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Online Inference of Mixed Membership Stochastic Blockmodels for
Network Data Streams

Tomoki KOBAYASHI†a), Nonmember and Koji EGUCHI†b), Member

SUMMARY Many kinds of data can be represented as a network or
graph. It is crucial to infer the latent structure underlying such a net-
work and to predict unobserved links in the network. Mixed Membership
Stochastic Blockmodel (MMSB) is a promising model for network data.
Latent variables and unknown parameters in MMSB have been estimated
through Bayesian inference with the entire network; however, it is impor-
tant to estimate them online for evolving networks. In this paper, we first
develop online inference methods for MMSB through sequential Monte
Carlo methods, also known as particle filters. We then extend them for
time-evolving networks, taking into account the temporal dependency of
the network structure. We demonstrate through experiments that the time-
dependent particle filter outperformed several baselines in terms of predic-
tion performance in an online condition.
key words: mixed membership stochastic blockmodels, particle filters, dy-
namic networks, online inference

1. Introduction

Many problems can be represented as networks or graphs,
and demands for analyzing such data have increased in re-
cent years. Specifically, it is crucial to infer the latent struc-
ture underlying such a network and to predict unobserved
links in the network. One promising approach to such prob-
lems is latent variable network modeling [6]. The latent
variable network models can be mainly categorized into two
kinds. One is hard clustering approaches, such as Stochastic
Block Models (SBM) [14] and its variants, which assume
each node is assigned to a single cluster or group. On the
basis of this assumption, the probability of generating a link
from every node in one cluster to another cluster is always
the same. In an extension of SBM, Infinite Relational Model
(IRM) [10] assumes the infinite number of clusters. The
other is soft clustering approaches, such as Mixed Member-
ship Stochastic Blockmodels (MMSB) [1]. MMSB assumes
that each node is represented as a mixture of multiple latent
groups, and that every link is generated in accordance with
a Bernoulli distribution associated with each pair of latent
groups. MMSB has been successfully applied as social net-
work analysis and protein-protein interaction prediction [1].

Latent variables and unknown parameters in MMSB
have been estimated by variational Bayesian inference or
collapsed Gibbs sampling with the entire network. Those
are called batch inference algorithms, requiring significant
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computational time. However, it is important to estimate
them online for evolving networks. In the scenario where
nodes or links are sequentially observed over time, it is not
realistic to use a batch inference algorithm every time a node
or a link is observed, so an online inference algorithm is
more appropriate in this case. Online inference for latent
variable network models has not been explored, to the best
of our knowledge. For topic models [3], [9] with text data,
some prior studies have explored online inference [2], [4],
[8], [15]; however, we cannot directly apply these methods
to network data.

In this paper, we propose online inference algorithms
for MMSB: incremental Gibbs sampler and particle filter.
When the presence (or absence) of a link is observed, these
methods sequentially estimate the latent variables and un-
known parameters in a manner similar to the conventional
online inference methods. Unlike the conventional online
inference methods, the proposed methods can take into ac-
count the case when a newly arriving edge is connected to
unknown node(s). By the way, for dynamic time-evolving
networks, out-of-date estimates may harm the model’s per-
formance, such as in predicting new links. That motivated us
to propose another online inference algorithm that dynami-
cally adapts the changes in structure within a network, in the
framework of a particle filter. We demonstrate through ex-
periments that these inference methods work effectively for
evolving networks. The contributions of this paper are (1)
online inference methods for MMSB and (2) novel online
inference methods that take into account time dependency
in latent structure of evolving networks.

The rest of the paper is organized as follows. In Sect. 2,
we provide some background on MMSB and its inference
method. In Sect. 3, we describe how to achieve online in-
ference for network data with MMSB in an extension of the
conventional online algorithms, and then propose two on-
line inference algorithms for this purpose. In Sect. 4, we
propose a novel algorithm, taking into account the time de-
pendency of the network structure. The results of conducted
experiments are presented in Sect. 5. Finally, we provide a
discussion on issues that are not fully addressed in this work
and conclude the paper in Sect. 6.

