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Textual Approximation Methods for Time Series Classification:
TAX and l-TAX

Abdulla Al MARUF†a), Hung-Hsuan HUANG††b), Nonmembers, and Kyoji KAWAGOE††c), Member

SUMMARY A lot of work has been conducted on time series classifica-
tion and similarity search over the past decades. However, the classification
of a time series with high accuracy is still insufficient in applications such
as ubiquitous or sensor systems. In this paper, a novel textual approxi-
mation of a time series, called TAX, is proposed to achieve high accuracy
time series classification. l-TAX, an extended version of TAX that shows
promising classification accuracy over TAX and other existing methods, is
also proposed. We also provide a comprehensive comparison between TAX
and l-TAX, and discuss the benefits of both methods. Both TAX and l-TAX
transform a time series into a textual structure using existing document re-
trieval methods and bioinformatics algorithms. In TAX, a time series is
represented as a document like structure, whereas l-TAX used a sequence
of textual symbols. This paper provides a comprehensive overview of the
textual approximation and techniques used by TAX and l-TAX
key words: time series, similarity search, textual approximation, document
retrievals, key points, longest common subsequence

1. Introduction

There are many symbolic representations of time series. The
motivation of a symbolic time series representation is to ap-
ply rich data structures and algorithms from the text process-
ing and bioinformatics domain to the time series. A sym-
bolic representation also solves the curse of dimensionality
problem by reducing an original time series to a lower di-
mension. Researches in this area all have a common goal to
achieve a high accuracy in time series classification because
of its significance and applicability to various domains.

A time series database is maintained in a time series
classification and similarity search system. Such a system
takes a query time series as its input and finds the most sim-
ilar time series from the database [1]–[6]. These methods
apply time series dimension reduction techniques to trans-
form the time series into its features in a feature space using
certain transformation functions. This improves the search
efficiency because the number of dimensions in the feature
space is usually less than the original time space. The trans-
formation function varies with the similarity search meth-
ods. Finally, the distance definition (Euclidean distance,
Manhattan distance, Dynamic Time Warping etc.) is used
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to calculate the similarity between the query and stored time
series.

TAX [3] is a novel method of time series modeling
based on textual approximation that uses a text document-
like structure as its core. The significant point of this method
is that it uses existing document retrieval techniques, which
are widely used in natural language processing and string
searches. However, it is difficult to apply such techniques in
a time series because time series data are not a sequence of
terms, but rather a sequence of numeric values over time. It
is not easy to extract the terms from such time series data
in the same way as from a text document. TAX converts
the time series into a new structure which is similar to a text
document.

TAX extracts temporal terms (T-terms) from time se-
ries data and stores them like words in a text document by
introducing a temporal feature vector constructed from lo-
cal features of the key-points. TAX then applies techniques
from natural language processing. TAX performs time se-
ries classification very well. An extended version of TAX,
called l-TAX [7], was proposed to reach even higher accu-
racies than TAX. l-TAX uses techniques from both natural
language processing and bioinformatics. The major contri-
bution of l-TAX is that it achieves the most accurate classi-
fication accuracies over existing dominant methods.

The remainder of this paper is structured as follows.
Some previous works related to our paper are described in
Sect. 2. Section 3 provides some definitions used herein
as well as a short introduction of TAX and l-TAX. Next,
in Sect. 4, a detailed description of TAX using document
retrieval methods is given. Section 5 describes l-TAX it-
self, and an experimental evaluation of both methods is then
shown in Sect. 6. Finally, we provide some concluding re-
marks regarding our paper in Sect. 7.

2. Related Work

Many different techniques have been proposed to find the
similarity between two time series [1], [2], [4]–[6], [28]. A
threshold-based query technique was introduced in [1]. This
technique decomposes a time series into time intervals of the
subsequent elements. Similar interval sequences with values
above a threshold are retrieved as being similar. The tech-
nique considers all data points above the threshold without
considering the noise. Our method uses a similar kind of
threshold approach to sort out the key points but after noise
filtration is applied. In [2], an efficient similarity search for
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a sequence database, which uses DFT for the feature space
transformation, is proposed. This causes a curse of dimen-
sionality. In our proposed model, we use selected key-points
to extract different features. As the number of key-points is
very low, the dimensionality problem is avoided. In [4]–[6],
a time series in equal segments is divided, and the mean of
all segment values, or Piecewise Aggregate Approximation
values, is used to reduce the dimensionality. As our method
filters the data before feature extraction and considers only
some of the important data, it obtains better features for rep-
resenting the time series.

A number of works have been conducted on the tex-
tual approximation of a time series, although most of them
are a type of symbolic approximation method. One of the
pioneer works in this area was conducted by H. Shatkay
and S.B. Zdonik [8]. The authors proposed a general ap-
proximate data representation for a time series with the de-
velopment of a breaking algorithm. They focused on rep-
resenting the sequences using real valued functions. Their
approximation is always tightly coupled with the applica-
tion domain, whereas TAX/l-TAX uses a generic domain-
independent approximation. Another symbolic approxima-
tion method called SAX [5], [9] was also proposed. SAX is
a novel symbolic aggregate approximation method used to
approximate a time series with a sequence of symbols. SAX
uses Piecewise Aggregate Approximation to approximate a
time series into its symbolic form. It divides the time series
into equal segments. The mean of each segment is mapped
to symbols from a predefined alphabet. By converting a time
series into a symbolic sequence, the storage and search costs
can be drastically reduced, which is the main point of SAX.
From our viewpoint, it is quite inefficient to consider all data
points during a symbolic representation.

