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Hybrid Parallel Inference for Hierarchical Dirichlet Processes∗
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SUMMARY The hierarchical Dirichlet process (HDP) can provide a
nonparametric prior for a mixture model with grouped data, where mixture
components are shared across groups. However, the computational cost is
generally very high in terms of both time and space complexity. Therefore,
developing a method for fast inference of HDP remains a challenge. In
this paper, we assume a symmetric multiprocessing (SMP) cluster, which
has been widely used in recent years. To speed up the inference on an
SMP cluster, we explore hybrid two-level parallelization of the Chinese
restaurant franchise sampling scheme for HDP, especially focusing on the
application to topic modeling. The methods we developed, Hybrid-AD-
HDP and Hybrid-Diff-AD-HDP, make better use of SMP clusters, resulting
in faster HDP inference. While the conventional parallel algorithms with
a full message-passing interface does not benefit from using SMP clusters
due to higher communication costs, the proposed hybrid parallel algorithms
have lower communication costs and make better use of the computational
resources.
key words: hierarchical dirichlet process, topic models, parallelization

1. Introduction

Topic modeling is one of the approaches to analyzing
grouped data, such as words in documents. Topic models
(a.k.a. mixed membership models) are based on the idea that
each group can be represented as a mixture model, where
mixture components called topics are shared across groups.
Latent Dirichlet allocation (LDA) [1] is a well known topic
model. In a scenario where the number of topics is un-
known, the hierarchical Dirichlet process (HDP) [2] can pro-
vide a prior for a topic model such as LDA.

However, inference of the unknown HDP parameters
remains a significant challenge in terms of computation time
and memory requirements. Fast inference for HDP via par-
allelization was developed for this purpose [3], [4]. We as-
sume in this paper a symmetric multiprocessing (SMP) clus-
ter, which has been widely used in recent years, and explore
how to achieve hybrid two-level parallelization for HDP in-
ference on an SMP cluster. We demonstrate through experi-
ments using an SMP cluster that the proposed hybrid paral-
lel algorithms increase inference speed substantially while
maintaining inference accuracy, compared to the conven-
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tional parallel algorithms with a full message-passing inter-
face (MPI).

2. Related Work

In this section, we briefly introduce HDP and the Chinese
restaurant franchise (CRF) sampling scheme. We then re-
view prior studies on distributed inference methods for HDP.

2.1 Hierarchical Dirichlet Process

HDP is a non-parametric Bayesian approach developed by
Teh et al. [2]. It is a hierarchical extension of the Dirichlet
process (DP) [5]. HDP’s generative process is represented
as

G0|γ,H ∼ DP(γ,H) (1)

G j|α0,G0 ∼ DP(α0,G0) (2)

θ j|G j ∼ G j (3)

x ji|θ j ∼ F(θ ji), (4)

where H is a base distribution, and both α0 and γ are hyper-
parameters. DP(·) indicates drawing a sample from DP us-
ing the parameters in parentheses. Figure 1 shows a graphi-
cal model representation of HDP. HDP can be used as a prior
for a mixture model with grouped data (such as words in
documents), where mixture components or topics are shared
across groups. When HDP is used as a prior for a standard
topic model, LDA [1], H and F can be expressed as

H = Dir(β) , F = Mult(θ) (5)

which is called HDP-LDA.

2.2 Chinese Restaurant Franchise Scheme

The Chinese restaurant franchise (CRF) inference scheme
is widely used for HDP [2]. While other inference schemes

Fig. 1 Graphical model of HDP.
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Table 1 Notation.

