842

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.4 APRIL 2014

[PAPER

An Intelligent Fighting Videogame Opponent Adapting to Behavior

Patterns of the User****

Koichi MORIYAMA ", Member, Simén Enrique ORTIZ BRANCO'™*,
Mitsuhiro MATSUMOTO"**, Ken-ichi FUKUI', Nonmembers,

SUMMARY In standard fighting videogames, users usually prefer
playing against other users rather than against machines because oppo-
nents controlled by machines are in a rut and users can memorize their
behaviors after repetitive plays. On the other hand, human players adapt
to each other’s behaviors, which makes fighting videogames interesting.
Thus, in this paper, we propose an artificial agent for a fighting videogame
that can adapt to its users, allowing users to enjoy the game even when
playing alone. In particular, this work focuses on combination attacks, or
combos, that give great damage to the opponent. The agent treats combos
independently, i.e., it is composed of a subagent for predicting combos the
user executes, that for choosing combos the agent executes, and that for
controlling the whole agent. Human users evaluated the agent compared to
static opponents, and the agent received minimal negative ratings.

key words: entertainment computing, adapting agent, pattern matching,
reinforcement learning

1. Introduction

In recent decades, videogames have been widely played in
the world. Videogames consist of many genres such as role-
playing games, action games, and simulation games. Nowa-
days, they are spreading outside of entertainment such as
serious games and “edutainment”. Videogames are good ap-
plications of computer science and information technology
because they are software produced by synthesizing many
techniques of them.

One of the popular genres of games with new titles be-
ing released every year is the fighting game. It is basically
a simulation of hand-to-hand combat, in which fights are
carried out in a manner similar to boxing matches: usually
there are two participants, there are several rounds with a
given time limit, etc. The participant who has lowered the
energy of the opponent to zero by means of attacks is the
winner of the round.

All fighting videogames are designed to be played by

Manuscript received July 23, 2013.
Manuscript revised November 27, 2013.
"The authors are with the Institute of Scientific and Industrial
Research, Osaka University, Ibaraki-shi, 547-0047 Japan.

""The authors are with the Graduate School of Information
Science and Technology, Osaka University, Suita-shi, 565-0871
Japan.

“Presently, with PlatinumGames, Inc.

“Presently, with Mitsubishi Electric Corporation.

“*Presently, with Graduate School of Information Systems, The
University of Electro-Communications.

“**This article is an extended version of our workshop and con-
ference papers [1], [2].
a) E-mail: koichi@ai.sanken.osaka-u.ac.jp
DOI: 10.1587/transinf. E97.D.842

Satoshi KURIHARA ", and Masayuki NUMAO', Members

at least two users competitively, i.e., users playing against
one another by controlling each character. However, these
games also have the possibility of being played by only one
user. In this case, the machine will take control of the op-
ponent character. Users generally choose to play against the
machine in order to advance the game story, to practice, or
because there is nobody around to play with. But, if given
the option, users usually prefer to play against other users.

One of the reasons users prefer to play against other
users could be that the opponent controlled by the machine
in solo mode is usually uninteresting. This is not to say that
it is easy to defeat, since the machine can execute compli-
cated attacks and respond quickly. Rather, the adaptability
of human players makes battles interesting compared to the
machine. Meanwhile, the machine opponent used so far is
just sophisticated enough to have the user feel that the op-
ponent is reasonably smart [3].

When two users play against each other, they usually
fight a battle beyond quick button mashing. Each user has a
strategy he/she follows and patterns he/she developed. The
fun part of the game is trying to learn each other’s technique
and predict the future actions of his/her opponent. Hence,
we are aiming to produce an artificial opponent that adapts
to its users by simulating the learning and prediction. Such
an adapting opponent will let all users at different levels of
expertise enjoy the game even when playing alone.

In this work, we propose an agent controlling such an
adapting opponent. In particular, this work focuses on com-
bination attacks, or combos, that need techniques to execute
infallibly but deal greater damage than simple attacks like
punches and kicks. In addition, to defend from combos, the
player has to take actions prescribed by each combo. Thus,
the agent has to learn what combos the user can execute and
predict what combos the user will execute next. Also, it
has to adjust its own executable combos to have them bal-
ance with the user’s executable ones. Hence, the agent con-
sists of three subagents: a subagent for learning and predict-
ing combos the user executes, that for choosing combos the
agent executes, and that for controlling the whole agent. In
the experiment, human users at different levels of expertise
evaluated the degree of fun the agent added to playing the
game.