Wang et al. [18] proposed Piecewise Vector Quantized
Approximation (PVQA) for a time series data approxima-
tion method. The authors used a piecewise quantization
method where each time series is divided into equal sized
segments, and each segment is replaced with the most sim-
ilar codeword.The time series is then approximated as a se-
quence of codes. The idea of PVQA is much similar to
that of APCA [28] and SAX [5] because they are segment-
based, which means that time series data are decomposed
into small-length segments, where each segment is approxi-
mated using the average value in APCA, and encoded using
the average value in SAX. In PVQA, a time series is decom-
posed into equal sized segments. Each segment is encoded
and approximated using a so-called codebook. The basic
idea of our methods, TAX and l-TAX, is not segment based
but key-point based. Key-points for a time series approxi-
mation are extracted from the time series. Each key-point
is encoded using pre-calculated terms. The neighbor points
around a key-point are used as the characteristics of the key-
point. Segment decomposition is unnecessary in both l-TAX
and TAX.

Seo et al. [12] proposed a method for multivariable
stream data classification, which is similar to our own. The
main idea behind their method is to transform a raw time

series into a symbolic sequence by calculating the differ-
ence between two consecutive data points, and then assign-
ing the value to a symbol based on its range values so that
the n-gram is considered as a word. To classify the time
series, they used the conventional tf-idf method as one of
the classifiers. Although their method is quite similar to our
own, they significantly differ in terms of the temporal fea-
ture definition and term construction. In our method, we
calculate the multi-dimensional feature vector from the con-
tiguous values around a key-point. A key-point is extracted
from a time series as a characterizing point of that time se-
ries. The set of terms is constructed by clustering all feature
vectors beforehand.

Edit-distance based methods have also been proposed
such as ERP [29] and EDR [21]. ERP [29] can be viewed as
a variant of EDR [21] and DTW, where the authors proposed
a distance function called Edit Distance with Real Penalty,
which deals with a relaxed equality rather than a strict equal-
ity between symbols. Our method uses a strict equality and
we have a plan to implement a relaxed equality in the fu-
ture. AMSS [19] is another longest-common subsequence
based technique that uses its own distance definition to find
the distance between two symbols, which is in contrast to
our use of exact symbol matching. Other textual approxi-
mation methods including those in [30]–[34] are based on
application-domain dependent symbolic representation of a
time series from significant knowledge on the time series
features, which are quite unlike our method as our goal is to
build a domain independent model. Non-metric similarity
functions based on the Longest Common Subsequence are
presented in [27], where the authors proposed a method that
performs significantly well for noisy data. For noisy data
exact similarity computation is inefficient. The method in
[27] introduces approximate algorithms with provable per-
formance bounds, and is proposed for trajectories, which
might contain high noisy data. Our proposed model is based
on single dimensional data.

A framework for an uncertain time series similarity
search was proposed in DUST [35]. DUST provided a theo-
retically sound method of computing distances between two
time series where individual time stamps may be associated
with different error distributions. The distance function of
DUST depends on the type of error distribution. Our model
uses selected key-points, and thus it does not depend on how
the data are distributed. This makes the TAX model generic
for various domains.

3. Time Series Textual Approximation

The novelty of our proposed method is that we introduce a
new time series representation technique to represent a time
series as a text-document-like structure for use in an existing
document retrieval model. In our proposed method, a time
series is represented as a sequence of temporal terms, called
T-terms, which are basically transformed by constructing
multi-dimensional feature vectors from contiguous values
around the important data points that characterize a time se-
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ries, called key-points.
Existing methods focus only on a value-based approx-

imation to represent a time series, which we consider to be
the main reason for the application dependencies of such ex-
isting methods.

The challenge is to develop a generic approximation
model to obtain more precise classification for various types
of time series data sets incorporating a document retrieval
model for time series documents. Although there have been
some previous researches [5], [8]–[12], as described in Sect.
2, in which a time series is effectively represented by a set
of symbols, they are only for a few specific areas of ap-
plications. None of these methods consider representing
a time series in a variety of application areas using one
generic method. To incorporate document retrieval mod-
els into a time series, we developed two new textual models
for a time series representation, i.e., TAX and l-TAX, as de-
scribed herein.

3.1 TAX††††

TAX uses existing document retrieval models to retrieve
similar time series. It transforms a time series into a
document-like structure. A text document contains a se-
ries of words or terms. The TAX process extracts terms,
called T-terms, from a time series, and stores them in a doc-
ument. TAX is a bag-of-words model based method. A
bag-of-words model is widely used in natural language pro-
cessing and information retrieval. This model presents a text
or document as an unordered collection of words disregard-
ing grammar and even word order.

TAX uses heuristics as in modern search engines. In
modern search engines, not all the words in a document
are considered equally important during document retrieval.
Similar to search engines, TAX also uses only the impor-
tant points of a time series to construct the T-terms, which
are used to retrieve the time series. These important point
selections are very important from the viewpoint of TAX.
For all the time series, TAX uses the T-terms to calculate
the term- f requency and inverse-document- f requency (t f -
id f ) to create a document vector representation of a time
series. A query time series, which is also transformed into
a TAX document vector, is compared with the stored docu-
ment vectors using a cosine measure to find any similarities.
This process in more detail is discussed in Sect. 4.

3.2 l-TAX†††††

Term sequence consideration is a significant factor for cor-
rect document retrieval. During the construction or retrieval
phase, TAX does not keep any map of the T-terms sequence,
despite using document retrieval methods. For example,
Fig. 1 (a) shows The TAX approach for a query, the lazy
brown dog jumped over the quick fox. The original text

††††The original work of TAX was presented in [3]
†††††The original work of l-TAX was presented in [7].

Fig. 1 Difference between TAX and l-TAX.

is “the quick brown fox jumped over the lazy dog”. TAX
matches the query terms to its bag and obtains a positive re-
sult because these (texts) are (regarded as) the same set of
terms when the word order is ignored. Although the query
is different, TAX identifies this match as a success. A set of
T-terms can be used to represent many different time series.
If the number of T-term occurrences is the same in various
time series, then from the viewpoint of TAX, such occur-
rences will be considered as similar, as their t f -id f count
will always be the same. This is a considerable failure for
TAX, which increases its false-positive rate.

