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PAPER

New Metrics for Prioritized Interaction Test Suites

Rubing HUANG†,††a), Student Member, Dave TOWEY†††, Jinfu CHEN††b), and Yansheng LU†, Nonmembers

SUMMARY Combinatorial interaction testing has been well studied in
recent years, and has been widely applied in practice. It generally aims
at generating an effective test suite (an interaction test suite) in order to
identify faults that are caused by parameter interactions. Due to some con-
straints in practical applications (e.g. limited testing resources), for exam-
ple in combinatorial interaction regression testing, prioritized interaction
test suites (called interaction test sequences) are often employed. Conse-
quently, many strategies have been proposed to guide the interaction test
suite prioritization. It is, therefore, important to be able to evaluate the dif-
ferent interaction test sequences that have been created by different strate-
gies. A well-known metric is the Average Percentage of Combinatorial
Coverage (shortly APCCλ), which assesses the rate of interaction coverage
of a strength λ (level of interaction among parameters) covered by a given
interaction test sequence S . However, APCCλ has two drawbacks: firstly, it
has two requirements (that all test cases in S be executed, and that all possi-
ble λ-wise parameter value combinations be covered by S ); and secondly, it
can only use a single strength λ (rather than multiple strengths) to evaluate
the interaction test sequence – which means that it is not a comprehensive
evaluation. To overcome the first drawback, we propose an enhanced met-
ric Normalized APCCλ (NAPCC) to replace the APCCλ. Additionally, to
overcome the second drawback, we propose three new metrics: the Aver-
age Percentage of Strengths Satisfied (APSS); the Average Percentage of
Weighted Multiple Interaction Coverage (APWMIC); and the Normalized
APWMIC (NAPWMIC). These metrics comprehensively assess a given in-
teraction test sequence by considering different interaction coverage at dif-
ferent strengths. Empirical studies show that the proposed metrics can be
used to distinguish different interaction test sequences, and hence can be
used to compare different test prioritization strategies.
key words: combinatorial interaction testing, test case prioritization, pri-
oritized interaction test suite (or interaction test sequence), interaction cov-
erage, metrics

1. Introduction

Combinatorial interaction testing, a black-box testing
method, has been well researched, and has been applied to
practical systems [1]. It focuses on constructing an effective
test suite (an interaction test suite) to identify failures trig-
gered by the interactions among k parameters of the soft-
ware under test (SUT). Here, parameters may represent any
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factors that affect the running of the SUT, such as user in-
puts, configuration options, etc.; and each parameter may
have several valid values. In fact, combinatorial interac-
tion testing provides a tradeoff between testing effectiveness
and efficiency, because it only requires coverage of certain
key parameter values combinations, rather than all possible
combinations – which may lead to the exponential explo-
sion. For instance, τ-wise (1 ≤ τ ≤ k) combinatorial inter-
action testing – where the τ (strength) refers to the level of
interaction among parameters – aims at constructing an in-
teraction test suite to cover all possible τ-tuples of parameter
values (or named τ-wise parameter value combinations).

Due to limited testing resources in practical applica-
tions where combinatorial interaction testing is used, for ex-
ample in combinatorial interaction regression testing [2], the
execution order of combinatorial test cases can be critical:
potentially failure-revealing test cases in the interaction test
suite should be executed as early as possible. In other words,
a well-designed order of test case execution may be able
to detect failures earlier, and thus enable earlier fault char-
acterization, diagnosis and revision [1]. To improve testing
efficiency, interaction test suite prioritization has been em-
ployed to prioritize the test suite according to some strat-
egy [1]. In general, a prioritized interaction test suite is re-
ferred to as an interaction test sequence.

To date, many strategies have been proposed to guide
the prioritization of interaction test suites [2]–[13], includ-
ing branch-coverage-based test prioritization [2] and ran-
dom test case prioritization [8]. Given an interaction test
suite, different interaction test sequences can be obtained by
using different test prioritization strategies. Therefore, it is
critical to evaluate these interaction test sequences in order
to choose the best one for further testing or to assess the ef-
fectiveness (or efficiency) of each test prioritization strategy.

A well-known metric used to evaluate interaction test
sequences from the perspective of the rate of interaction
coverage at a fixed strength (denoted as λ, where 1 ≤ λ ≤
k), is the Average Percentage of Combinatorial Coverage
(APCCλ) [8]. The APCCλ metric, however, may face a cou-
ple of drawbacks when evaluating different interaction test
sequences prioritized by different prioritization strategies.
The first drawback is that the APCCλ metric has two re-
quirements: (1) that all test cases in the interaction test se-
quence should be executed; and (2) that all parameter value
combinations at a given strength should be covered by the
interaction test sequence. Additionally, a further drawback
for APCCλ is that it uses only a single strength rather than
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Table 1 A test profile denoted as T P(5, 35) for the “Research Field” option shown Fig. 1.

Parameters Fundamentals(A) Communications(B) Electronic(C) Information & Systems(D) Transactions (1976-1990)

Values
INVITED INVITED INVITED INVITED Computers
Acoustic Sensing Components Algorithms Physics

Education Terminals Materials Software Engineering Mathematics

multiple strengths to assess each interaction test sequence,
and consequently, it may not have a comprehensive evalua-
tion of a given interaction test sequence, potentially failing
to distinguish different interaction test sequences of a partic-
ular interaction test suite. We present a motivating example
to illustrate this in the following section.

Motivated by the above, in this paper, we first pro-
pose an enhancement to APCCλ, named Normalized APCCλ
(NAPCCλ), which attempts to alleviate the difficulties asso-
ciated with APCCλ’s two requirements. To overcome the
second drawback of APCCλ, by considering different in-
teraction coverage at different strengths, we next propose
three new metrics: Average Percentage of Strengths Satis-
fied (APSS); Average Percentage of Weighted Multiple In-
teraction Coverage (APWMIC); and Normalized APWMIC
(NAPWMIC). These three metrics aim to provide a compre-
hensive evaluation of interaction test sequences. We present
the results of empirical studies to investigate the perfor-
mance of the proposed metrics for different interaction se-
quences prioritized by different test prioritization strategies,
showing that the metrics are reasonable and practical. More-
over, we also provide a comparative analysis of the different
metrics, which may serve as guidelines to assist testers in
their selection.

The rest of this paper is organized as follows: Section 2
reviews some preliminaries including combinatorial inter-
action testing, interaction test suite prioritization, and the
APCCλ metric. Section 3 proposes the new metric, named
Normalized APCCλ, as an enhancement of APCCλ. Sec-
tion 4 proposes three new metrics used to comprehensively
evaluate prioritized interaction test suites. Section 5 de-
scribes some empirical studies to analyze the proposed met-
rics. Section 6 presents a comparison of the different metrics
for interaction test sequences, and finally, some conclusions
and future work are given in Sect. 7.