Notation Description
Φk dish k on global menu (which is shared across all restaurants)
θ ji dish that customer i has in restaurant j
φ jt dish served at table t in restaurant j
t ji index of table at which customer i sits in restaurant j
k jt index of dish served at table t in restaurant j
x ji index of customer i who sits in restaurant j
n jtk number of customers having dish k at table t in restaurant j
n jt· number of customers who sit at table t in restaurant j
n··k number of customers who have dish k in any restaurant
m jk number of tables on which dish k is served in restaurant j
m·k number of tables on which dish k is served in any restaurant

can be used for HDP, we use CRF here because it is rel-
atively accurate and intuitively understandable. CRF nat-
urally extends the Chinese restaurant process (CRP) [2] to
represent dishes shared across multiple restaurants. In topic
models, restaurants, dishes, and customers respectively rep-
resent groups (e.g., documents), topics, and data points (e.g.,
words). Table 1 lists the notation used. The CRF is used to
construct HDP as follows [2], [6].

(1) Sampling t ji:

A table at which the i-th customer sits in the j-th restaurant
is drawn in accordance with

p(t ji = t|t− ji, k) ∝
{

n jt· if t is previously used.
α0 if t = tnew (6)

(2) Sampling k jt:

A dish on table t in the j-th restaurant is drawn in accordance
with

p(k jt = k|t, k− jt) ∝
{

m·k if k is previously used.
γ if k = knew (7)

(3) Sampling x ji:

Finally, the customers are drawn in accordance with

p(x|t, k) =
∏

k

fk({x ji : k ji = k}) (8)

fk({x ji : k ji = k}) = Γ(Vβ)
Γ(n··k + Vβ)

∏
v Γ(n

v
··k + β)
Γ(β)

(9)

where V indicates the size of the vocabulary, β indicates a
Dirichlet hyperparameter, and nv

··k indicates the frequency
that customer v has dish k in any restaurant. In the context
of topic models, nv

··k means the frequency with which vocab-
ulary v was assigned to topic k in any document.

2.3 Distributed Inference Algorithms for HDP

Newman et al. developed an approximate (synchronous) dis-
tributed inference algorithm for HDP (AD-HDP) [3]. AD-
HDP is based on the hypothesis that dependencies between
random variables are weak. In AD-HDP, each thread (or
processor core) p first learns a model with the subset data al-
located to the thread and then sends the resulting count nkvp

to the master thread, which computes nkv using nkvp of all

p †. Here nkv is the same as nv
··k in Eq. (9). AD-HDP gener-

ally produces comparable or even more accurate perplexity
compared to non-parallel HDP.

Asuncion et al. developed an asynchronous distributed
inference algorithm for HDP (Async-HDP), assuming a het-
erogeneous computing environment [4]. In Async-HDP,
each node p first learns a model with the subset data allo-
cated to the node. Then, node p exchanges the resulting
count nkvp with another randomly selected node q. Next,
nkvp is integrated in q’s belief of the counts of all the other
processors with which node q has already communicated.
As mentioned previously, Async-HDP is designed for a het-
erogeneous computing environment, which is not our focus
in this paper, and therefore, we extend the idea of AD-HDP
for SMP clusters.

3. Hybrid Parallel Inference for HDP

Tora et al. developed a hybrid parallel inference approach to
LDA that uses a MPI/OpenMP scheme on SMP clusters [7].
Here we explore the use of this approach to HDP, especially
to HDP-LDA, which is a more complex problem than that
of LDA. We developed two hybrid parallel inference algo-
rithms, Hybrid-AD-HDP and Hybrid-Diff-AD-HDP, as ex-
tensions of the AD-HDP. Our hybrid algorithms use MPI
only to communicate with each node, and multi-threading is
used for parallelization within each node.

3.1 Hybrid-AD-HDP

The Hybrid-AD-HDP algorithm is a hybrid parallel infer-
ence algorithm based on AD-HDP [3]. It applies the AD-
HDP algorithm to both parallelization within each node and
synchronization across nodes, while the original AD-HDP
uses an MPI scheme to communicate directly with each pro-
cessor core. Algorithm 1 shows the steps in the Hybrid-
AD-HDP algorithm. The master node distributes global
model parameters to each node, and the nodes then begin to
learn the model parameters using the allocated subset data,
parallelized by multi-threading based on AD-HDP within
the node. The master node then collects the resulting lo-
cal model parameters from the nodes and computes the dif-
ference in those local model parameters from the previous
global model parameters to update the global model param-
eters. This procedure is repeated, and the global model pa-
rameters are updated until convergence.