TAX has therefore been extended to solve this prob-
lem. The extended TAX, which is called l-TAX, inherits
a significant feature from a modern search engine retrieval
model. For this feature, the term’s order of appearance in
the document is considered. Figure 1 (b) shows the same
problem under which TAX fails. l-TAX keeps a map of the
terms and their position in the document. During retrieval,
a TAX query document is therefore checked based on its
terms and their positions. If a position varies for the same
term between the query and stored document, l-TAX cor-
rectly identifies them as dissimilar. As l-TAX represents a
time series as a sequence of T-term appearances, it uses the
Longest Common Subsequence (LCS) as its distance mea-
sure. l-TAX finds a similarity by checking the LCS length
between the query and the stored time series. For a certain
query, the time series that obtains the maximum LCS length
is considered as the most similar to the query time series.

3.3 Terminology

In this section, we describe some basic TAX concepts and
definitions that are needed to understand the whole process.

3.3.1 Time Series

Time series data, T , can be represented by a sequence of
pairs ei = (vi, ti), which are composed of a value vi and time
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point ti, i.e., T = (e1, e2, . . . , en). For simplicity, we assume
that the time interval of the time points are equal and no
missing value time points exist. We can then simply write
time series data, T , as a sequence of values, such as like
T = (v1, v2, . . . , vn).

3.3.2 T-term

A temporal term is a set of selected and quantized data
points that frequently occur in a time series. A T-term is an
analogy of the term (word) in a document. Therefore, time
series data, T , can be approximated using a set of T-terms
contained by T. A large amount of time series data can be
approximated using a small number of T-terms. Each of the
T-terms is identified using a unique Tterm id.

3.3.3 T-Document

A T-document is an approximation of time series data, as
a document, which contains a sequence of T-terms. A T-
document, Tdoci, contains a sequence of T-terms such as
Tdoci =< Ttermi1 ,Ttermi2 , . . . ,Ttermij >.

As defined above, a set of temporal terms is used to de-
scribe a textual approximation of time series data. The terms
in the documents and T-terms in the T-documents differ in
their manner of term representation. Owing to the nature of
time series data, following representation conditions should
be taken into consideration.

1. A T-term should be fundamental, which means that the
T-term should represent its characteristics, called key-
points, in the time series data.

2. A T-term should be minimal. In other words, the num-
ber of T-terms should be small enough to represent the
key features of a time series. Moreover, this number
should be nearly constant even if a large number of
newly arrived time series need to be approximated.

To meet the above two conditions, we propose the fol-
lowing concepts of a key-point and its features.

• A key-point of a time series is a point that partially ap-
proximates the time series. All key-points of the time
series data are an approximation of the data. Therefore,
an approximation of related time series data can be ob-
tained by connecting adjacent key-points into a line.

• The characteristic feature of a key-point is defined by a
vector, which is called a feature vector. The dimension
of a feature vector is NF = 2Nf + 1, where NF is
the dimension of the vector, and Nf is the number of
neighboring data points (in the time series) of the key-
point.

– The middle entry of a feature vector i.e. the Nf -
th entry, indicates the difference around the key-
point, toward its positive direction.

– The first to the (Nf − 1)th entries, indicate the av-
erage difference with the points before a key-point
within the related time interval.

Fig. 2 T-term.

– The (Nf + 1)th to the (2Nf + 1)th entries indicate
the average difference with the points after a key-
point within the related time interval.

Figure 2 shows a time series with many key-points extracted
to characterize the time series. In the figure, one key-point
is illustrated to exemplify its particular feature. The differ-
ences from the key-point to its neighboring data points (in
this case, Nf = 3) are calculated and aggregated into the bins
of its feature vector corresponding to the data points used in
difference calculation. From the calculated feature vector
of the key-point, an appropriate T − term is assigned to the
key-point through a quantization of that feature vector.

From the viewpoint of both TAX and l-TAX, a T-
document is a time series representation method. Such a
representation needs to satisfy the following conditions.

1. A T-document should represent a temporal document
vector for retrieval.

2. A T-document should be comparable.

TAX and l-TAX follow two different methods for rep-
resenting a T-document. TAX uses a similar vector repre-
sentation required to represent a text document. T-document
vector Fi of T-document Tdoci, is represented as, Fi =

( fi,1, fi,2, . . . , fi, j), where fi, j is a weight of Ttermj in T-
document Tdoci. l-TAX uses a sequence of symbols to
represent a T-document. In l-TAX, T-document vector of
the T-document Tdoci, i.e., S i, is represented as, S i =

(s1, s2, . . . , s j), where s j is a symbol representing a partic-
ular T − termj in T-document Tdoci.

3.4 Basic TAX/l-TAX Process

We show the TAX and l-TAX processes in Fig. 3. In both
cases, the method is divided into two phases. In the con-
struction phase, TAX and l-TAX detect key-points from
the time series data and use their feature vectors to pre-
pare T-terms that are used to construct T-documents. The
T-documents are stored in database. During the retrieval
phase, query time series is approximated by the TAX or
l-TAX. Alike the construction phase, both methods (TAX
and l-TAX) detect key-points and calculate their feature vec-
tors. These feature vectors are assigned to the T-terms con-
structed during the construction phase. After the assign-
ment, a query T-document vector is generated and used to
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Fig. 3 TAX process.

Fig. 4 Example of TAX AND l-TAX (1).

retrieve a set of similar documents from the database.
The details of each of these steps are discussed in

Sect. 4.

3.5 Examples

In the following examples, we show how well TAX and l-
TAX perform on the same time series. We use only simple
time series so that readers can understand the process eas-
ily. In both cases, TAX fails whereas l-TAX finds the similar
time series successfully. The examples are used only to ex-
plain the difference between the two methods as well as the
effectiveness of the document retrieval methods. The defini-
tion of our multi-dimensional feature vector and the T-term
construction method are described in the next section.