2. Preliminaries

In this section, some related work is described, including
combinatorial interaction testing, prioritization of interac-
tion test suites, and the Average Percentage of Combinato-
rial Coverage (APCCλ) metric.

2.1 Combinatorial Interaction Testing

Combinatorial interaction testing is a widely used black-box
testing method for detecting interaction defects in software
systems.

Assume that a system under test (SUT) has k param-
eters that constitute a parameter set P = {p1, p2, · · · , pk},
which may represent any factors that affect the running of

Fig. 1 The option “Research Field” from the IEICE homepage.

the SUT, such as user inputs, configuration options, etc., and
each parameter pi has discrete valid values or levels from
the finite set Vi. Let C be the set of constraints on parameter
value combinations, and R be the set of interaction relations
among parameters. For convenience, in the remainder of
this paper, a combination of parameters will be referred to
as a parameter combination, and a parameter value com-
bination or a combination of parameter values as a value
combination.

Definition 1 (Test profile): A T P(k, |V1||V2| · · · |Vk |,C) is a
test profile, which contains information about a combinato-
rial test space of the SUT, including k parameters, |Vi| values
for each i-th parameter, and value combination constraints
C.

Since the value combination constraints have no im-
pact on our current study, they are not considered in this
paper. Therefore, a T P(k, |V1||V2| · · · |Vk |,C) can be abbrevi-
ated as T P(k, |V1||V2| · · · |Vk |). Our definitions are based on a
T P(k, |V1||V2| · · · |Vk |) notation.

For example, Fig. 1 presents a screen dump of the “Re-
search Field” options from the homepage † of the IEICE
(The Institute of Electronics, Information and Communica-
tion Engineers). There are five sub-options (parameters),
each of which has various possible values. Due to page
limitation, we choose only three representative values for
each parameter, allowing us to summarize the information
in Fig. 1 as a five-parameter system where each parameter
has three values, as in Table 1. Therefore, the test profile of
the “Research Field” option can be described as T P(5, 35).

Definition 2 (Test case): A test case is a k-tuple (v1, v2, · · · ,
vk), where v1 ∈ V1, v2 ∈ V2, · · · , vk ∈ Vk.

As shown in Table 1, a test case of the “Research Field”
option is: (INVITED,Terminals,Components, Software Engi-
neering,Computers).

Given a T P(k, |V1||V2| · · · |Vk |), all the possible test
cases form an exhaustive interaction test suite Tall = V1 ×
V2×· · ·×Vk, the size of which is |Tall| = |V1|×|V2|×· · ·×|Vk |.
Definition 3 (λ-wise value combination): A λ-wise value

†http://search.ieice.org/bin/search.php?lang=E
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Table 2 A covering array CA(12, 2, 5, 35) for the system in Table 1.

Test No. Fundamentals(A) Communications(B) Electronic(C) Information & Systems(D) Transactions (1976-1990)
1 INVITED INVITED Materials INVITED Mathematics
2 INVITED Sensing Components Algorithms Computers
3 INVITED Terminals INVITED Software Engineering Mathematics
4 Acoustic INVITED Components Software Engineering Physics
5 Acoustic Sensing INVITED INVITED Mathematics
6 Acoustic Terminals Materials Algorithms Computers
7 Education INVITED INVITED Algorithms Physics
8 Education Sensing Materials Software Engineering Physics
9 Education Terminals Components INVITED Computers
10 INVITED Terminals Materials INVITED Physics
11 Education Sensing Components Algorithms Mathematics
12 Acoustic INVITED INVITED Software Engineering Computers

combination is a k-tuple (̂v1, v̂2, · · · , v̂k) involving λ parame-
ters with fixed values (called fixed parameters), and (k − λ)
parameters with arbitrary, allowable values (called free pa-
rameters), where 0 ≤ λ ≤ k and

v̂i =

{
vi ∈ Vi, if pi is a fixed parameter;
“ − ”, if pi is a free parameter.

(1)

Generally speaking, a λ-wise value combination is also
known as a λ-value schema [1], and λ is called the strength.
When λ = k, a λ-wise value combination becomes a test
case for the SUT as each parameter is a fixed parameter.
For ease of description, we define CombSetλ(tc) as the set
of all λ-wise value combinations covered by the test case
tc. Obviously, a test case tc with k parameters contains Cλk
λ-wise value combinations, that is, |CombSetλ(tc)| = Cλk .
To simplify the problem, each “−” is omitted from the λ-
wise value combinations. Therefore, if tc = (v1, v2, · · · , vk)
where vi ∈ Vi (i = 1, 2, · · · , k), then the CombSetλ(tc) can be
described as:

CombSetλ(tc)= {(v j1 ,v j2 ,· · · ,v jλ )|1≤ j1< j2< · · ·< jλ≤k}.
(2)

Given an interaction test suite T , the CombSetλ(T ) can be
written as:

CombSetλ(T ) =
⋃
tc∈T

CombSetλ(tc). (3)

If T = Tall, then |CombSetλ(T )| is fixed, and can be de-

scribed as
k−λ+1∑
i1=1
. . .

k∑
iλ=iλ−1+1

(|Vi1 | . . . |Viλ |).

Definition 4 (Covering array): An N × k matrix is a τ-wise
(1 ≤ τ ≤ k) covering array denoted as CA(N; τ, k, |V1||V2|
· · · |Vk |), which satisfies the following properties: (1) each
column i (i = 1, 2, · · · , k) contains only elements from the
set Vi; and (2) the rows of each N × τ sub-matrix cover all
τ-wise value combinations from the τ columns at least once.

The interaction relation set R has elements with the
same size for a CA(N; τ, k, |V1||V2| · · · |Vk |), that is, R =

{{p j1 , p j2 , · · · , p jτ }|p j1 ∈ P, p j2 ∈ P, · · · , p jτ ∈ P, 1 ≤ j1 <
j2 < · · · < jτ ≤ k, τ is fixed} and |R| = Cτk .

For example, to exhaustively test all possible value
combinations for the system shown in Table 1, we would

Table 3 The summary of the prioritization of interaction test suite.

Strategy Reference
Pure prioritization [2], [5], [6], [8], [9], [10], [13]

Re-generation prioritization [2], [3], [4], [7], [9], [11], [12]

require 35 = 243 test cases. However, as shown in Table 2,
a covering array CA(12, 2, 5, 35) requires only 12 test cases
to cover all 2-wise value combinations.

As noted previously, a covering array is an interaction
test suite, but not vice versa.

Although interaction test suite construction has been
to be proven to an NP-Complete problem [14], many strate-
gies and tools have been developed in recent years. Most of
these strategies can be classified into four categories: alge-
braic methods, greedy algorithms, recursive algorithms, and
heuristic search algorithms (see [1] for more details).