2. Mixed Membership Stochastic Blockmodels

2.1 Modeling

At first, we summarize the definitions used in this paper. We
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Fig. 1 Graphical model of MMSB.

represent a simple directed graph as G = (N,Y), where N
indicates a set of N nodes making up the graph and (p, q) el-
ement in an adjacency matrix Y indicates whether a link (or
an arc) is present or absent from node (or vertex) p to node
q as Y(p, q) ∈ {0, 1}. Each node is associated with a multi-
nomial distribution over latent groups, Mult(πp). Here, πp,g

represents the probability that node p belongs to group g.
Therefore, a single node can be assigned with a different
group for each connected link from that node. Supposing
that the number of groups is K, the relationship between any
pair of groups (g, h) is represented as a Bernoulli distribu-
tion, Bern(B). The element B(g, h), (g, h) element of K × K
matrix B, indicates the Bernoulli parameter corresponding
to group pair (g, h), representing the probability that a link is
present between a node in group g and another node in group
h. Given a link from node p to q, the indicator vector zp→q

indicates a latent group assigned to node p, and zp←q indi-
cates a latent group assigned to node q. These latent group
indicator vectors are denoted by Z→ = {zp→q|p, q ∈ N} and
Z← = {zp←q|p, q ∈ N}. In accordance with the above defini-
tions, the generative process of MMSB can be described as
follows.

1. For each node p:

• Draw a K dimensional vector of multinomial pa-
rameters, πp ∼ Dir(α)

2. For each pair of groups (g, h):

• Draw a Bernoulli parameter, B(g, h) ∼ Beta(ψ)

3. For each pair of nodes (p, q)

• Draw an indicator vector for the initiator’s group
assignment, zp→q ∼Mult(πp)

• Draw an indicator vector for the receiver’s group
assignment, zp←q ∼Mult(πq)

• Sample a binary value that represents the presence
or absence of a link, Y(p, q) ∼ Bern(zT

p→qBzp←q)

A graphical model representation of MMSB is shown in
Fig. 1. The full joint distribution of observed data Y and
latent variables π1:N , Z→, Z←, and B are given as follows:

P(Y,π1:N ,Z→,Z←,B|α,ψ)

= P(B|ψ)
∏

p,q,p�q

P(Y(p, q)|zp→q, zp←q,B)P(zp→q|πp)

P(zp←q|πq)
∏

p

P(πp|α) (1)

2.2 Batch Gibbs Sampler

For an observed link from node p to node q, the full con-
ditional probability of assigning groups g and h to nodes p
and q, respectively, is given by:

P(zp→q = g, zp←q = h|Y,Z¬(p,q)
→ ,Z¬(p,q)

← ,α,ψ)

∝ (C(p, g)−1+Δ(g′ � g)+αg)(C(q, h)−1 + Δ(h′ � h)+ αh)
C(g, h, δ) − 1 + Δ(g′ � g ∧ h′ � h) + ψδ

C(g, h, 0) +C(g, h, 1) − 1 + Δ(g′ � g ∧ h′ � h) + ψ0 + ψ1

=

⎧⎪⎪⎨⎪⎪⎩
π
¬(p,q)
p,g π

¬(p,q)
q,h B(g, h)¬(p,q) (if δ = 1)

π
¬(p,q)
p,g π

¬(p,q)
q,h (1 − B(g, h)¬(p,q))(if δ = 0)

(2)

where zp→q and zp←q indicate the variables of group assign-
ments to the initiator and receiver, respectively. C(p, g) in-
dicates the count of group g assigned to node p. C(g, h, δ)
(δ ∈ {0, 1}) indicates the count of presence (δ = 1) or ab-
sence (δ = 0) of links, each initiator node of which is as-
signed to group g and the receiver node is assigned to group
h. Moreover, αg indicates g-th component of K-dimensional
vector of Dirichlet hyperparameter α. ψ1 and ψ0 indicate
Beta hyperparameters corresponding to the presence and ab-
sence of links, respectively. The superscript “¬(p, q)” indi-
cates disregarding the current assignment of groups for link
from node p to node q. The indicator function Δ(·) takes the
value 1 when the designated event occurs and 0 if otherwise.
g′ and h′ indicate the groups currently assigned to nodes p
and q, respectively.