(1) This example uses two time series (T1 and T2) and
a query time series (TQ) as shown in Fig. 4, which are all
synthetic time series. We apply both TAX and l-TAX to find
the most similar time series to TQ from T1 and T2. It can be
clearly observed that TQ = T2.

In our model, we first convert all time series into their
textual forms. To do so, we assume that some important data
points exist that can be used to characterize the time series.
We can therefore represent a time series by considering only
those points and without losing the important properties. In
Fig. 4, we show these points using circles, which were se-
lected uniformly for the sake of simplicity. We assign some
textual terms to each of these points to represent the time se-
ries textually. To represent the given time series, we define a

Table 1 Time series similarity using TAX.

Time series Term Frequency Document
Vector

Similarity
with TQ

flat up down

T1 3 1 1 (3, 1, 1) 1
T2 3 1 1 (3, 1, 1) 1
TQ 3 1 1 (3, 1, 1)

Table 2 Time series similarity using l-TAX.

Time series Term Sequence LCS Length

T1 (flat, up, flat, down, flat) 4
T2 (flat, flat, down, flat, up) 5
TQ (flat, flat, down, flat, up)

Fig. 5 Example of TAX AND l-tax(2).

set of textual terms, Term = { f lat, up, down}, which can rep-
resent all three given time series. Using this set, the textual
representation of the time series T1, T2 and TQ become, T1 =

{ f lat, up, f lat, down, f lat}, T2 = { f lat, f lat, down, f lat, up}
and TQ = { f lat, f lat, down, f lat, up}.

TAX uses the term frequency and inverse document
frequency (t f -id f ) to create document vectors for all time
series. For simplicity, we consider id f = 1. Table 1 shows
the document vectors by counting t f for T1, T2 and TQ. This
table also shows the cosine similarity of T1, T2 and TQ.

TAX shows that both T1 and T2 are similar to TQ, but
fails to distinguish that T1 is different from TQ because both
T1 and TQ contain equal numbers of the same terms, al-
though their term sequences are different.

The l-TAX approach is shown in Table 2. We represent
each time series as the term sequence. The LCS length be-
tween T2 and TQ is higher than that between T1 and TQ. So,
l-TAX therefore selects T2 as most similar time series to TQ,
and T1 is successfully identified as having a different shape
than TQ, although both of them have equal number of the
same terms.

(2) Fig. 5 shows a more complex example using real
time series. Here, we perform a similarity search to classify
the given time series.

In the figure, there are three electrocardiography (ECG)
time series data, labeled as T1, T2 and TQ. T1 is a normal
ECG data, whereas T2 is a mirror view (opposite) of T1. As-
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Table 3 Example of key-point feature vector (1).

Time series Important Points Vector to Rep-
resent impor-
tant points

Terms Assigned
to Imp. points

TQ K01 {0.32,-0.33} TermHH

K02 {0.12,0.31} TermLH

K03 {0.04,0.0} TermLO

K04 {0.054,-0.08} TermLL

K05 {-0.04,0.01} TermLO

T1 K06 {0.32,-0.33} TtermHH

K07 {0.12,0.31} TermLH

K08 {0.04,0.0} TermLO

K09 {0.054,-0.08} TermLL

K10 {-0.04,0.01} TermLO

T2 K11 {0.01,-0.04} TermLO

K12 {-0.08,0.054} TermLL

K13 {0.0,0.04} TermLO

K14 {0.31,0.12} TermLH

K15 {-0.33,0.32} TermHH

sume that T1 and T2 represent two different categories of
cardiac problems, IrregularPulse and HeartPounding re-
spectively. TQ is the given ECG data, where the category is
unknown. We have to find the category of TQ. To do so, we
find the similarity of TQ with T1 and T2.

From the observation it is clear that TQ is the same as
T1. Similar time series are classified under the same cate-
gory. TQ and T1 should therefore have the same category
because TQ is more similar to T1 than to T2. This is the
nearest neighbor classification technique [13]–[15], where
we assign a category label to an unlabeled time series by
finding the category of its nearest neighbor. We apply both
TAX and l-TAX to find the most similar time series of TQ

from T1 and T2. We assume that the important points that
characterize the time series are extracted, shown in the cir-
cles in Fig. 5. We label these points as K01, K02, . . . , K13

etc. We also assume that these points are directly influenced
by their surrounding points which is why they are more im-
portant than any other points. To represent these important
points we also involve their surrounding points. For each
important point, we calculate a vector by taking the differ-
ence between the important point and its surrounding points
(previous and next time points from the original time series).
The vectors that represent the important points are shown in
Table 3.

We now represent the time series using some textual
terms. To do so, we assign some textual terms to each of
the key points. There are many ways to assign a term to
an important point. As a simple example, we assign the
terms based on the vectors calculated to represent the im-
portant points. We uniformly define some thresholds and
check the vector values against these thresholds to find the
appropriate terms. Depending on the values and thresholds,
we map each of the entries of a vector to a symbol from
S = {O, L,H}. If any of the vector entries have an absolute
value of less than or equal to 0.01, we assign the symbol
O. Any values greater than 0.01, and less than or equal to
0.2, are assigned a symbol L. Finally, all values of greater
than 0.2, are assigned the symbol H. For each vector entry,

Table 4 TAX document vectors.

Time series Document vector Similarity with TQ

T1 (1, 1, 1, 1, 1) 1
T2 (1, 1, 1, 1, 1) 1
TQ (1, 1, 1, 1, 1)

Table 5 Term sequences of the example time series.

Time Series Term Sequences (Ttermxx) Similarity with
TQ

T1 HH , LH , L0, LL, L0 5
T2 L0, LL, L0, LH , HH 3
TQ HH , LH , L0, LL, L0

the associated important point receives an assignment. By
combining the assigned symbols, the important points re-
ceive their terms such as TermLH and TermHH . In this exam-
ple, {TermHH ,TermLH ,TermLO,TermLL,TermLO} is used
as the term set.