This paper consists of seven sections. Section 2 intro-
duces standard fighting videogames and their components.
We present the model of our adapting agent for a fighting
videogame in Sect. 3. Section 4 shows the result of experi-

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

MORIYAMA et al.: AN INTELLIGENT FIGHTING VIDEOGAME OPPONENT ADAPTING TO BEHAVIOR PATTERNS OF THE USER

ment in which human users evaluated the agent compared to
static opponents. We discuss the result in Sect. 5. After we
briefly see several related works in Sect. 6, Sect. 7 concludes
this paper.

2. Fighting Videogame

Typical fighting videogames are one-on-one games. In solo
mode the user is in control of one character, and the machine
controls the opponent. Each character starts with a prede-
fined amount of health points (HP); when their HP reaches
zero they lose. The objective is to defeat the other character
first. Usually the fight is decided after several rounds each of
which has a predetermined time limit. Fighting videogames
have several stages where the fights occur. The characters
can walk back and forward, jump and crouch in a 2D plane
of the stage. If the stage has edges, falling from the edge
typically means immediately losing the round.

Although different fighting videogames vary in the
details, the set of available actions can be described as
AUDUMUCUB. A is the set of simple attacks, e.g.,
punch, kick, and projectile-like long range special attacks
(from now on we will abbreviate these actions as p, k and
s respectively). Simple attacks deal moderate damage. D
is the set of defensive actions, or blocks. Blocks guard the
character from simple attacks. M is the set of movements
the players use to navigate the character. C and B are the
sets of combos and combo-breakers, respectively. They are
key actions in this work and explained in detail in the next
subsections.

2.1 Combos

Combos, short for combination attacks, are a common game
design element found in most modern fighting videogames.
A combo deals greater damage than simple attacks. Differ-
ent games have a different approach to combos. We deal
with combos of the form of predefined sequences of simple
attacks successfully executed within a brief time limit.

For instance, let us consider the combos shown in Ta-
ble 1. The sequence of four punches in a row pppp is
a combo. When a character successfully connects four
punches the opponent will receive the extra amount of dam-
age defined for this combo in addition to the normal amount
of damage of each simple attack. After the first two actions
of a combo are successfully connected, the rest of the ac-
tions of this combo cannot be blocked by the block actions.

Table 1 Example of combos.
ID | Actions Damage | ID | Actions Damage
1 ppPP 15 7 kppk 20
2 pppk 20 8 kpps 25
3 ppps 25 9 kspp 15
4 pkpp 20 10 ksps 20
5 pkpk 15 11 kpsp 30
6 pkps 25 12 kkkk 30

843

2.2 Combo-Breakers

Combo-breakers are a way of blocking or counter-attacking
a combo. For some games, including the case we deal with,
combo-breakers are the only ways to defend from a combo.
The combo-breaker is one predefined action or sequence of
actions that can be executed by the character receiving a
combo. Each combo ¢ € C has at least one combo-breaker
b € B. In order to break a combo (i.e., to counter-attack it),
the corresponding combo-breaker should be executed before
the combo is completed. When a combo is broken, the char-
acter receiving the combo will not receive the extra damage,
instead the character executing the combo will receive it.
An example will clarify this concept. Let us use again
the combos in Table 1. The sequence pppp is defined as
a combo. Let us assume that this combo has the action
p as its combo-breaker. Suppose the attacker is executing
this combo. If the defender executes p before the attacker’s
fourth p, then the combo will be broken and the attacker will
receive the extra damage 15. Instead, if the defender cannot
execute p before the attacker’s fourth p, or if the defender’s
last action is not p, the combo will not be broken and the
defender will receive the extra damage of the combo.

3. Three-Subagent Adapting Architecture

Our goal is to produce an agent for fighting videogames that
can adapt to its users’ behaviors, or fighting styles, allowing
users to enjoy the game even when playing alone. The agent
must adapt automatically to the level of the user, i.e., it must
become a difficult opponent if the user is an expert, and it
must become an easy opponent if the user is a beginner.
Playing a fighting videogame can be thought of as deal-
ing with three tasks: executing simple attacks plus mov-
ing, executing combos, and executing combo-breakers when
receiving a combo. According to the three tasks, we di-
vide the agent into three subagents: Main Subagent (MSA),
Executing-Combo Subagent (ECSA) and Receiving-Combo
Subagent (RCSA) (Fig.1). MSA will move the character
and execute simple attacks. When deemed appropriate, it
will pass the control to one of the other subagents. ECSA

For All
Other
Actions

Execute Pézﬂt;()lis;r

Combos Counter-Attack
N

Executing
Combo

Subagent

Receiving
Combo
Subagent

(ECSA) (RCSA)

Fig.1 Three subagent architecture.