We further introduce a sparsity parameter ρ, as below,
following Airoldi et al. [1].

P(zp→q = g, zp←q = h|Y,Z¬(p,q)
→ ,Z¬(p,q)

← ,α,ψ)

∝
⎧⎪⎪⎨⎪⎪⎩

(1 − ρ)π¬(p,q)
p,g π

¬(p,q)
q,h B(g, h)¬(p,q) (if δ = 1)

(1 − ρ)π¬(p,q)
p,g π

¬(p,q)
q,h (1 − B(g, h)¬(p,q)) + ρ(if δ = 0)

(3)

where ρ is given by:

ρ = 1 −
∑
p,q

Y(p, q)
N(N − 1)

= 1 −
∑

g,h C(g, h, 1)∑
g,h(C(g, h, 0) +C(g, h, 1))

(4)

By using the full conditional probability in Eq. (3), col-
lapsed Gibbs sampling can estimate latent variables and un-
known parameters of MMSB. The algorithm is outlined in
Fig. 2, where it is converged to posterior distributions. Here-
inafter, this inference algorithm is referred to as batch Gibbs
sampler. This is similar to a collapsed Gibbs sampler for es-
timating LDA (Latent Dirichlet allocation) for text data [3],
[7].
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Fig. 2 Pseudo codes of batch Gibbs sampler.

3. Online Inference Algorithms for MMSB

This section describes how to achieve online inference for
MMSB, especially by using the incremental Gibbs sampler
and particle filter that were originally developed for text
data [2], [4]. For those studies with text data, a newly ar-
riving document is assumed to consist of known vocabulary.
On the other hand, for MMSB with network data, a newly
arriving edge is often connected to unknown node(s). More-
over, the number of nodes is usually not known beforehand.
In this section, we propose two online inference algorithms
for MMSB, taking into account these points.

3.1 Incremental Gibbs Sampler

Canini at al. [4] developed an incremental Gibbs sampler, by
modifying batch Gibbs sampler —also known as collapsed
Gibbs sampler [7]—, for estimating an LDA model for text
data in an online setting. We further modify it for MMSB
for network data in an online setting.

The algorithm is outlined in Fig. 3. Given a discrete
time series of network data, we first apply the batch Gibbs
sampler to the first period of the data. Then, every time
the presence or absence of a link is observed, we run the
following steps:

1. When a new link with an existing node is observed,
we sample a pair of groups in accordance with the
full conditional probability with already observed data
and their group assignments, on the basis of Eq. (3), as
shown in lines 3 and 4 in Fig. 3.

2. When a new link with a new node is observed, we sam-
ple a pair of groups for every pair of a new node and an
already observed node, as shown in lines from 5 to 16
in Fig. 3.

3. We update the latent groups for the rejuvenation se-
quence R(p, q) —i.e., |R(p, q)| of randomly selected
node pairs that were already observed at the time when
node pair (p, q) is observed—, as shown in lines from
17 to 20 in Fig. 3. This step is called rejuvenation, such
as in the literature on particle filters [5].

The larger the |R(p, q)|, the more accurately posterior distri-

Fig. 3 Pseudo codes of incremental Gibbs sampler.

butions can be estimated. However, inference time increases
quadratically with |R(p, q)|. If we skip the step of rejuvena-
tion or |R(p, q)| = 0, it is similar to the online inference
method that Banerjee et al. developed for LDA [2].