After term generation, TAX uses t f -id f to calculate the
document vector for each time series. We calculate the doc-
ument vectors for the given time series T1, T2 and TQ using
t f -id f . For simplicity, we consider id f = 1. The results are
shown in Table 4.

TAX finds TQ to be equally similar to T1 and T2, al-
though T1 and T2 are not the same, and are rather opposite
each other. The term sequences for T1 and T2 are HH, LH,
L0, LL, and L0, and L0, LL, L0, LH, and HH, respectively.
This creates no difference in the t f -id f based calculation
because t f -i f d only counts the number of appearances of a
term. In this case, TAX classification therefore fails. TAX
obtains an equal match with two different time series whose
categories differ. The only solution to this problem is to
consider the term sequences during a similarity calculation.
l-TAX uses LCS with TAX instead of t f -id f to take the term
sequences into consideration during a similarity search. The
similarities among T1, T2 and TQ are calculated from the
term sequences shown in Table 5. In this case, the LCS
length is used to measure the similarities among the time
series. The similarity between T1 and TQ is higher than the
similarity between T2 and TQ, which means that T1 is more
similar to TQ than to T2. The predicted category for TQ is
therefore the same as T1.

These examples show that the term sequence must be
considered to obtain an accurate similarity of various kinds
of time series and increase the classification accuracy.

4. Textual Approximation

In this section, we discuss the necessary details of TAX and
l-TAX, providing the reader with a better understanding of
the proposed process. We then explain the process in greater
details in the following section.

4.1 Key-Point Detection

Key-points are the important points characterizing the fea-
tures of a time series. There are many ways to extract such
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points. TAX and l-TAX combine two methods for a better
approximation of time series data by extracting key-points
in multiple ways.

The first method is to consider the second difference
of the time series from the viewpoint of the time dimen-
sion. For time series data T =< v1, . . . , vn >, the second
difference, i.e. g2, is defined as, g2 =< g2,1, . . . , g2,n >,
g2,i = g1,i − g1,i−1, where g1,i = vi − vi−1. A set of key-point
candidates can be obtained by using g2. All candidates are
verified to check whether they are a key-point using a thresh-
old ε1. If a candidate exceeds this threshold at a particular
time, then the value of that time is detected as a key-point
r1,k for the time series data. When threshold ε1 is given, sev-
eral key-points, K1 = {r1,1, . . . , r1,s1 } can be detected from
the time series data using this method, where s1 is the num-
ber of key-points detected.

In the second method, the difference between P-point
weighted moving average and the original time series data
is used. The P-point weighted moving average is defined
as
∑P

l=1(wl ∗ ul), where wl is a weight between 0 and 1,∑
(wl) = 1 and ul is the l-th entry value in the time series

sub-sequence to be filtered. Assume that the time series data
filtered by the P-point weighted moving average can be rep-
resented by FTP =< dP,1, . . . , dP,n >. Then, given threshold
ε2, if a point meets the condition abs(dP, j) ≤ ε2, the point is
a key-point, r2,k. Next, the following key-point set, K2, can
be obtained as K2 = {r2,1, . . . , r2,s2 }, where s2 is the number
of key-points detected.

As described above, key-points from both methods are
merged as a set of T-term candidates. The final set of key
points is calculated as, K = ∪2

i=1(Ki), where Ki indicates the
key points received from different methods. In this case, i =
2. Using the proper settings of the two parameters, ε1 and ε2,
key-point extraction can be well controlled to characterize a
set of time series data.

4.2 Key-Point Features

The feature vectors are calculated for all key-points. The
dimensionality of a feature vector is 2Nf +1. For a key-point
vtp , at t = tp in the time series data, the i-th entry ftp,i of the
feature vector is calculated using the following equation.

ftp,i =

Wf∑

j=1

(v(tkp−N f×Wf−w f /2+(i−1)×Wf )+ j−1 −

v(tkp−N f×Wf−w f /2+(i−1)×Wf )+ j)/(2 × Nf + 1), (1)

where Wf , (= 2 ∗w f +1) is related to the number of time se-
ries points, around the key point, which are used to calculate
the feature vector.

4.3 T-Term Construction

Both TAX and l-TAX quantize the feature vectors to con-
struct a set of T-terms. Quantizing each dimension by split-
ting the domain into certain intervals because the dimen-
sionality of the feature vector is large and many quantized

cells contain fewer T-terms. The quantization method used
by TAX and l-TAX is therefore a clustering method known
as the bag-of-key-points model, which is frequently used
in image processing research. All key-point feature vectors
are clustered by using the K-means clustering method. The
clustering depends on the distance between the cluster cen-
ter and a feature vector. The number of clusters, NT−term is
predetermined in the case of the K-means. Each cluster is
identified by its T-term ID.

4.4 T-Document Vector Construction

All T-terms are used to construct a T-document vector. T-
document vector construction is different in the case of l-
TAX. Herein, we discuss only TAX T-document vector con-
struction, and l-TAX T-document vector construction is de-
scribed in Sect. 5.

TAX uses t f -id f to construct its T-document. The val-
ues of t f -id f is a product of the term frequency (TF) in a
document and the inverse of the number of documents (IDF)
containing the term. The following equation is used to cal-
culate the t f -id f of the i-th document of the j-th term:.

t f id f (Ttermj, tdoci,N) = t f (Ttermj, tdoci)

× id f (Ttermj,N), (2)

where t f (Ttermj, tdoci) is the term frequency of the T-term
Ttermj in the T-document tdoci, id f (Ttermj,N) is the in-
verted document frequency, and TN is the number of total
time series. t f (Ttermj, tdoci) and id f (Ttermj,N) are calcu-
lated as follow:

t f (Ttermj, tdoci) = σi f req(Ttermj)i

id f (Ttermj,N) = log(
N

numTdoc(Ttermj)
)

For t f (Ttermj, tdoci), f req(Ttermj)i is the frequency
of the T-term Ttermj in the T-document tdoci, and σi is a
parameter to normalize f req(Ttermj)i. For id f (Ttermj,N),
N is the number of T-documents, and numTdoc(Ttermj) is
the number of T-documents that contains the T-term Ttermj.