844

will execute combos having similar difficulty to those exe-
cuted by the user. RCSA will learn the fighting style of the
user and try to execute the appropriate combo-breaker.

The agent composed of the mentioned subagents will
be able to move away from the user or get close to him/her
depending on whether the user will attack or not, execute
combos appropriate to the level of the user, and learn the
user’s combo patterns to respond adequately. Note that
dividing the tasks among subagents should help the agent
learn each task in less time.

3.1 Main Subagent (MSA)

MSA is in charge of executing simple attacks, blocks, and
moving. When deemed appropriate, MSA passes the control
to one of the other subagents. MSA is modeled as a Profit-
Sharing agent [4], shown in Fig. 2.

A round is a period from the start of a battle until
the winner is determined or the predetermined time passes.
From a viewpoint of each player, a round is divided into
turns each of which is a period from one action to the next
one of the player. At the #-th turn of the round n, MSA
first recognizes the environment as a state s, and looks up
recorded weights w,_;(s;, a’) of all actions @' available in s,.
After that, MSA chooses an action @, with the probability
calculated from the weights using Boltzmann equation [5],
with temperature T:

exp(Wn—1(s;,a")/7)
Yk expWy—1(s;,d¥) /1)’

The agent executes a, and records the pair (s;, ;). The avail-
able actions are those defined in the videogame in question
and passing control of the character to ECSA/RCSA. After
the action has been executed, or ECSA/RCSA has executed
its action, MSA resumes control of the character.

At the end of the round, MSA receives a reward R,
from the environment and updates the weight of all recorded
pairs (s;, a,) of this round by the following rule. T is the last
turn in the round.

])s,(‘li) =

(D

WSt @) — Wi (s, a) + Ry -y (1<t<T). (2)

MSA receives higher positive rewards when the differ-
ence of the final HPs of the agent and the user is small, al-
though negative rewards are given when the difference is

MSAQ):
while true do
s := the current state of the game;
a := an available action in s chosen according to

the weight w(s,a); // See Eq.(1)

execute the action a;

record the pair (s,a);

if (the round is finished)
update w(s,a) of the recorded pairs (s,a)

by the obtained reward; // See Eq.(2)

exit;

endif

done

Fig.2 Pseudo-code of MSA.

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.4 APRIL 2014

significant. This reinforces actions that lead the agent to be-
have in such a way that it is not too difficult nor too easy
for the user. That is, we are reinforcing actions that put the
agent at the same level of the user.

3.2 Executing-Combo Subagent (ECSA)

ECSA has the responsibility of choosing combos and exe-
cuting them. In order for the agent as a whole to be at the
same level of the user, the combos the agent executes must
also be on a level close to that of the user.

Since the agent must act in real-time during a round,
ECSA randomly selects a combo from its combo set C4 C
C and executes the selected one when invoked. Therefore,
the problem is how to create C4. If we consider the set of
combos used by the user, Cy; C C, the goal of ECSA is to
create C4 of similar difficulty.

To create C4, we need metrics to order sets by their
difficulty. We use the following three metrics: ratio of
used combos, indistinguishability of combos, and entropy
of combo-breakers. In the following definitions of metrics,
Cy C Cis a set of combos.

Ratio of used combos: A better user would execute a
wider variety of combos because it would make it dif-
ficult for the opponent to predict the combo-breakers.
Hence, the ratio of used combos is a valid metric:

ICxl
ICI’
Indistinguishability of combos: Since the combo-breaker
must be executed before the last action of the combo,
a set of combos that are indistinguishable by the initial
actions is more difficult than a set where the combos
can be distinguished by their initial actions. Let C§, C
Cx be a set of solitary combos that do not share the
initial actions with others in Cy. Then, this metric can

be formalized as follows:

s

inds(Cx) = M)

ICx]

Entropy of combo-breakers: The set of combos sharing
a combo-breaker is easier than that of combos hav-
ing different combo-breakers, because a player play-
ing against the former need not decide which combo-
breaker should be executed. Hence, the entropy of the
set of distinct combo-breakers, By, of Cy is a valid
metric:

3)

used-ratio(Cy) =

— Syen, P(b)log P(b
entr(Cy) = 2b Blog(|B)X|0g () 5)

where P(b) is the probability of randomly choosing a
combo-breaker b out of the combo-breakers of Cy.