The incremental Gibbs sampler is extended to particle
filter that we will describe in the following section.

3.2 Particle Filter

The particle filter is also known as a sequential Monte Carlo
method [5]. The inference is achieved by the weighted av-
erage of multiple particles, each of which estimates latent
group assignments for observed node pairs differently at the
same time. Here, the estimation with each particle is per-
formed by following the three steps in an incremental Gibbs
sampler, as described in Sect. 3.1. The weight of each par-
ticle is assumed to be proportional to the likelihood of gen-
erating observed links by the particle. When the variance
of the weight is larger than a threshold —referred to as the
effective sample size (ESS) threshold—, resampling is per-
formed to create a new set of particles. We employed a sim-
ple resampling scheme that draws particles from the multi-
nomial distribution specified by the normalized weights. Af-
ter the resampling, the weights are then reset to P−1, where
P indicates the number of particles.

The algorithm of the particle filter is outlined in Fig. 4.
Note that, in this figure, lines from 5 to 18 correspond to the
new link group assignment steps in an incremental Gibbs
sampler, as shown in lines from 3 to 16 in Fig. 3, and lines
from 26 to 29 correspond to the rejuvenation step in an in-
cremental Gibbs sampler, as shown in lines from 17 to 20 in
Fig. 3.

The posterior distribution of particle filter, Pparticle is
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Fig. 4 Pseudo codes of particle filter.

represented as follows:

Pparticle =
∑

k

P(k) × ω(k) (5)

where P(k) indicates the posterior distribution of particle k,
computed by Eq. (3). ω(k) indicates the weight of particle
k, which is proportional to the likelihood of generating ob-
served links by the particle.

4. Time-Dependent Algorithms

We have introduced the inference methods for MMSB,
which estimate the latent variables and unknown parame-
ters with already observed data, assuming the network data
are sequentially observed over time. However, using all the
observed data does not always result in accurate estima-
tion. For instance, your movie preferences, which can be
expressed by a bipartite graph, may sometimes change over
time. As another example, enterprise email communications
expressed as a network may be changed in a structure when
serious incidents happen in that company. In such cases,
more accurate estimation can be achieved by only consider-
ing recent observations and disregarding older observations.

Fig. 5 Illustration of how to estimate Λ.

On the basis of the idea mentioned above, we propose a
time-dependent particle filter for MMSB to capture changes
in network structure over time.

We now describe the method more formally and in
more detail. Suppose that Lt represents the likelihood of
observations at time t. We partially disregard the past obser-
vations when the following condition is satisfied.

λt =
Lt

Lt−1
< λ0 (6)

where λt indicates the change rate on the likelihood of obser-
vations at time interval t, and λ0 indicates a threshold param-
eter. We assume that the pattern of observations is changed
when the change rate is small. When Eq. (6) is satisfied,
we further compute Λi,t = (λi+1, . . . , λt−1, λt), where each
component indicates the change rate of likelihood of obser-
vations for each time interval from i to t, respectively, as
illustrated in Fig. 5. Here, i is the first time interval that the
model considers, so when any time interval was discarded
previously, i = 1. We then sample a time interval to be dis-
carded from a multinomial distribution, whose multinomial
parameters are estimated in accordance with the normalized
Λi,t. When time interval τ (i ≤ τ < t) is sampled, all the time
intervals from i to τ are then discarded.

Once the time interval to be disregarded τ is sampled,
we run the following procedure:

• When a node is adjacent to any observed node at time
intervals from i to τ, set the corresponding element of
adjacency matrix to be 0.

• Randomly reassign a latent group to each of these node
pairs.

• When a node is not adjacent to any observed node at
time intervals after τ, assume the node to be unob-
served.

We can apply this algorithm to the incremental Gibbs
sampler and particle filter. When we apply it to the parti-
cle filter, we compute Λi,t for each particle. Therefore, each
particle can make a different decision on whether or not the
past observations should be disregard and which time inter-
vals should be discarded. Figure 6 shows a graphical model
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Fig. 6 Graphical model of time-dependent MMSB.

representation for the time-dependent MMSB that we dis-
cussed above.