4.5 T-Term Assignment

During the retrieval phase, when TAX receives a query, it
converts the query time series into its T-document represen-
tation using the same method used in the construction phase.
TAX extracts key-points from the query time series and cal-
culates their feature vectors. It then assigns T-terms to each
of the feature vectors in the following manner.

Assume that, QK = {qk1 , . . . , qkNqk } is a set of query
key-points and FQK = { fQK,1, .. fQK,Nqk } is the set of their
feature vectors. For each fl ∈ FQK , TAX determines T-term
Ttermmin = Ttermm such that

minimizem(distance( fl, center(Ttermm)).

This Ttermmin is assigned to the key-point fl.
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4.6 T-Document Retrieval

A query T-document vector Tdocq is prepared using its t f -
id f calculation. TAX uses this query document to search
and output the following set of documents, T Q.

T Q = {Tdocm|distanceTdoc(Tdocq,Tdocm)

≤ εq,Tdocm ∈ T D}, (3)

where T D indicates all T-documents in the TAX database.
It should be noted that neither the sequence nor the

temporal information of a time series is directly used in the
T-document retrieval phase. All information related to the
temporal aspects is absorbed in the T-document representa-
tion with TAX.

5. Sequential Representation of TAX

In Sect. 3, we showed a failure case of TAX. TAX does not
consider the term sequences, but such consideration can sig-
nificantly increase the classification accuracy. To solve this
problem, TAX was extended into l-TAX. The motivation of
l-TAX is to consider the term sequence based on time se-
ries sequential representation. l-TAX is prepared to consider
the term sequences during classification, and represents a
T-document vector as a sequence of symbols instead of t f -
id f counts. l-TAX uses the fundamental idea of TAX and
differs from TAX in the manner in which it constructs a
T-document vector and calculates the distance between T-
documents. In the next section, we describe how l-TAX cre-
ates its T-document vector and the distance definition it uses
for term sequences.

5.1 Term Sequence Construction

l-TAX uses term-sequences to create a T-document vector,
which is generated form the set of T-terms and its corre-
sponding key-points. For each key-point, its T-term id is
found to obtain the sequence for a T-document.

Assume that, K = {kp1, kp2, . . . , kpn} is a set of
key-points extracted from a time series and ordered by
the appearance time in the original time series. T =
{T1,T2, . . . ,T N} is a set of T-term ids. For, each key-point
from K, we find its corresponding term. The corresponding
Tid from T is used to obtain the term sequence, Termsequence

= {Tid,kp1 ,Tid,kp2 , . . . ,Tid,kpn }. Figure 6 shows the term se-
quence construction.

l-TAX stores the training data class labels, terms, and
term sequences in a database. During the retrieval phase,
l-TAX loads these values and uses them to predict the class
label of an unlabeled query time series.

5.2 Classification Using LCS

l-TAX converts a query time series into a T-document vec-
tor using a sequence representation. l-TAX compares this

Fig. 6 Term sequence construction.

query T-document with the stored T-documents using the
LCS length. It finds the best matched sequence and its class
label, and predicts the label as the query time series label.

The LCS problem can be solved using the dynamic
programming described in [16], [17]. Assume that X =
(x1, .., xm) and Y = (y1, .., yn) are two term sequences of
length of m and n, respectively. A dynamic programming
algorithm iteratively builds a (m + 1) × (n + 1) score ma-
trix LCS , where LCS [i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ n, is the
length of the LCS between two prefixes X[i] = (x1, . . . , xi)
and Y[ j] = (y1, . . . , y j). The LCS score matrix can be calcu-
lated as follows:

LCS [i, j] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if i = 0 or j = 0
LCS [i − 1, j − 1] + 1 if xi = y j

max(LCS [i − 1, j],
LCS [i, j − 1]) if xi � y j

(4)

The LCS length of two sequences is found in
LCS [m, n]. In l-TAX, one query can obtain multiple nearest
neighbors with the same magnitude. This is because of the
distance definition of l-TAX. l-TAX uses a whole match to
calculate the LCS length. If two symbols match exactly, we
increase the length by 1; otherwise, the length is 0. For this
reason, more than one sequence can obtain an equal maxi-
mum LCS length with the query. We consider the class la-
bels of all such sequence. The system predicts a query class
in which more than 50% of the best matched sequences are
labeled.

5.3 Algorithmic Complexity Analysis

The whole process is divided into training and search
phases. Algorithms 1 and 2 show the training and retrieval
phases of l-TAX [7] respectively. Algorithm 1 is run only
once during the training phase. If new training data are
available only then it runs again. Algorithm 2 is run for
every query time series.

In both phases, the key-point detection and feature cal-
culation take linear time. We maintain a map between the
key-point feature and the original time series, which also
takes linear time. During a training session, we apply K-
means clustering to the feature vectors. K-means clustering
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Algorithm 1 l-TAX Training phase
Input: dtrain: 2D Array of All training data, ε1: key point
threshold, ε2: key point threshold, w f : neighborhood size,
tnum: numbers of terms
Output: sdoc: a document that works like a database
Variables: strain: contains the training term sequences,
key f eature: contains feature vectors, labelstrain: contains the training data
class labels

1: strain ← empty array
2: key f eature← empty array
3: sdoc ← empty file
4: dtest ← n data from training set as test case
5: labelstrain ← load training class labels
6: for i = 1→ length(dtrain except dtest) do
7: key points← get key points(dtrain[i], ε1, ε2)
8: key f eature[i]← get f eatures(key points, w f )
9: end for