2.2 Prioritization of Interaction Test Suites

Interaction test suite prioritization aims to create a test case
execution order for the test suite according to some crite-
ria (eg. statement coverage), so that test cases with higher
priority are executed earlier in testing. A prioritized inter-
action test suite is called an interaction test sequence, and a
well-prioritized interaction test sequence may improve the
likelihood of detecting faults earlier [1]. This problem is de-
fined as follows [1]:

Definition 5 (Interaction test suite prioritization): Given a
tuple (T,Ω, g), where T is an interaction test suite, Ω is the
set of all possible interaction test sequences obtained by per-
mutating test cases in T , and g is a function from Ω to real
numbers, the problem of interaction test suite prioritization
is to find an S ∈ Ω such that:

(∀S ′) (S ′ ∈ Ω) (S ′ � S ) [g(S ) ≥ g(S ′)]. (4)

In Eq. (4), g is a function to evaluate an interaction test
sequence S by returning an award value, with higher val-
ues implying better sequences. Different functions can be
used to evaluate interaction test sequences according to dif-
ferent criteria, such as fault detection [15], statement cover-
age [16], branch coverage [16], block coverage [16], and so
on.
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The prioritization of interaction test suites has been ex-
tensively researched in recent years, and according to [2],
it can be divided into two categories: (1) Pure prioritiza-
tion: re-prioritizing test cases in the interaction test suite;
and (2) Re-generation prioritization: prioritization during
the generation of the interaction test suite. Table 3 summa-
rizes some details of the literature on interaction test suite
prioritization.

2.3 Average Percentage of Combinatorial Coverage

As discussed, in Eq. (4) there have been many implementa-
tions of function g, proposed according to different criteria.
For example, if g is related to fault detection, a correspond-
ing function (metric) may be the Average of the Percent-
age of Faults Detected (APFD) [15], which measures the
weighted average of the percentage of faults detected over
the life of the suite; if g is related to statement coverage, then
a corresponding metric may be the Average Percentage of
Statement Coverage (APSC) [16], which measures the rate
at which an interaction test sequence covers the statements.
However, since it is not normally possible to know the num-
ber of faults triggered by a test case in advance, use of the
APFD metric may not be possible. Additionally, due to a
possible lack of source code, it is also not always possible
to obtain the statement coverage covered by a test case, thus
hindering use of the APSC metric.

To evaluate interaction test sequences, Wang et al. [8]
proposed the Average Percentage of Combinatorial Cov-
erage (APCCλ) metric, which measures the rate at which
an interaction test sequence covers value combinations at
a given strength λ. Given a λ-wise covering array T =
{tc1, tc2, · · · , tcn} with size n, and an interaction test se-
quence S = 〈s1, s2, · · · , sn〉, formed by permuting T , where
si ∈ T and si � s j, i, j = 1, 2, · · · , n, i � j, then the definition
of APCCλ is as follows:

APCCλ(S ) =

∑n−1
i=1 |
⋃i

j=1 CombSetλ(s j)|
n × |CombSetλ(Tall)| . (5)

In order to unify the definition of APCCλ with
APFD [15] and APSC [16], and to facilitate the introduction
of other new metrics, we present a variant of APCCλ, named
the APCC Variant (APCCVλ) metric, as follows:

APCCVλ(S ) = 1 − TC1+ TC2+ · · · + TCm

n × m
+

1
2n
, (6)

where m = |CombSetλ(Tall)|, and TCi (i = 1, 2, · · · ,m) is the
minimum number of test cases in S required to achieve the
i-th λ-wise value combination.

Both the APCCλ and APCCVλ metrics measure how
quickly an interaction test sequence achieves λ-wise inter-
action coverage. They both measure the area under the
curve for the plot of increasing λ-wise interaction cover-
age for an interaction test sequence. Actually, both APCCλ
and APCCVλ metrics use the piecewise function to describe
the increase of interaction coverage at a specific strength,
however, they use different plot curves: the APCCλ metric

(a) APCCλ=1(S ) = 58.33% (b) APCCVλ=1(S ) = 70.83%

(c) APCCλ=2(S ) = 37.50% (d) APCCVλ=2(S ) = 50.00%

Fig. 2 An example of APCCλ and APCCVλ at different λ values.

uses the ladder chart; while the APCCVλ metric uses the line
chart. The main reason for this, as discussed in [8], is that
the piecewise function used by APCCλ is discrete (that is, a
step function), but the piecewise function used by APCCVλ
is continuous (a linear function). Nevertheless, they are ac-
tually equivalent. In other words, given two interaction test
sequences, S 1 and S 2, if one metric determines that the test
sequence S 1 is better than S 2 (denoted S 1 
 S 2), the other
metric will also have the same determination.

To illustrate APCCλ and APCCVλ, we present an
example based on T P(3, 23). Let an interaction test
suite be T = {tc1 = (0, 2, 4), tc2 = (0, 3, 5), tc3 =

(1, 2, 5), tc4 = (1, 3, 4)}, and an interaction test sequence
of T be S = 〈tc1, tc2, tc3, tc4〉. Figure 2 (a) shows
APCCλ(S ), and Fig. 2 (b) shows APCCVλ(S ), both for λ =
1; while Fig. 2 (c) shows APCCλ(S ), and Fig. 2 (d) shows
APCCVλ(S ) for λ = 2. The shaded region area in each fig-
ure corresponds to each APCCλ(S ) or APCCVλ(S ).

3. Normalized APCCV

As shown in Eqs. (5) and (6), the APCCλ and APCCVλ met-
rics have two requirements: (1) all test cases in S should
be executed – n is equal to |S |; and (2) all λ-wise value
combinations should be covered by S – CombSetλ(S ) =
CombSetλ(Tall), i.e., S is a λ-wise covering array. In other
words, if not all test cases in S are executed, or if S does
not cover all possible λ-wise value combinations, then the
APCCλ and APCCVλ metrics may fail to objectively eval-
uate the rate of λ-wise interaction coverage of S . To over-
come these two requirements, we next propose a new metric
called Normalized APCCVλ (NAPCCVλ) as follows.

Given an interaction test suite T = {tc1, tc2, · · · , tcn} of
size n, and an interaction test sequence S = 〈s1, s2, · · · sn〉 of
T , where si ∈ T and si � s j (i, j = 1, 2, · · · , n), i � j, the
formula for calculating the NAPCCVλ(S ) is:



834
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

(a) NAPCCVλ=1(S 1) = 45.83% (b) NAPCCVλ=2(S 1) = 25.00%

Fig. 3 An example of NAPCCVλ at different λ values.