5. Experiments

In this section, we explore the prediction performance of
MMSB estimated via online inference algorithms. For ex-
periments, we use time-series network data.

5.1 Settings

5.1.1 Number of Groups and Hyperparameters

Before detailing the online experiments, we describe how
we set the number of groups K and hyperparameters α, ψ0,
and ψ1.

For each set in five-fold cross validation, we apply the
batch Gibbs sampler over K ∈ {5, 10, 15, . . . , 40} to estimate
the models, assuming that all the links in the entire network
are observed. We set the number of Gibbs sweeps (itera-
tions) as S = 500 for this estimation. We then determine
the optimal K using the development set†. As for hyperpa-
rameter α, we assume it to be 0.1 for any latent group. We
estimate hyperparameters ψ0 and ψ1 using fixed-point itera-
tions [13]. As the results, the optimal numbers of groups is
K = 30, and the estimated ψ0 and ψ1 then are as listed in
Table 1.

5.1.2 Data

We use two datasets for experiments. Both are from the

†For the five-fold cross validation, we divide all the observa-
tions in an entire dataset evenly into five sets, disregarding time
stamp. We further divide each set into a test set and a development
set.

Table 1 The estimated hyperparameters when K = 30.

set ψ0 ψ1

set1 0.2411 0.01028
set2 0.2449 0.00864
set3 0.2348 0.00774
set4 0.2569 0.00886
set5 0.2388 0.00915

Enron email communication archive [11]; however, the net-
works are different sizes. The time period of both datasets
is 28 months, from December 1999 to March 2002.

Dataset A
This dataset is the same as that used by Tang et al. [16],
where emails in certain folders were removed from
each user for the use of email classification research.
This dataset was further cleaned so that only the users
(i.e., email addresses) who send and receive at least five
emails are included. We only use the relations between
users —we assume a link from a user to another when
a user sends at least one email to another—, disregard-
ing the text content of email messages. This dataset
contains 2356 nodes. We use Dataset A for detailed
experiments.

Dataset B
This dataset is extracted for the period from December
1999 to March 2002 directly from that of Klimt and
Yang [11]. We further clean the dataset so that only the
users (i.e., email addresses) who send and receive at
least seven emails are included. We only use the rela-
tions between users, in the same manner for Dataset A.
There are 16,989 nodes. We use Dataset B to confirm
how effectively the proposed methods work for larger
networks.

The number of links for each month is depicted for both
datasets in Fig. 7, where (A) and (B) indicate Datasets A
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Fig. 7 The number of links at each time interval.

and B, respectively.
For Dataset A, we divide all the observations in the

dataset (each link of which is observed to be present or ab-
sent for a pair of nodes) evenly into five sets, disregarding
time stamp, for the use of five-fold cross validation. We fur-
ther divide each set into a test set and a development set, and
the remaining four sets are used as training set. Note that we
use the observations for each time interval, within the train-
ing set, when we estimate a model in an online setting. We
briefly summarize the training set, development set, and test
set.

Training set
We use the node pairs included in the training set to es-
timate the model. The observations (each link of which
is observed to be present or absent for a pair of nodes)
are sequentially added over time.

Development set
We use the node pairs included in the development set
to determine ESS threshold and λ0 threshold for parti-
cle filter. Every time the training observation is given
at time interval (t − 1), we compute the likelihood of
the data within the development set at the same time
interval t using the estimated model.

Test set
We use the test set to evaluate the inference algorithms.
We compute the likelihood of the data within the test
set at time interval t using the model estimated with the
observations within the training set until time (t − 1).