10: terms← get clusters(key f eature, Tnum)
11: for i = 1→ length(key f eature) do
12: j← get source time series(key f eature[i])
13: belongs to← get term id(terms, key f eature[i])
14: S train[ j]← append(strain[ j], belongs to)
15: end for
16: paremeters← optimise parameters(S train, dtest)
17: Store paremeters,labelstrain,strain and terms in S doc

Algorithm 2 l-TAX Search Phase
Input: dquery: A time series, ε1: key point threshold, ε2: key
point threshold, w f : neighborhood size
Output: predicted class label for dquery

Variable: squery: contains the query term sequence

1: Load sdoc //Loading labelstrain, strain and terms
2: key points← get key points(dquery, ε1, ε2)
3: key f eature← get f eatures(key points, w f )
4: for i = 1→ length(key f eature) do
5: belongs to← get nearest term id(terms,

key f eature)
6: squery ← append(squery, belongs to)
7: end for
8: best lcs← −1
9: best matches time series index← −1

10: for i = 1→ length(strain) do
11: lcs← get lcs(squery, strain[i])
12: if lcs > best lcs then
13: best lcs← lcs
14: best matches time series index← i
15: end if
16: end for
17: return labelstrain[best matches time series index]

takes O(Imnk) time, where I is the number of iterations, m
is the dimension of the feature vector, n is the number of
the key-points in the training data set, and k is the num-
ber of terms. The term assignment, document vector gen-
eration (TAX), and term sequence generation (l-TAX) also
take linear time as we keep the maps for key-points to time
series and key-points to the clusters. During the retrieval
phase, the nearest cluster center search and assignment takes
O(nm) time, where n is the number of query key-points and
m is the number of terms. TAX calculates the cosine dis-
tance of the query document vector and training document

vectors, which is conducted in linear time. The longest com-
mon subsequence uses dynamic programming, which takes
polynomial time. The query sequence matches against all
training sequences. Each match takes O(nm) time, where n
and m are the lengths of the sequences.

In this paper, we focus on the accuracy of the proposed
method, rather than its efficiency. As explained above, the
efficiency of the method is similar to that in other LCSS
methods such as PVQA [18] and AMSS [19]. Further details
of the efficiency of our method are omitted due owing to the
space limitations of this paper.

6. Evaluation

To evaluate the effectiveness of TAX and l-TAX compared
to other metrics or similar measures, we performed a sim-
ple classification task, which is to assign one of the pos-
sible categories to an unknown time series from a known
set of categories. This method has been used extensively in
previous researches [13], [20]–[23]. We compare TAX and
l-TAX with other existing methods such as Euclidean [5],
DTW [20], TAX, OTWED [24] and SAX [5]. We chose
these methods for a comparison with our own method based
on the work in [24]. These methods use the same tech-
niques as TAX and l-TAX. These methods, including TAX/l-
TAX use Euclidean distance, dynamic programming, or edit
distance in their distance definitions and we performed the
same classification task to demonstrate their effectiveness.

6.1 Experimental Setup

6.1.1 Data-Sets

The data-sets were collected from the UCR Time Series
Data Mining Archive [20]. These data-sets contain data
from twenty different domains. The sources of the time
series range from motion capture (GunPoint), to OCR
word recognition (50Words), and electrocardiogram mea-
surements (ECG200). Lightning 2 and 7 are lightning data
collected from the Fast On-orbit Recording of Transient
Events (FORTE) satellite. The data source gives us 5397
training and 18612 test time series data with varying length
and different category cardinalities. The smallest time series
(Synthetic Control) contains sixty data points, whereas the
longest one (Lightning-2) contains 637 data points. Table 6
shows the characteristics of the data-sets.

For each data-set, a training subset is defined along
with a testing subset. The classification is performed based
on the simple nearest-neighbor decision rule. Initially, we
select a training data set containing a time series for which
the correct category is given. To assign a category to an un-
known time series selected from the testing data-sets, we se-
lect its nearest neighbor (using an LCS similarity measure)
within the training data-sets, and then assign the associated
category to its nearest neighbor.
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Fig. 7 Accuracy comparison of TAX/l-TAX with other methods (Data for Euclidean, DTW, ODTW,
OTWED are taken from [24] and data for SAX are taken from [25]).

Table 6 Characteristics of the short time-series datasets.

Dataset Categories/Length |Train|:|Test|
50Words 50/270 450:455
Beef 5/470 30:30
Coffee 2/286 28:28
FaceAll 14/131 560:1690
FISH 7/175 175:175
Lightning2 2/637 60:61
OliveOil 4/570 30:30
SwedishLeaf 15/128 500:625
Trace 4/275 100:100
Wafer 2/152 1000:6174
Adiac 37/176 390:391
CBF 3/128 30:900
ECG200 2/96 100:100
FaceFour 4/350 24:88
GunPoint 2/150 50:150
Lightning7 7/319 70:73
OSULeaf 6/427 200:242
Synthetic 6/60 300:300
TwoPattern 4/128 1000:4000
Yoga 2/426 300:3000

6.1.2 Parameter Settings and Accuracy Measure

Both TAX and l-TAX require certain parameters to be set to
produce an optimal output. We train the system using the
training data to determine the optimized values for the pa-
rameters. We use a leave-one-out cross-validation (in which
a time series is selected one at a time from the data-set, the
remaining time series data are used as the training set, and
then the selected data is used for testing). We arbitrarily set
all the parameters and check the accuracy. We perform this
test many times on the training data-set taking different pa-
rameter sets. We keep the parameters that allows the system
to perform better. We use this method to find the optimal
values for the key-point threshold parameters ε1 and ε2. We

optimize these two thresholds by selecting their values in a
manner such that the number of key-points always remains
between 5% and 15% of the original time series length. For
example, if a time series contains 100 data points then the
number of key-points must be at least five and at most fif-
teen. While training, we found the neighborhood parameter,
w f = 10 works best for both TAX and l-TAX. The typical
weights in the Gaussian averaging operator [26] are used as
the weight (wl) values here to calculate the key points. For
the number of terms, we perform the leave-one-out method
with different values and keep the best one for obtaining
the maximum accuracy. Our evaluations are introduced the
same way as proposed in [20]. A simple method for compar-
ing the time series classification methods is based on 1-NN
and leave-one-out.