3.2 Hybrid-Diff-AD-HDP

The difference-based Hybrid-AD-HDP (Hybrid-Diff-AD-
HDP) algorithm is a modification of the Hybrid-AD-HDP
algorithm. Let us first describe the difference-based AD-
HDP (Diff-AD-HDP) algorithm: our modification of AD-
HDP for robust inference. In Diff-AD-HDP, each thread

†There are several ways to merge newly generated topics on
each thread. We adopted a simple way that merges new topics
based on their topic indices [3].
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Algorithm 1 Hybrid-AD-HDP
1: repeat
2: for each node p in parallel do
3: run AD-HDP
4: report nkvp, n jt to master node
5: end for
6: merge n jt

7: update nkv ← nkv +
∑

p(nkvp − nkv)
8: sample α0, γ
9: broadcast nkv, α0, γ

10: until convergence

Algorithm 2 Hybrid-Diff-AD-HDP
1: repeat
2: for each node p in parallel do
3: run Diff-AD-HDP
4: calculate Δnkvp derived from the node
5: report Δnkvp, n jt to master node
6: end for
7: merge n jt

8: update nkv ← nkv +
∑

p Δnkvp

9: sample α0, γ
10: broadcast nkv, α0, γ
11: until convergence

p first learns a model with the subset data allocated to the
thread and then sends the resulting difference count Δnkvp

to the master thread, which sums up Δnkvp over all p to ob-
tain nkv. Note that Δnkvp is the difference count between
nkv that was distributed from the master thread and nkvp that
was updated from nkv at node p. In Hybrid-Diff-AD-HDP,
the manner of communications in Diff-AD-HDP is applied
not only to parallelization within each node, but also to syn-
chronization across nodes.

The Hybrid-AD-HDP algorithm has to synchronize af-
ter every Gibbs sweep. Otherwise, some estimated mod-
els may be inaccurate and some count variables may turn
into negative values. The Hybrid-Diff-AD-HDP algorithm
avoids such problems. In Hybrid-Diff-AD-HDP, the mas-
ter node collects from each node the difference in the local
model parameters from the previous global model parame-
ters rather than collecting the local model parameters them-
selves. The master node then sums up the differences over
all nodes to obtain the global model parameters. Algorithm
2 shows the steps in the Hybrid-Diff-AD-HDP algorithm.

4. Experiments

In this paper, we used three datasets: Enron Emails, NIPS
full papers and KOS blog entries †. The statistics of these
datasets are shown in Table 2. We split each dataset into
a training set and a test set by randomly sampling 10% of
the words in each document for the test set, while the re-
maining words are used as the training set for estimating the
model parameters [8]. We then repeated this procedure 10
times in the experiments that we will describe in Sects. 4.1
and 4.2.1, and 5 times in the experiments in Sect. 4.2.2. For

†http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Table 2 Dataset statistics.

Enron NIPS KOS
Number of documents (D) 39,861 1,500 3,430

Size of vocabulary (V) 28,102 12,419 6,906
Number of words (N) 6,412,172 1,932,365 467,714

testing model accuracy, we used (test-set) perplexity as the
evaluation metric:

exp

{
− 1

N
log p(w|Training set)

}
(10)

where w indicates a test set, and N indicates the total number
of words in the test set.

4.1 Initialization

Preliminary experiments revealed the effects of the two
initialization methods for the Chinese restaurant franchise
sampling scheme for HDP-LDA:

(1) Start with a predefined number of topics and randomly
assign a topic to each word as the initialization of col-
lapsed Gibbs sampling for LDA [9].