NAPCCVλ(S ) = p − TC1 + TC2 + · · · + TCm′

n′ × m′
+

p
2n′
,

(7)

where TCi (i = 1, 2, · · · ,m′) has the same meaning as for the
APCCVλ metric (Eq. (6)). However, m′ = |CombSetλ(S )|; n′
is the number of executed test cases in S (n′ ≤ n); and p
is the number of λ-wise value combinations covered by the
first n′ test cases in S divided by the number of λ-wise value
combinations covered by S . If a λ-wise value combination,
i, is not covered by the first n′ test cases, we set TCi = 0.

Similar to the APCCVλ metric, NAPCCVλ also presents
an evaluation of the rate of λ-wise interaction coverage of S .
However, it broadens the application range of the APCCVλ
metric: although APCCVλ evaluates interaction test se-
quences by ordering covering arrays, NAPCCVλ evaluates
the sequences by permutating any interaction test suites –
not only covering arrays. Additionally, although APCCVλ
requires that all test cases in the test sequence be executed,
NAPCCVλ does not have this requirement.

To illustrate the NAPCCVλ metric more clearly, an ex-
ample is given: we suppose S =< tc1 = (0, 2, 4), tc2 =

(0, 3, 5), tc3 = (1, 2, 5) >, and due to limited testing re-
sources, we suppose that only two test cases in S are exe-
cuted – S 1 = 〈tc1, tc2〉 and n′ = 2. As shown in Fig. 3, When

λ = 1, we have m′ = 6 and p = CombSetλ=1(S 1)

CombSetλ=1(S )
= 5

6 = 0.83,

and therefore NAPCCVλ=1(S 1) = 45.83%; when λ = 2, we

have m′ = 9 and p = CombSetλ=2(S 1)
CombSetλ=2(S )

= 6
9 = 0.67, and there-

fore NAPCCVλ=2(S 1) = 25.00%.

4. New Metrics for Interaction Test Sequences

In this section, some new metrics to evaluate interaction test
sequences are proposed. These metrics aim at overcom-
ing one of the drawbacks associated with the APCCλ and
NAPCCVλ metrics. We first present a motivating example
to illustrate the problem, and then propose new metrics to
overcome it.

4.1 Motivating Example

Given a test profile denoted as T P(3, 23), and an interac-
tion test suite T = {tc1 = (0, 2, 4), tc2 = (1, 3, 5), tc3 =

(0, 3, 5), tc4 = (1, 3, 4)}, let two interaction test sequences
of T be S 1 = 〈tc1, tc2, tc3, tc4〉 and S 2 = 〈tc1, tc3, tc4, tc2〉.

(a) When λ = 1, S 1 
 S 2 (b) When λ = 2, S 1 ≺ S 2

(c) When λ = 3, S 1 ≡ S 2

Fig. 4 A motivating example.

In Fig. 4, the dashed line represents interaction coverage at
a given strength covered by the interaction test sequence S 1,
and the full line represents interaction coverage for S 2. Each
figure corresponds to each strength λ, and the shaded region
is the overlap between the S 1 and S 2 regions.

When λ = 1, as shown in Fig. 4 (a), the area
of the region for S 1 is larger than that for S 2.
NAPCCVλ=1(S 1) = 75.00% and NAPCCVλ=1(S 2) =

70.83% – so, NAPCCVλ=1(S 1) > NAPCCVλ=1(S 2) (that
is, S 1 
 S 2). Similarly, it can be seen from Fig. 4 (b)
that when λ = 2, NAPCCVλ=2(S 1) = 55.00% <
NAPCCVλ=2(S 2) = 57.50% (denoted S 1 ≺ S 2). When λ =
3, as shown in Fig. 4 (c), we can see that NAPCCVλ=3(S 1) =
NAPCCVλ=3(S 2) = 50.00% (denoted S 1 ≡ S 2).

According to the above example, we can conclude that
the NAPCCVλ metric can be successfully used to evaluate
the rate of λ-wise interaction coverage for a given interac-
tion test sequence. However, as a metric, it may not be ef-
fective at distinguishing different interaction test sequences
permutated from the same interaction test suite: as shown
in Fig. 4, for example, when λ = 1, S 1 
 S 2; when λ = 2,
S 1 ≺ S 2; and when λ = 3, S 1 ≡ S 2. Therefore it may not be
possible to use NAPCCVλ to decide whether S 1 or S 2 is the
better interaction test sequence. For a given interaction test
suite T , although there are many strategies to create differ-
ent interaction test sequences of T , in practice, only one test
sequence is required. In other words, some metrics based
on a single strength such as APCCVλ and NAPCCVλ, may
fail to evaluate and compare two interaction test sequences.
Additionally, previous studies (e.g. [17], [18]) reported that
different faults are triggered by different interaction cover-
age (or different strengths). The above facts motivate us
to research new metrics that can evaluate and distinguish
different interaction test sequences, and that can do so by
comprehensively considering multiple interaction coverage
at multiple strengths.
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4.2 Properties of Interaction Test Sequences

For clarity description, we first define a few terms. Based
on T P(k, |V1||V2| · · · |Vk |), given an interaction test sequence
S with size n, denoted S = 〈s1, s2, · · · , sn〉, we define a func-
tion �λ(S , i), where 1 ≤ i ≤ n, which returns the set of λ-
wise value combinations covered by the first i test cases in
S , that is, �λ(S , i) =

⋃i
j=1 CombSetλ(s j). Intuitively speak-

ing, |�λ(S , 1)| = Cλk , because the first test case can cover Cλk
λ-wise value combinations; while �λ(S , n) = CombSetλ(S ),
because all test cases in S are executed.

Property 1: If �λ(S , ϕ) = CombSetλ(S ) where 1 ≤ ϕ ≤ n,
�λ′ (S , ϕ) = CombSetλ′(S ) where 1 ≤ λ′ < λ ≤ k.

Proof 1: If �λ(S , ϕ) = CombSetλ(S ) where 1 ≤ ϕ ≤ n, it
can be concluded that the first ϕ test cases in S can cover all
possible λ-wise value combinations that have been covered
by S . We suppose that the first ϕ test cases in S form an
interaction test sub-sequence S ′, therefore, CombSetλ(S ′) =
CombSetλ(S ). As a consequence,

CombSetλ′(CombSetλ(S ′)) = CombSetλ′(CombSetλ(S )),

(8)

where 1 ≤ λ′ < λ ≤ k. Since

CombSetλ′(CombSetλ(S
′)) = CombSetλ′(S

′), (9)

Eq. (8) converts to the following formula:

CombSetλ′(S
′) = CombSetλ′ (S ), (10)

which indicates that S ′ covers all possible λ′-wise value
combinations that have been covered by S . In other words,
�λ′ (S , ϕ) = CombSetλ′(S ), where 1 ≤ λ′ < λ ≤ k.

Based on this, we propose a new metric for interac-
tion test sequences, Average Percentage of Strengths Satis-
fied (APSS), which considers different interaction coverage
at different strengths.