We define our evaluation metric as follows: For
a given query q, the category of the query time series
(given our prior knowledge) is taken as the correct cate-
gory (Correct category(q)), and compared with the cate-
gory of the K nearest neighbor of q found by TAX or l-TAX
(KNN category(q)). If both categories are equal, then we
consider it as a correct classification. For a certain test set,
the accuracy is defined as follows:

Accuracy =
|Correct classification|

NT
× 100% (5)

where, Correct classi f ication = {qi|KNN category(qi) =
Correct category(qi)}, i = 1..NT and NT is the number of
total time series in the test set. For our experiment, we set
K = 1. This parameter setting of K is frequently used for
comparing the time series classifications [20].

6.2 Results

Figures 7 and 8 show the classification accuracy comparison
among TAX/l-TAX and other existing methods. As shown
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Fig. 8 Standard deviation comparison of TAX/l-TAX with other meth-
ods.

in the figures, TAX and l-TAX perform better than other
methods. In particular, l-TAX performs significantly bet-
ter. Compared to TAX, l-TAX increases the accuracy for
all data-sets. Although it decreases slightly in the case of
the Wafer data-set, this is very insignificant. For the Face
(four) and 50 Words data-sets, l-TAX accuracies increase
drastically. The performance of TAX was very poor for
these data-sets. l-TAX achieves its maximum accuracy for
the Two Pattern data-set. Methods other than TAX also per-
formed well for this data-set.l-TAX performs extremely well
for some data-sets where the other methods fail to achieve a
higher accuracy. For example, l-TAX obtains higher than
90% accuracy for the Beef and Coffee data-sets. Except
for TAX, all other methods obtain accuracies of below 80%.
The l-TAX classification accuracy seems to be stable on var-
ious types of time series.

Figure 8 shows the standard deviation of accuracies for
the same data-sets found through different methods. l-TAX
receives the lowest standard deviation among them, which
is high for TAX compared to the other methods. This lowest
standard deviation for l-TAX shows its stability for different
types of time series.

l-TAX performs slightly better than OTWED [24],
which considers the time warp edit distance with a stiffness
adjustment. l-TAX also performs better than the time wrap
edit distance and optimized time wrap edit distance on cer-
tain data-sets, and significantly better than Euclidean [25]
which uses the Euclidean distance to calculate the similar-
ity. The average accuracies of the Euclidean, DTW, ODTW,
OTWED, TAX, l-TAX, and SAX methods are 76.63%,
81.56%, 83.28%, 85.56%, 79.07%, 85.78% and 66.04% re-
spectively. SAX evaluation data [25] are shown here only
for a comparison of the accuracy results, although this may
not be meaningful without considering the storage and pro-
cessing time. The average results and standard deviations
show that l-TAX outperforms all other methods, and uses
both time series symbolic representations and non-symbolic
representations to classify data.

One of our benchmarks is the Beef data-set. TAX and

l-TAX obtain 80.00% and 93.33% accuracy results respec-
tively. All other methods concerned obtain less than 55%
accuracy. This is one of the successful cases of the pro-
posed model, which shows that considering all data points
of a time series can lead to poor results. Our proposed model
uses only the important data points from the time series to
build terms similar to the existing document retrieval model,
whereas the other methods involve all the data points of a
time series without considering the noise. SAX [5] uses a
textual approximation of a time series. SAX uses all data
points to approximate a time series. Another aspect of this
benchmark is a consideration of the term sequence, and the
basic difference between TAX and l-TAX lies in their con-
sideration of such a term sequence. The evaluation shows
that l-TAX performs better than TAX. The accuracy in-
creases by 13.33% because of the term sequence consider-
ation. TAX uses a t f -id f based approach, where the term
sequence does not affect the results. This is because chang-
ing the term sequence does not change the magnitude of the
document vector. l-TAX uses LCS as its distance measure.
LCS is robust to noise and permits some symbols to be un-
matched [27] during a distance calculation. l-TAX shows
that the term sequence has a direct effect on the accurate
retrieval of a time series.

l-TAX shows quite a stable performance for differ-
ent data-sets, and a generic applicability on various do-
mains. However, the performance of l-TAX on the 50Words
and Lightening7 data-sets is worse than for other methods.
Moreover, all methods have low levels of accuracy for the
Adiac and OSULeaf data-sets. The reason for these poor
performances is still undetermined and further investigation
is required.

7. Conclusions

In this paper, we proposed both TAX and l-TAX, which use
a document retrieval model to classify time series data. To
solve some of its fundamental problems, the original method
of textual approximation (TAX) was extended, and renamed
l-TAX. The main idea of these methods is to construct a set
of temporal terms, called T-terms, from a large amount of
time series data and use their t f -id f count or sequences to
make a t f -id f based document vector or string sequence to
find the time series similarity. With l-TAX, a user can ob-
tain desirable time series data sets with higher accuracy than
with TAX or any other method. Experimental results show
that l-TAX is effective and can be used for a large amount
of time series classifications. The evaluation results demon-
strate that the proposed methods can perform stably for var-
ious types of time series.

As a part of our future work, we plan to explore addi-
tional features for automatic parameter selection and to de-
velop pruning and indexing techniques for faster retrieval.
We will explore our model on sparse and multidimensional
data, particularly in regard to the trajectories. We also plan
to compare our methods with other methods in terms of time
and space complexity. The performance of l-TAX on cer-
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tain data-sets requires further investigation and we therefore
plan to extend l-TAX to achieve higher accuracy for these
data-sets as well.
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