For Dataset B, we assume all the free parameters:
the number of latent groups, hyperparameters, ESS thresh-
old, and λ0 threshold are the same of those of the smaller
Dataset A. We randomly extract 20% of all the observations
in the dataset (each link of which is observed to be present or
absent for a pair of nodes), disregarding time stamp, and we
use the rest of the observations as a training set for inference
of unknown parameters and latent variables.

Table 2 The optimal ESS threshold and λ0.

|R(p, q)| ESS threshold λ0

0 20 1.2
10 8 1.4
100 4 1.2

5.1.3 Inference Methods

In the experiments, we compare the following algorithms.

• Batch Gibbs sampler
For comparison with online inference, we apply the
batch Gibbs sampler by varying the number of Gibbs
sweeps (iterations) —as S ∈ {50, 100, 150, 200}
for evaluation with test-set log likelihood and S ∈
{40, 60, 80, 100, 150, 200} for evaluation with AUC—.

• Incremental Gibbs sampler
In the experiments to compare with batch Gibbs
sampler, we set the size of rejuvenation sequence
|R(p, q)| ∈ {0, 1K, 5K, 10K, 20K, 30K} for evalua-
tion with test-set log likelihood, and |R(p, q)| ∈
{0, 5K, 20K, 30K} for evaluation with AUC. In the other
experiments, we set |R(p, q)| ∈ {0, 10, 100}. For all the
online algorithms, we carried out the batch Gibbs sam-
pling for the first time interval, setting the number of
Gibbs sweeps (iterations) to be S = 100.

• Particle filter
We performed a grid search for ESS threshold over
{4, 8, 12, 16, 20} for each |R(p, q)| setting. We fix the
number of particles to 24 in all the conditions. Using
the development set, we determine ESS threshold for
each |R(p, q)| setting, as shown in Table 2.

• Time-dependent incremental Gibbs sampler
For comparison, we conducted the experiments with
the incremental Gibbs sampler in the same manner as
the time-dependent particle filter.

• Time-dependent particle filter
In the condition of ESS threshold in Table 2, we ex-
periment with λ0 threshold in Eq. (6) as 1.0, 1.1, 1.2,
1.3, and 1.4 for each |R(p, q)| setting. Using the de-
velopment set, we determine the optimal λ0 for each
|R(p, q)| setting, as you can see in Table 2.

5.1.4 Evaluation Metrics

We evaluate the prediction performance using test-set log-
likelihood. The likelihood of test set at time t is given by:

p(s(t)
test) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
p,q∈s(t)

test

∑
g,h

(
(1 − ρ(t−1))π(t−1)

p,g π(t−1)
q,h B(g, h)(t−1)

)

(if δ = 1)∏
p,q∈s(t)

test

∑
g,h

(
(1 − ρ(t−1))π(t−1)

p,g π(t−1)
q,h (1 − B(g, h)(t−1)) + ρ(t−1)

)

(if δ = 0)

(7)
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where δ ∈ {1, 0} represents the presence or absence of a
link from node p to node q. ρ is the sparsity parameter de-
fined in Eq. (4). Multinomial parameters π(t−1)

p,g and π(t−1)
q,h and

Bernoulli parameter B(g, h)(t−1) are estimated using Eqs. (2)
and (3) with the observations until time (t − 1).

Suppose that T = {1, · · · ,T } represents discrete time
intervals for a target network. We then finally evaluate the
prediction performance of each model using (averaged) rate
of increase of test-set log-likelihood:

1
T

T∑
t=1

X(t) − I0(t)
|I0(t)| (8)

where I0(t) represents test-set log-likelihood with the base-
line: incremental Gibbs sampler at time interval t when
|R(p, q)| = 0. X(t) represents test-set log-likelihood with
the target inference method at time interval t. According
to the definition of the prediction performance metric given
by Eq. (8), the prediction performance of incremental Gibbs
sampler is zero when |R(p, q)| = 0.