4.3 Average Percentage of Strengths Satisfied

Based on T P(k, |V1||V2| · · · |Vk |), given an interaction test se-
quence S with size n, denoted S = 〈s1, s2, · · · , sn〉, we de-
fine a function fλ(S ) returning the minimum number of test
cases in S required to cover all possible λ-wise value com-
binations that have been previously covered by S . More
specifically, fλ(S ) = ϕ, where ϕ satisfies the following con-
ditions: (1) �λ(S , ϕ) = CombSetλ(S ); and (2) �λ(S , ϕ − 1) ⊂
CombSetλ(S ).

The function fλ(S ) has the following properties:

Property 2: 1 ≤ f1(S ) ≤ f2(S ) ≤ · · · ≤ fk(S ) = n.

Proof 2: On the one hand, it is obvious that f1(S ) ≥ 1 be-
cause S � ∅, and fk(S ) = n because no redundancy exists in
S . On the other hand, according to Property 1, it can be seen
that if all λ′-wise value combinations previously covered by

(a) (b)

Fig. 5 An example of the APSS metric.

S have not been covered by an interaction test sub-sequence
S ′ of S , S ′ has not also covered all λ-wise value combina-
tions previously covered by S , where 1 ≤ λ′ < λ ≤ k. In
other words, S ′ generally requires more test cases to cover
all λ-wise value combinations previously covered by S than
to cover all value combinations at strengths lower than λ,
that is, it can be concluded that f1(S ) ≤ f2(S ) ≤ · · · ≤ fk(S ).
As a consequence, 1 ≤ f1(S ) ≤ f2(S ) ≤ · · · ≤ fk(S ) = n.

Property 3: If S is an interaction test sequence formed by
permutating a covering array, then fλ(S ) ≥ maxk

i=1{|Vi|},
where 1 ≤ λ ≤ k.

Proof 3: This property is intuitive, because any interac-
tion test sub-sequence of S requires at least maxk

i=1{|Vi|} test
cases in S in order to cover all possible 1-wise value com-
binations, that is, f1(S ) ≥ maxk

i=1{|Vi|}. According to Prop-
erty 2, it can be concluded that fλ(S ) ≥ maxk

i=1{|Vi|}, where
1 ≤ λ ≤ k.

Given an interaction test sequence S , of size n, its Av-
erage Percentage of Strengths Satisfied (APSS) is defined as
follows:

APSS(S ) = 1 − f1(S ) + f2(S ) + · · · + fk(S )
n × k

+
1

2n
.

(11)

To explain this definition, we consider again the exam-
ple used in the Sect. 4.1. As shown in Fig. 4, it is difficult
to determine whether S 1 or S 2 is the better interaction test
sequence, in terms of the NAPCCVλ metric. Figure 5 (a)
shows the APSS values for S 1 (dashed line) and S 2 (full
line), with the shaded region representing the overlap be-
tween the S 1 and S 2 areas. From this figure, it can be clearly
seen that the APSS value of S 1 is greater than that of S 2 —
APS S (S 1) = 33.33%; APS S (S 2) = 25.00% — based on
which, we can conclude that S 1 is a better interaction test
sequence (S 1 
 S 2), according to the APSS metric.

In Eq. (11), since the fk(S ) value of any interaction test
sequence is equal to n, the formula can be rewritten as fol-
lows:

APS S (S ) = 1 − f1(S ) + f2(S ) + · · · + fk−1(S )
n × (k − 1)

+
1
2n
.

(12)

Consequently, the APSS values for S 1 and S 2 can be rep-
resented in Fig. 5 (b), where APS S (S 1) = 50.00% and
APS S (S 2) = 37.50%.
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Unlike the NAPCCVλ metric, APSS not only considers
the strength λ, but also considers other strengths from 1 to
(k−1). However, the APSS metric mainly focuses on the rate
of strengths satisfied for an interaction test sequence, ne-
glecting the rate of interaction coverage at each strength. For
example, given an interaction test suite T , with two interac-
tion test sequences, S 1 and S 2, although both of them may
require the same number of test cases to first cover all possi-
ble λ-wise value combinations previously covered by T (i.e.,
fλ(S 1) = fλ(S 2)), however, their rates of λ-wise interaction
coverage may differ — NAPCCVλ(S 1) � NAPCCVλ(S 2).
Motivated by this, it is necessary and reasonable to propose
a new metric for interaction test sequences by not only con-
sidering different strengths, but also considering the rates of
different interaction coverage.

4.4 Average Percentage of Weighted Multiple Interaction
Coverage

In this section, we propose the Average Percentage of
Weighted Multiple Interaction Coverage (APWMIC) metric,
which is used to evaluate and distinguish different interac-
tion test sequences permutated from a given interaction test
suite. The APWMIC metric combines benefits of both the
NAPCCVλ and APSS metrics, because it not only considers
the rate of interaction coverage, but also takes account of
different strengths.

Before introducing the APWMIC metric, we initially
define a function h(si) which returns a reward value for an
executed test case si (i = 1, 2, · · · , n) in the given interac-
tion test sequence S = 〈s1, s2, · · · , sn〉. Its definition is as
follows:

h(si) =
k−1∑
λ=1

(ωλ ∗ |�λ(S , i)|
|CombSetλ(S )| ), (13)

where ωλ(λ = 1, 2, · · · , k−1) is a constant weight for each λ
that should be assigned in advance, satisfying the following
two requirements: (1) 0 ≤ ωλ ≤ 1.0 (λ = 1, 2, · · · , k − 1);
and (2)

∑k−1
λ=1 ωλ = 1.0.

Intuitively, h(sn) = 1.0, and the value range of h(si) is
[0, 1.0], where i = 1, 2, · · · , n. Additionally, h(s1) ≤ h(s2) ≤
· · · ≤ h(sn).

Given a h(si) for each si in S , the APWMIC metric is
defined as follows:

APWMIC(S ) =
1
n

n∑
i=1

h(si) − 1
2n
. (14)

However, APWMIC has the requirement that all test cases in
S be executed, which limits its application, especially when
testing resources are limited. To overcome this, we present
a variant of APWMIC called Normalized APWMIC (NAP-
WMIC) as an enhancement.

NAPWMIC(S ) =
1
n′

n′∑
i=1

h(si) − p
2n′
, (15)

where n′ is the number of executed test cases in S , and p =

(a) Equal weight assignment (b) Empirical weight assignment

Fig. 6 An example of the NAPWMIC metric when executing all test
cases in each interaction test sequence.

(a) Equal weight assignment (b) Empirical weight assignment

Fig. 7 An example of the NAPWMIC metric when executing only some
of the test cases in each interaction test sequence.

h(sn′ ). Obviously, if n′ = n, and p = 1.0, then Eq. (15) is
equal to Eq. (14).