(2) Initialize in accordance with the CRF generative pro-
cess.

We set the hyperparameters in accordance with Teh [2]:
α = 1/K and β = 0.5 for LDA and α0 = E[Gamma(1, 1)] =
1, γ = E[Gamma(1, 0.1)] = 10, and β = 0.5 for HDP-
LDA. Note that Each Gamma distribution was specified by a
shape parameter and a rate parameter, in this paper. We up-
dated the hyperparameters for HDP-LDA after each Gibbs
sweep [10].

Figure 2 shows that, for NIPS dataset, initialization
method (1) with the initial number of topics K = 120 ††
and initialization method (2) performed as well as or even
better than the best performance of LDA (i.e., the perplexity
is 1450 at K = 130 as shown in Fig. 2). Figure 3 shows that,
for KOS dataset, both initialization methods did not work as
well as the best performance for LDA (i.e., the perplexity is
1550 at K = 55 as shown in Fig. 3). This is probably be-
cause the total number of words was small compared with
the number of documents for KOS dataset. The perplex-
ity with initialization method (1) was slightly better than
that with method (2). We found that initialization method
(1) used much more memory than initialization method (2).
This indicates that the number of tables was learned more
efficiently with (2). We thus used initialization method (2)
for our scalability experiments.

4.2 Scalability

We performed experiments with two datasets to confirm
scalability of our hybrid parallel inference algorithms. The
first one is NIPS dataset used in the previous experiments.
The other is Enron dataset, which is much larger than NIPS
dataset as shown in Table 2.
††We also observed the same tendency when K = 170 and 220.
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Fig. 2 Perplexity of HDP for two initialization methods and LDA using
NIPS dataset. Number of topics for LDA varied between 20 and 200. Re-
sults were averaged over 10 runs; error bars represent one standard error.

Fig. 3 Perplexity of HDP for two initialization methods and LDA using
KOS dataset. Number of topics for LDA varied between 10 and 150. Re-
sults were averaged over 10 runs; error bars represent one standard error.

Table 3 Experimental environment for small dataset.

CPU Clock Cores Sockets Memory Network
Xeon E5410 2.33 GHz 4 2 32 GB 10 GbE

GCC Open MPI Boost
4.7.2 1.6.3 1.52

4.2.1 Small Dataset

We experimentally measured the speed-up rate with NIPS
dataset for our hybrid parallel inference algorithms using
the experimental environment, including toolchain versions,
summarized in Table 3. At that time, the perplexity of the
hybrid parallel algorithms was almost the same as that of
the non-parallel algorithm, and also that of the parallel algo-
rithm with MPI-HDP, which was a full MPI implementation
based on AD-HDP.

Figure 4 clearly shows that the Hybrid-AD-HDP
and Hybrid-Diff-AD-HDP algorithms learned topic mod-
els much faster than MPI-HDP. MPI-HDP did not achieve

Fig. 4 Speedup rate of Hybrid-AD-HDP, Hybrid-Diff-AD-HDP, and
MPI-HDP using NIPS dataset, compared to non-parallel HDP. Results were
averaged over 10 runs; error bars represent one sample standard deviation.

Table 4 Experimental environment for large dataset (on Amazon EC2).

CPU Clock (Turbo) Cores Sockets Memory Network
Xeon E5-2670 2.6(3.3) GHz 16 1 60.5 or 244 GB † 10 GbE

GCC Open MPI Boost
4.7.3 1.6.4 1.54

speed-up under conditions exceeding ‘4(32)’ (4 nodes with
32 processor cores) because its communication and syn-
chronization costs were then larger than the speed-up due to
parallelization. This did not happen with either hybrid par-
allel inference algorithm, and speed-up was observed until
‘6(48).’ The speed-up rate decreased after ‘7(56)’ probably
because the dataset was small. Better performance should
be obtained with the hybrid algorithms if larger datasets are
used.