ECSA first creates a combo set containing m combos,
whose combo-breakers and initial actions are different (high
combo-breaker entropy, low indistinguishability). We con-
sider that such an initial set is not too difficult nor too easy.

MORIYAMA et al.: AN INTELLIGENT FIGHTING VIDEOGAME OPPONENT ADAPTING TO BEHAVIOR PATTERNS OF THE USER

adaptCy O
if (used-ratio(C,) > used-ratio(Cy) + A) delete();
elif (used-ratio(Cy) < used-ratio(Cy) - A) addQ;
else swap(Q);

delete():
for (i:=0; i < max_iter; i++)
a := a combo in C, chosen randomly;

if (|entr(Cy\{a})-entr(Cy)| < |entr(Cy)-entr(Cy) |
or |inds(Cy\{a})-inds(Cy)| < |inds(Cx)-inds(Cy)|)
Cy := Cp\{a}; return;

endif
endfor
add(Q):
for (i:=0; i < max_iter; i++)
c := a combo chosen randomly from all available ones;

if (|Jentr(Cyu{c})-entr(Cy)| < |entr(Cy)-entr(Cy) |
or |inds(CaU{c})-inds(Cy)| < |inds(Cy)-inds(Cy)|)
Cy := CuU{c}; return;

endif
endfor
swap():
for (i:=0; i < max_iter; i++)
a := a combo in C, chosen randomly;
c := a combo chosen randomly from all available ones;

if (Jentr((Cau{c})\{a})-entr(Cy)| < |entr(Cy)-entr(Cy) |
or |inds((CaU{c})\{a})-inds(Cy)| < |inds(Cx)-inds(Cy) |)
Cy := (Cuu{c})\{a}; return;
endif
endfor

Fig.3 Pseudo-code for adapting Cy.

After finishing a round, this combo set is partially
adapted to that of the user by the algorithm presented in
Fig.3. A defines the level of tolerance in the difference
of sizes of the sets, and max_iter limits the number of
tries. Note that ECSA does not use the damage dealt by
each combo as the metrics because it restricts the choice of
combos in the adaptation.

3.3 Receiving-Combo Subagent (RCSA)

RCSA chooses the proper combo-breaker for the combos
executed by the user. Since the combo-breaker must be ex-
ecuted before the last action of a combo, the problem be-
comes predicting the full combo from its beginning. How do
we do? It is reasonable to expect that users develop routines
of maneuver in fighting videogames because they allow the
user to execute a series of attacks quickly without having to
decide each attack, and such quick attacks are successful in
giving damage to the opponent. Therefore, for the predic-
tion problem, it is useful to extract patterns of the combos
previously executed by the user.

For example, suppose the user can execute only four
combos, ie., |Cy|l = 4 (ID = 1,2,3,4), and he/she took
combos in the following order: 1,2, 3,4, 1, 3,4,2,3,4, 1,
2,3,4,2,1, 4, 3. Then, if we can find any patterns in the
sequence, they are useful to predict the current combo the
user is executing. From the above example, we get the fol-
lowing subsequences (when minimum support = 2): (3)s,
B, (D, (2)a, (3,44, (2,3,4)3, (1,2,3,4), (2,3,4, 1),
(3,4, 1), (3,4,2),, (4, 1)1, (4,2), (subscripts show frequen-
cies). In this case, if the user executed Combo 3 previously,

845

Fig.4 An example of combo tree and pointers tracking the tree (sub-
scripts in nodes show frequencies). Gray area shows the candidate combos
in the example (See text).

we can infer that he/she will execute Combo 4 with a high
probability and it is worth to execute a combo-breaker for
Combo 4 if the beginning of the executing combo meets it.
Although any sequential pattern extraction techniques can
be used, we utilized Substring Tree [6].

