus on guaranteeing
integrity without this assumption in future research.
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