As shown in Eq. (13), the weight ωi (i = 1, 2, · · · , k−1)
should be assigned in advance. In this paper, we focus
on two weight distributions: (1) equal weight assignment:
ω1 = ω2 = · · · = ωk−1 =

1
k−1 ; and (2) empirical weight

assignment. Previous studies (e.g. [17], [18]) have reported
that 29% to 82% of faults were caused by 1-wise parame-
ter interactions; 6% to 47% by 2-wise; 2% to 19% by 3-
wise; 1% to 7% by 4-wise; and even less by higher than
4-wise parameter interactions. Consequently, we assigned
each weight as follows: ω1 = ω, and ωi+1 =

1
2ωi, where

i = 1, 2, · · · , k − 2. For instance, if k = 3, then we have
ω1 = 0.67 and ω2 = 0.33; if k = 4, we have ω1 = 0.57,
ω2 = 0.29, and ω3 = 0.14.

Here, we look again at the example from Sects. 4.1 and
4.3. When testing resources are sufficient to execute all test
cases in each interaction test sequence, as shown in Fig. 6,
the dashed line represents S 1 while the full line represents
S 2. The areas of the regions with the left and right diag-
onals are surrounded by the dashed line and the full line,
respectively; while the area of the region with the crossed
diagonal is the overlap of S 1 and S 2. As shown in Fig. 6 (a),
NAPWMIC(S 1) = 65.00% and NAPWMIC(S 2) = 64.17%,
therefore, we can conclude that S 1 
 S 2, according to
the NAPWMIC metric with equal weight assignment. As
shown in Fig. 6 (b), NAPWMIC(S 1) = 68.33% and NAP-
WMIC(S 2) = 66.39%, therefore, S 1 
 S 2, according to the
NAPWMIC metric with empirical weight assignment.

When limited testing resources mean that only some
of the test cases in each interaction test sequence can be
executed — e.g. 50% in this example, as shown in Fig. 7,
where the shaded region is the overlap between the S 1
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and S 2 regions — we may have the following results:
Fig. 7 (a) shows that NAPWMIC(S 1) = 40.00% and NAP-
WMIC(S 2) = 37.92%, when the equal weight assignment
is used; Fig. 7 (b) shows that NAPWMIC(S 1) = 43.33% and
NAPWMIC(S 2) = 40.56%, when the empirical weight as-
signment is used. Therefore, we can conclude that S 1 
 S 2

when executing 50% of the test cases in each interaction test
sequence, irrespective of the weight assignment method.

5. Empirical Studies

In this section, we report on some empirical studies con-
ducted to investigate the feasibility and practicability of the
proposed metrics.

5.1 Setup

We selected two test profiles, denoted T P(7, 243161161) and
T P(8, 2691101) [2], which are derived from real-life pro-
grams — a module from a lexical analyzer system (flex), and
a configuration model for GNUzip (gzip). The interaction
test suites were constructed using two well-known tools —
Advanced Combinatorial Testing System (ACTS) [19] and
Pairwise Independent Combinatorial Testing (PICT) [20] —
both of which are supported by greedy algorithms, and im-
plemented by the In-Parameter-Order (IPO) and the one-
test-at-a-time methods, respectively [1].

As discussed earlier, an interaction test suite is not nec-
essarily a covering array, however, in our empirical studies
we used covering arrays generated by ACTS and PICT to
represent interaction test suites. We focus on covering ar-
rays with strength τ = 2, 3, 4, 5. The size of each cover-
ing array is given in Table 4. Additionally, to obtain dif-
ferent interaction test sequences, we used four prioritization
strategies that have commonly used in the field of combi-
natorial interaction testing — (1) Original: generating the
interaction test sequence according to the test case order of
the corresponding interaction test suite; (2) Random: prior-
itizing the interaction test suite in a random manner [2]; (3)
ICBP: prioritizing the interaction test suite based on interac-
tion coverage of a given strength, namely, Interaction Cov-
erage Based Prioritization (ICBP) [2], [5], [6], [8], [9]; and
(4) IICBP: prioritizing the interaction test suite based on
different interaction coverage by incrementally updating the
strength and starting with a strength of 1, namely, Incremen-
tal Interaction Coverage Based Prioritization (IICBP) [13].

Since randomization was used in the Random, ICBP,
and IICBP prioritization strategies, we ran each interaction
test suite 100 times for each strategy, and reported the aver-
age of the results.

5.2 Results

The APSS and NAPWMIC metrics were used as the eval-
uation measures to calculate different interaction test se-
quences prioritized by different prioritization strategies.

Table 4 Sizes of covering arrays for two test profiles.

Tool Strength T P(7, 243161161) T P(8, 2691101)

ACTS

τ = 2 96 90
τ = 3 289 180
τ = 4 578 632
τ = 5 1728 1080

PICT

τ = 2 96 90
τ = 3 293 192
τ = 4 744 592
τ = 5 1658 1237

5.2.1 Study 1: The APSS Metric

Table 5 shows the APSS metric values for different inter-
action test sequences prioritized by different prioritization
strategies on the two test profiles. Based on the experimen-
tal results, we have the following observations.

1. According to the APSS metric, among all prioritization
strategies for interaction test suites, IICBP performs
best, followed by ICBP.

2. For each prioritization strategy (Original, Random,
ICBP, and IICBP), the APSS value generally increases
with the increase in the strength value.

3. When interaction test suites (or covering arrays) are
constructed using the ACTS tool, Original gener-
ally has the lowest APSS values; when constructed us-
ing the PICT tool, Random performs worst, in terms
of the APSS metric. The APSS values are par-
ticularly low for Original when using the ACTS
tool: for T P(7, 243161161) when τ = 2, 3, 4; and for
T P(8, 2691101) when τ = 2, 3 — all have values of less
than 2.00%.

Observation 1 is easily explained: The main reason is
that IICBP prioritizes a given interaction interaction suite
according to interaction coverage at a low strength λ (λ = 2),
and then incrementally updates the strength value. More
specifically, IICBP aims at achieving an interaction cover-
age at low strength as soon as possible, resulting in it requir-
ing the lowest number of test cases to cover all value combi-
nations at a given strength. Therefore, IICBP has the highest
APSS metric value. ICBP uses interaction coverage at a fixed
strength τ to guide its prioritization process, which guaran-
tees that it needs the lowest number of test cases to cover
all possible τ-wise value combinations. However, it cannot
guarantee interaction coverage at other strengths. Finally,
Original does not prioritize any interaction test suites, and
Random does not use any information to guide the prioriti-
zation.

Regarding Observation 2, when the strength τ in-
creases, the size of the τ-wise covering array T increases
dramatically. According to Property 2, fλ(S ) ≤ |S | in each
interaction test sequence S of T where 1 ≤ λ < τ; while
fλ′(S ) is generally equal to |S | where τ ≤ λ′ ≤ (k − 1).
Consequently, when τ is larger, for the same prioritization
strategy, APSS also becomes larger.