After extracting frequent subsequences, we transform
them into a combo tree where each node shows a combo
with its frequency. We start with the empty tree, and insert
each frequent subsequence of combos beneath the empty
root node. Subsequences with the same beginning will share
parts of the tree. If the extracted subsequences are those in
the above example, the tree will be the one shown in Fig. 4.

Since the user can have maneuver routines of various
lengths, the agent tracks all possible patterns up to length /
simultaneously. To do so, the agent traverses the tree fol-
lowing the combos recently executed by the user during the
round. The agent uses / pointers to the tree at the same time.
Each of the / pointers tracks a sequence of size 1,2,...,!
combos. In the above example, if the user executed Combos
1, 2, 3, and 4 in this order, then the first pointer will be at
the rightmost branch of Fig. 4, the branch that starts with 4;
the second pointer will point at Node 4 in the middle-right
branch, below 3; the third pointer would point to Node 4
in the middle-left branch, below 3 below 2; etc. If the se-
quence of combos executed by the user does not match any
sequences of combos of length k in the tree, then the k-th
pointer will be null.

The combo-breaker is decided following the algorithm
of Fig. 5. What the agent basically does is, for all the point-
ers pointing to a valid node, the agent searches combos be-
neath them that match the beginning with the combo being
executed now. It chooses a combo-breaker stochastically by
their relative frequency among the combos found under the
pointers. Suppose a situation where the combos are defined
as in Table 1 and the user executes actions ppp. Then, the
agent has to predict the combo the user is executing now
from the combos that meet the leading actions, i.e., Combos
1,2, and 3. If the combo tree and the pointers extracted from
the user’s previous behavior are those in Fig. 4, the agent
collects the frequencies from the candidate combos that are
beneath the pointers, i.e., combos in the gray area of Fig. 4:

846

decide_combo_breaker():

combo_head := first actions of the combo being
executed;
combo_seq[1l] := last 1 combos executed by the user,

from recent to old;
candidate := {};
for (i: 1 to 1)
pl[i] := track(combo_seq,i);
endfor
for all p[i] # null
for all children c of p[i]
if (c¢’s first actions = combo_head)
add c to candidate;
endif
endfor
endfor
return a combo-breaker for the combo randomly
chosen from candidate;

track(combo_seq, i): // See Fig.4
node := root of the combo tree
for (j: i tol)
if (combo_seq[j] € children of node)
node := a child matching combo_seq[j]
else
node := null
break;
endif
endfor
return node

Fig.5 Pseudo-code for deciding a combo-breaker.

two times of Combo 1 from Pointer 3, two times of Combo 1
and two times of Combo 2 from Pointer 2, and two times of
Combo 1 and two times of Combo 2 from Pointer 1. Af-
ter that, the agent calculates the likelihood of Combo 1 by
2+2+2)/2+2+2+2+2)=0.6 and that of Combo 2 by
(2+2)/(2+2+2+2+2) = 0.4. Note that it does not calculate
the likelihood of Combo 3 because it is not in the candidates.
Then, the agent takes the combo-breaker for Combo 1 with
probability 0.6 and that for Combo 2 with probability 0.4.

Note that RCSA also does not use the damage of com-
bos because it does not affect the prediction itself. Even
though, for example, the user prefers combos dealing large
damage, it will appear in the combo tree.

4. Experiment

We developed a simple fighting videogame using Crystal
Space 3D to test the proposed adapting agent. Figure 6
shows a screenshot of the videogame.

The fighting videogame has the following characteris-
tics: the fights occur in a 2D plane; the characters have a
height of 3.5 units and a width of 2 units; the stage is a fi-
nite platform with a length of 42 units, falling from the plat-
form equals losing the round; there is no time limit; there
is one round per fight (hence we use the term “round” in
both meanings hereinafter); the initial HP of the characters
is 200; the set of simple attacks (A) contains punch (p), kick
(k), and special attack (s), the last one being a long range
projectile attack that travels 15 units per second; the char-
acters cannot do anything for 0.3 seconds after a punch or
a special attack, while 0.4 seconds after a kick; each of the

"http://www.crystalspace3d.org/

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.4 APRIL 2014

Fig.6 Fighting videogame.

simple attacks deal one point of damage; the set of defenses
(D) contains one action: block; while blocking, simple at-
tacks do not have effect; the set of combos (C) is listed in
Table 1; for a combo to be valid, each action must be ex-
ecuted within 0.5 seconds of the previous one; the combo-
breaker of a combo is defined as its last action; if the combo-
breaker is valid, the character executing the combo receives
its damage; and the set of movements (M) contains move to
the right, move to the left, jump and crouch.