As shown in Fig. 4, the performances of the two hy-
brid parallel inference algorithms were comparable. While
Hybrid-AD-HDP has to synchronize with all nodes at every
Gibbs sweep, Hybrid-Diff-AD-HDP does not. This means
that Hybrid-Diff-AD-HDP has room for further speed-up.

4.2.2 Large Dataset

We further evaluated scalability to a larger dataset, Enron.
For the experiments, we used cloud computing clusters on
Amazon EC2. The experimental environment is summa-
rized in Table 4. We only experimented with Hybrid-Diff-
AD-HDP, since the performance of Hybrid-AD-HDP was
comparable with that of Hybrid-Diff-AD-HDP in the exper-
iments in Sect. 4.2.1. At that time, the perplexity of Hybrid-
AD-HDP was almost the same as that of the non-parallel
algorithm. MPI-HDP was terminated unsuccessfully due to
the lack of memory even when using 16 cores within one
node.

Figure 5 supports the idea that Hybrid-Diff-AD-HDP
†We used two instance types referred to as cr1.8xlarge (for the

master node) and cc2.8xlarge (for the other nodes). For details,
visit http://aws.amazon.com/ec2/.
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Fig. 5 Speedup rate of Hybrid-Diff-AD-HDP using Enron dataset, com-
pared to non-parallel HDP. Results were averaged over 5 runs; error bars
represent one sample standard deviation.

Fig. 6 Wall time of Hybrid-Diff-AD-HDP using Enron dataset. Results
were averaged over 5 runs; error bars represent one sample standard devia-
tion.

works well for larger datasets. From the experiments, we
also found that our approach can successfully learn the HDP
model over the large dataset that MPI-HDP cannot deal
with.

We looked into more details of the cost for running
Hybrid-Diff-AD-HDP. Figure 6 shows the total cost (the
wall time in seconds), and Figs. 7 and 8 show two major
components of the total cost: the cost for local inference
within each node † (as in Lines 3 to 4 in Algorithm 2) and
the cost for communications from all nodes to the master
node (as in Line 5 in Algorithm 2), respectively.

Figure 7 demonstrates that the local inference cost de-
creases as the number of nodes increases, in accordance with
our expectation. On the other hand, contrary to our expecta-
tion, Fig. 8 shows that the total communication cost is cor-
related poorly with the number of nodes. For instance, the
total cost for the communications with seven nodes is the

†We measured the local inference cost with the master node, as
an example.

Fig. 7 Time for local inference. Results were averaged over 5 runs; error
bars represent one sample standard deviation.

Fig. 8 Time for communications from all nodes to a master node. Re-
sults were averaged over 5 runs; error bars represent one sample standard
deviation.

largest and the total cost with nine nodes is smaller than
that. This unpredictable cost is probably due to the cloud
environment, where the network load is affected by other
users as well.

Even when the total cost is affected by the network
load, our approach works efficiently in total, thanks to the
cost reduction of the local inference.

5. Conclusions

We developed two different hybrid two-level parallel al-
gorithms for HDP, Hybrid-AD-HDP and Hybrid-Diff-AD-
HDP, that make better use of SMP clusters. We first demon-
strated that initialization in accordance with the CRF gen-
erative process achieves good cost performance in terms of
model accuracy and memory usage. We then showed that
the conventional parallel algorithm with full MPI does not
benefit from using SMP clusters due to higher communica-
tion costs. For a larger dataset, the conventional method was
even terminated unsuccessfully. In contrast, our hybrid par-
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allel algorithms cut communication costs and make better
use of the computational resources.

Future work includes developing algorithms for use un-
der more challenging network bandwidth conditions. It also
includes evaluating the effectiveness of Hybrid-Diff-AD-
HDP as an approach to solving the problem inherent in non-
approximate parallelization methods like that of Williamson
et al. [11]; i.e., while they can learn exact models, they incur
a certain amount of communication costs when running on
SMP clusters.
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