The main reason underlying Observation 3 is related
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Table 5 The APSS metric for different prioritization strategies for each interaction test suite (%).

Tool Strength
T P(7, 243161161) T P(8, 2691101)

Original Random ICBP IICBP Original Random ICBP IICBP

ACTS

τ = 2 1.39 10.24 13.84 14.41 1.83 10.56 13.00 13.25
τ = 3 1.38 17.22 23.15 26.93 1.71 13.55 14.08 20.48
τ = 4 1.44 23.46 26.85 35.80 19.41 22.09 32.42 34.88
τ = 5 23.08 35.41 48.15 54.78 20.18 28.21 39.35 45.61

PICT

τ = 2 12.15 9.91 13.99 14.41 11.67 10.34 13.10 13.25
τ = 3 16.15 17.39 24.04 27.05 15.59 13.63 16.07 20.73
τ = 4 25.20 25.18 34.15 40.46 26.60 21.55 32.17 34.37
τ = 5 37.89 34.83 47.15 54.48 33.74 29.47 40.94 46.36

Table 6 The NAPWMIC metric for different prioritization strategies when executing all test cases in
each interaction test sequence (%).

Metric Tool Strength
T P(7, 243161161) T P(8, 2691101)

Original Random ICBP IICBP Original Random ICBP IICBP

NAPWMICequal

ACTS

τ = 2 59.49 63.13 65.44 65.16 60.53 63.86 65.50 65.35
τ = 3 60.55 69.42 71.90 71.51 63.12 66.15 69.58 68.13
τ = 4 60.40 73.33 75.12 74.89 70.32 74.01 76.42 75.89
τ = 5 71.14 82.08 84.60 84.52 70.62 77.21 79.31 79.14

PICT

τ = 2 64.79 63.59 65.67 65.53 64.93 63.75 65.41 65.38
τ = 3 71.04 69.99 72.35 73.09 68.43 67.39 68.95 68.51
τ = 4 77.23 75.96 78.38 78.22 75.36 73.92 75.99 75.71
τ = 5 83.12 81.81 84.23 84.19 80.20 78.77 80.90 80.73

NAPWMICempirical

ACTS

τ = 2 68.27 77.94 81.39 81.33 73.78 81.12 83.77 83.73
τ = 3 69.16 86.48 88.77 88.92 75.08 85.18 87.04 87.34
τ = 4 69.27 90.51 91.63 92.18 84.77 92.46 93.94 94.01
τ = 5 79.23 95.31 96.22 96.51 83.24 94.60 95.45 95.79

PICT

τ = 2 80.27 78.33 81.69 81.63 82.59 81.12 83.78 83.80
τ = 3 87.65 86.85 89.57 89.22 87.32 86.23 87.91 88.07
τ = 4 92.47 91.96 93.46 93.71 93.04 92.24 93.72 93.83
τ = 5 95.56 95.20 96.11 96.40 95.66 95.12 96.04 96.24

to the different mechanisms implementing ACTS and PICT.
Given a T P(k, |V1||V2| · · · |Vk |) with |V1| ≥ |V2| ≥ · · · ≥ |Vk |,
ACTS constructs a τ-wise covering array using horizonal
growth, and then vertical growth. During the horizontal
growth process, ACTS first builds a τ-wise test set for the
first τ parameters, meaning it needs at least 1 + (|V1| −
1)
∏τ

i=2 |Vi| test cases to cover all possible 1-wise value com-
binations. Additionally, when τ = 2 or 3, according to the
explanation of Observation 2, the ACTS Original test se-
quences may have very low APSS metric values. Therefore,
it potentially has the low rate of covering all 1-wise value
combinations, which may lead to the low APSS value. How-
ever, PICT uses the one-test-at-a-time strategy [1] to con-
struct a τ-wise covering array by choosing an element from
candidates such that it covers the largest number of uncov-
ered τ-wise value combinations. In other words, PICT has a
similar mechanism to ICBP and IICBP.

5.2.2 Study 2: The NAPWMIC Metric

Since there were two weight assignment methods, for
ease of presentation, we use NAPWMICequal to re-
fer to NAPWMIC with equal weight assignment, and
NAPWMICempirical for NAPWMIC with empirical weight as-
signment. Two cases were considered: (1) when testing re-
sources are sufficient to run all test cases in each interaction
test sequence; and (2) when testing resources limit running
to only 50% of all test cases in each test sequence. Case (1)

is presented in Table 6, and case (2) in Table 7.
Based on the experimental data shown in Tables 6 and

7, we have the following observations:

1. The trends for the results when executing all test
cases (Table 6) are similar to those when executing
only 50% of the test cases (Table 7), but with the
NAPWMICequal scores generally being lower than those
for NAPWMICempirical.

2. Original and Random are the two prioritization strate-
gies with worst overall performance: When interaction
test suites are generated with ACTS, Original per-
forms worst, followed by Random; but when generated
by PICT, Random has the lowest NAPWMICequal and
NAPWMICempirical values, followed by Original.

3. The ICBP and IICBP are the two prioritization strate-
gies with the best performance, with both produc-
ing very similar NAPWMICequal and NAPWMICempirical

scores.
4. As the strength value increases, both the NAPWMICequal

and NAPWMICempirical values also tend to increase, for
all test prioritization strategies.

Observations 2 and 4 are basically consistent with Ob-
servations 1 and 2 in Study 1 (Sect. 5.2.1), so here we focus
the analysis on the other Observations, 1 and 3. For Obser-
vation 1, a possible explanation relates to the characteristics
of the different interaction test sequences and weight assign-
ments. For Observation 3, IICBP focuses on different inter-
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Table 7 The NAPWMIC metric for different prioritization strategies when executing 50% of all test
cases in each interaction test sequence (%).

Metric Tool Strength
T P(7, 243161161) T P(8, 2691101)

Original Random ICBP IICBP Original Random ICBP IICBP

NAPWMICequal

ACTS

τ = 2 38.17 42.33 45.67 45.17 43.35 43.35 46.16 45.90
τ = 3 39.82 51.48 54.81 54.24 47.40 47.40 51.31 49.35
τ = 4 39.84 57.45 60.15 59.93 50.50 58.40 61.66 60.79
τ = 5 48.29 69.94 73.26 73.22 49.82 63.14 65.92 65.75

PICT

τ = 2 44.56 42.81 45.89 45.62 44.90 43.22 46.01 45.86
τ = 3 53.43 52.05 55.13 54.73 50.33 48.60 50.93 50.10
τ = 4 62.25 60.93 64.10 63.88 59.87 58.10 60.92 60.43
τ = 5 71.06 69.60 72.74 72.80 66.93 65.19 68.03 67.80

NAPWMICempirical

ACTS

τ = 2 51.19 63.16 68.65 68.55 58.84 68.08 72.98 72.93
τ = 3 52.62 76.77 80.33 80.70 60.93 75.16 78.31 78.42
τ = 4 52.89 83.53 85.43 86.46 71.07 86.78 89.10 89.27
τ = 5 60.98 91.45 92.92 93.52 68.65 90.29 91.65 92.35

PICT

τ = 2 66.64 63.57 69.14 69.03 70.52 68.04 72.95 72.95
τ = 3 78.54 77.26 80.85 81.06 78.38 76.56 79.37 79.43
τ = 4 86.37 85.76 88.19 88.69 87.44 86.36 88.72 88.95
τ = 5 91.75 91.21 92.74 93.33 91.99 91.16 92.68 93.10

Table 8 Comparison of different metrics for an interaction test sequence S .