The network density is different for each time inter-
val; in other words, observations within each time interval
include a different number of the cases when δ = 1 and
that when δ = 0 in Eq. (7). Therefore, the averaged test-set
log-likelihood, not the averaged rate of increase of test-set
log-likelihood, is very dependent on that of specific time in-
terval(s). For this reason, we need to evaluate our methods
in terms of the rate of increase of test-set log-likelihood,
instead of the test-set log likelihood itself. The greater the
value of Eq. (8), the more effectively the model works com-
pared with the baseline. Note that the metric given by Eq. (8)
is sometimes referred to as rate of increase in Sect. 5.2.

5.2 Results

We compare batch and online inference methods in
Sect. 5.2.1 and two online inference methods (incremental
Gibbs sampler and particle filter) in Sect. 5.2.2. We use the
smaller Dataset A for all these experiments. In Sect. 5.2.3,
we also show the results with the larger Dataset B.

5.2.1 Batch vs. Online Inference

In Sect. 5.2.1, we compared our naive online inference (in-
cremental Gibbs sampler) for MMSB to the batch Gibbs
sampler, and we demonstrate the efficiency of online infer-
ence for MMSB with Dataset A.

We experimented with a machine with a 48-gigabyte
memory and a 12-core (24-thread) CPU of 3.06 GHz clock
speed. The results are shown in Fig. 8, where the times (in
seconds) to estimate each model and rate of increase of pre-
diction performance in terms of Eq. (8) are demonstrated. In
addition, the results with AUC (Area Under Curve of ROC:
Receiver operating characteristic) are also demonstrated in
Fig. 9. In the case of batch Gibbs sampler, the larger the
Gibbs sweeps S employed, the longer the required estima-
tion time but the better the prediction performance. In the

Fig. 8 Comparison of batch Gibbs sampler and incremental Gibbs sam-
pler in terms of rate of increase of test-set log-likelihood. Error bars repre-
sent one sample standard deviation.

Fig. 9 Comparison of batch Gibbs sampler and incremental Gibbs sam-
pler in terms of AUC. Error bars represent one sample standard deviation.

case of an incremental Gibbs sampler, the larger the as-
sumed rejuvenation sequence |R(p, q)|, the longer the re-
quired estimation time but the better the prediction perfor-
mance.

As you can see in Fig. 8, online inference with an incre-
mental Gibbs sampler is much faster than that with a batch
Gibbs sampler, when we used the rate of increase of test-
set log-likelihood as an evaluation metric. Both inference
methods are almost converged at around 0.018 of prediction
performance. To achieve that prediction performance, the
batch Gibbs sampler (when S = 200) took 475,374 seconds
on average, while the incremental Gibbs sampler (when
|R(p, q)| = 10K) took 151,027 seconds on average: 32%
of that of the batch Gibbs sampler. Another online infer-
ence method, the particle filter, behaves similarly to (though
slightly differently from) the incremental Gibbs sampler but
very differently from the batch Gibbs sampler.

Moreover, the batch Gibbs sampler is invoked at every
time interval, so it takes more time when we assume finer
time intervals. On the other hand, online inference meth-
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Fig. 10 Prediction performance of time-dependent inference methods.
Error bars represent one sample standard deviation.

ods such as the incremental Gibbs sampler and particle filter
take constant time since we update the latent variables and
unknown parameters sequentially, no matter how we define
time intervals. For these reasons, online inference is more
appropriate for when the target network is sequentially ob-
served.

Since similar tendencies can be found in Fig. 9 when
we used AUC as an evaluation metric, we use the rate of
increase in terms of Eq. (8) to evaluate models, hereafter.

5.2.2 Incremental Gibbs Sampler vs. Particle Filter

Figure 10 shows the prediction performance of the incre-
mental Gibbs sampler and particle filter and their time-
dependent extensions using Dataset A. The run time of the
(naive) particle filter is longer than that of incremental Gibbs
for the same |R(p, q)| setting; however, it is much less than
that of the batch Gibbs sampler. The greater the |R(p, q)|, the
better the prediction performance but the longer the required
time. As shown in Fig. 10, the prediction performance of
particle filter is greater than that of incremental Gibbs in any
|R(p, q)| setting.

5.2.3 Time-Dependent Algorithms for Incremental
Gibbs Sampler and Particle Filter

As shown in Fig. 10, the time-dependent algorithm works
effectively in both the incremental Gibbs sampler and par-
ticle filter. Moreover, the prediction performance of the
time-dependent particle filter is greater than that of the time-
dependent incremental Gibbs sampler.

The Enron Corporation —an U.S. energy, commodi-
ties, and services company— experienced a drop in stock
market price from around January 2001 and then declared
bankruptcy on December 2, 2001. The datasets we used
for experiments are based on email communications within
that company from December 1999 to March 2002, as we
mentioned previously. Therefore, the network structure of
email communications should be continuously changed, es-

Fig. 11 Prediction performance of time-dependent inference methods
(with Dataset A when |R(p, q)| = 0) in time series plots.

Fig. 12 Prediction performance of time-dependent particle filter and
stock market price (with Dataset A when |R(p, q)| = 0) in time series plots.
Note that the verticle axis for the stock market price is represented upside
down.

pecially from January 2001 to December 2001. We demon-
strate whether and how effectively the time-dependent in-
ference methods capture the change in Fig. 11, by plotting
in time order the improvements in prediction performance,
X(t)−I0(t)
|I0(t)| in Eq. (8), on the basis of that of the incremental

Gibbs sampler when |R(p, q)| = 0.
In this figure, naive online inference methods: parti-

cle filter and incremental Gibbs sampler† achieved stable
performance in the period before January 2001, and there-
fore, this supports the idea that the naive online inference
methods are effective for stationary networks. However,
the time-dependent particle filter and time-dependent incre-
mental Gibbs sampler outperform the naive online inference
methods, especially in the period from January 2001. This
indicates that the time-dependent inference methods ade-
quately capture the change in structure of the email commu-
nications during the crisis at the company, by selectively re-

†Note that these naive online inference methods can reflect
time dependency; however, our time-dependent extensions can
more aggressively track changes in network structure.
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Fig. 13 Prediction performance of time-dependent inference methods
(with Dataset B when |R(p, q)| = 0).

moving past observations in online inference. This supports
the idea that the time-dependent algorithm is effective for
dynamic networks. Note that the time-dependent algorithm
is also effective for stationary networks (in the period be-
fore January 2001) except for the first time interval when the
data is not sufficiently given. Hence, we can use the time-
dependent algorithm even when we do not know whether
the network is stationary or dynamic.

Furthermore, we experimented with the larger Dataset
B, and the results are shown in Fig. 13. From the results,
we can see that selectively removing past observations im-
proves time-dependent inference methods. We can also see
that the time-dependent particle filter performs more effec-
tively than the time-dependent particle incremental Gibbs
sampler.

6. Conclusions

In this paper, we proposed online inference methods for
Mixed Membership Stochastic Blockmodels (MMSB) that
have never been explored. Furthermore, we also pro-
posed time-dependent algorithms for the online inference of
MMSB, reflecting the change in structure of the network
data over time by selectively discarding the past observa-
tions when the change occurs. We experimented with an
email communication dataset to evaluate both the prediction
performance and the time required for the estimation. We
demonstrated that particle filter improved prediction perfor-
mance compared with the baselines of the batch Gibbs sam-
pler and incremental Gibbs sampler. We also demonstrated
that the time-dependent particle filter works more effectively
than either the naive particle filter or time-dependent incre-
mental Gibbs sampler.

More detailed evaluation is left for our future work.
First, we are trying to visualize some examples to demon-
strate whether and how the model can capture changes in
network structure over time. Second, instead of discarding
older observations, we can also update the older group as-
signments. Third, applying our inference methods to a non-
parametric relational model [12] is also worth investigating.
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