Metric
Requirements Factors considered

Is S a λ-wise covering array? Are all test cases in S executed? Strength π Rate of π-wise interaction coverage
APCCλ(S ) yes yes π = λ yes

APCCVλ(S ) yes yes π = λ yes
NAPCCVλ(S ) no no π = λ yes

APSS(S ) no no π = 1, 2, · · · , (k − 1) no
APWMIC(S ) no yes π = 1, 2, · · · , (k − 1) yes

NAPWMIC(S ) no no π = 1, 2, · · · , (k − 1) yes

action coverage at different strengths, but during the prioriti-
zation process it only considers a single strength to guide the
selection of each next test case; similarly, ICBP uses strength
τ to prioritize a given interaction test suite: Neither metric
considers multiple strengths at the same time. Since NAP-
WMIC (both NAPWMICequal and NAPWMICempirical) con-
siders different interaction coverage at different strengths at
the same time, therefore, ICBP and IICBPmay perform sim-
ilarly.

In summary, the proposed metrics (including APSS and
NAPWMIC) can successfully evaluate and distinguish differ-
ent interaction test sequences, and thereby evaluate different
test prioritization strategies. Therefore, we conclude that the
proposed metrics are both reasonable and practical.

5.3 Threats to Validity

To the best of our knowledge, there are four main potential
threats to the validity of this study.

The first potential threat relates to the representative-
ness of the test profiles: in empirical studies we considered
two test profiles derived from the real-life programs, which
are widely used but limited. The second potential threat
is the representativeness of the interaction test suites: we
used ACTS and PICT to construct the test suites, but both of
them belong to the category of greedy methods. The third
potential threat is the representativeness of weight assign-
ments for the NAPWMIC metric: we only used two weight
assignments, both of which may be considered quite sim-

ple. The final potential threat is the representativeness of the
test prioritization strategies used to prioritize the interaction
test suites: we only adopted four prioritization strategies, all
of which have frequently been applied in the study of con-
structing interaction test sequences.

Further studies will be conducted to address these po-
tential threats: in particular, a greater number of test profiles,
different interaction test suite construction tools, different
weight assignments for NAPWMIC, and other test prioriti-
zation strategies will all be considered.

6. Comparison of Different Metrics for Interaction Test
Sequences

In this section, we briefly present a comparison of the dif-
ferent metrics for evaluating interaction test sequences.

For an interaction test sequence S , Table 8 shows a
comparison of different metrics for evaluating S from the
perspectives of requirements, and factors considered. As
shown in the table, it can be seen that the metrics proposed
in this paper (NAPCCVλ, APSS, APWMIC, and NAPWMIC)
have advantages over previous metrics APCC and APCCV:
either reducing requirements, or considering additional fac-
tors for the evaluation of S . We next describe each of these
comparisons in turn.

1. APCCVλ(S ) VS APCCλ(S ): APCCVλ(S ) is a variant
of APCCλ(S ), therefore, they are equivalent.

2. NAPCCVλ(S ) VS APCCλ(S ): Although both use the
same factors to evaluate S , NAPCCVλ(S ) does not have
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the two requirements that APCCλ(S ) has (that all test
cases in S should be executed; and that all possible λ-
wise value combinations should be covered by S ).

3. APSS(S ) VS APCCλ(S ): Similar to NAPCCVλ(S ),
APSS(S ) does not have the two requirements that
APCCλ(S ). However, APSS(S ) does not consider the
rate of interaction coverage at a given strength; while
APCCλ(S ) does not use multiple strengths to evaluate
S .

4. APWMIC(S ) VS APCCλ(S ): APWMIC(S ) overcomes
one of requirements of APCCλ(S ), and it uses addi-
tional factors to evaluate S .

5. NAPWMIC(S ) VS APCCλ(S ): NAPWMIC(S ) not only
overcomes the two requirements of APCCλ(S ), but also
considers other factors to evaluate S that are not been
used by APCCλ(S ).

Although both APSS(S ) and NAPWMIC(S ) over-
come the drawbacks associated with APCCV(S ) (or
APCC(S )), APSS(S ) does face a couple of challenges that
NAPWMIC(S ) does not: unlike NAPWMIC(S ), as shown in
Table 8, APSS(S ) neglects the rate of interaction coverage at
each strength, and, as discussed in Sect. 4.3, may fail to eval-
uate and compare two interaction test sequences. In prac-
tice, when choosing which of APSS(S ) or NAPWMIC(S )
to use, we suggest the following: (1) when evaluation time
is limited, choose APSS(S ) instead of NAPWMIC(S ), be-
cause the calculation time for APSS(S ) is less than that for
NAPWMIC(S ); (2) when time allows, use either APSS(S ) or
NAPWMIC(S ); and (3) when APSS(S ) fails to evaluate and
compare two interaction test sequences due to above reasons
(See Sect. 4.3), NAPWMIC(S ) is a better choice.

7. Conclusion and Discussion

In this paper, to overcome some shortcomings of previous
metrics [8], we have proposed several metrics to help guide
prioritization of interaction test suites. According to empir-
ical studies, it is both reasonable and practical to use the
proposed metrics to evaluate and distinguish different inter-
action test sequences of a given interaction test suite, and
thereby evaluate different prioritization strategies.

Recently, Petke et al. [21] presented a variant of the
APCCλ metric, namely the Average Percentage of Covering-
array Coverage metric, which is similar to the APCCVλ
metric. It does not require that all possible value combi-
nations should be covered by the interaction test sequence
S . However, it still requires that all test cases in S should be
executed, and only focuses on a single strength to evaluate
S .

Although other factors can applied to metrics used for
evaluating interaction test sequences, such as test case cost
and test case weight [2]–[4], [8], in this paper we only con-
sidered the characteristics of the interaction test suite (i.e.,
interaction coverage information). It will be interesting to
apply additional factors to the proposed metrics, so as to al-
low a deeper evaluation of interaction test sequences.
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