We first show how well RCSA works in the fighting
videogame. Next, we show how well the (whole) proposed
agent (Fig. 1) makes the videogame enjoyable.

4.1 Experiment 1: How Well RCSA Works

In this experiment, we verified how well an agent using
RCSA can break the user’s combos by predicting them prop-
erly. We first constructed an agent that could recognize the
combos and execute combo-breakers chosen by a choice
method such as RCSA. In order to evaluate the method it-
self, the agent always executed a combo-breaker when re-
ceiving a combo.

We used two other combo-breaker choice methods for
comparison: random and accumulation. Random randomly
chose a combo-breaker. Accumulation memorized the com-
bos the user had executed in the past and chose a combo-
breaker stochastically based on the frequency of the user’s
combos that fitted the initial actions.

As users who played against the agents having one
of the combo-breaker choice methods, we constructed two
“simulated” ones. The first one, named “single”, executed
combos obeying the pattern 6-4-9—11-3-5, which means
that the simulated user first executed Combo 6, then Combo
4, etc., and after Combo 35, it executed Combo 6 again. The
other simulated user, named “alternate”, first followed the
above pattern for 10 rounds and, after that, it followed an-
other combo pattern 1-3—10-2-8-3 for 10 rounds. Then, it
alternated these patterns every 10 rounds. The combos in
the patterns were chosen randomly and, needless to say, the
agents did not know the patterns in advance.

Figure 7 shows the accuracy of the combo-breaker
choice methods. The accuracy is defined as the number of
successfully executed combo-breakers divided by the num-

MORIYAMA et al.: AN INTELLIGENT FIGHTING VIDEOGAME OPPONENT ADAPTING TO BEHAVIOR PATTERNS OF THE USER

0.8

0.6

0.4
0.2

Accuracy

0 5 10 15 20 25 30 35 40
Round

Alternate

Accuracy

0 5 10 15 20 25 30 35 40
Round

wwewwes Random 0 e Accumulation =~ == RCSA

Fig.7 The accuracy of combo-breaker choice methods, which shows
how well they could break combos executed by simulated users: the “sin-
gle” (above) and the “alternate” (below).

ber of combos presented to the agent. In RCSA, the min-
imum support of frequent sequences was set to two, and
five pointers were used in the combo tree. The ranking of
the combo-breaker choice methods was as follows: RCSA,
accumulation, and random. In particular, when playing
against “alternate”, RCSA obtained high accuracy, whereas
accumulation degraded because it was confused by the al-
ternation of patterns. This result shows that RCSA works
well when the user has patterns in combo execution.

4.2 Experiment 2: How Well the Agent Makes the Game
Enjoyable

We conducted an experiment in which human users played
against the (whole) proposed agent (Fig. 1) to show how
well the agent makes the videogame enjoyable for each user.
The proposed agent had the following parameters:

States: To keep the design of the agent simple, we dis-
cretized the world state as follows. These were se-
lected because they provided enough information to the
agent to make intelligent decisions: (a) crouching or
not (agent/user), (b) jumping or not (agent/user), (c) re-
ceiving a combo or not (agent), (d) executing a simple
attack or not (user), (e) blocking or not (agent/user),
(f) at an edge of the platform or not (agent), (g) HP <
30 or not (user), (h) the distance between the user and
the agent, discretized in eight sections: < 0.25, < 0.50,
< 2.00, < 2.60, < 4.00, < 10.00, < 24.50 and > 24.50,
(i) the distance from the agent to the closest special at-
tack thrown by the user, discretized in three sections:
<0.50, < 2.60 and > 2.60, and (j) the difference in HP
between the user and the agent, rounded to tens.

Actions: The available actions were those available in the
game, plus ECSA, RCSA, and stay. Instead of the
actions right and left, the agent used “approach” and

847
Table 2 Rewards.
HP difference Reward HP difference Reward
<25 +1.00 < 125 -0.25
<50 +0.75 < 150 -0.50
<175 +0.25 <175 -0.75
< 100 -0.10 > 175 —1.00

“withdraw”. Approach, withdraw, crouch, and block
were executed for 0.1 seconds. Stay had a duration of
0.4 seconds. All the other actions lasted as long as it
took to fully execute them.

Rewards: In order to have the agent adapt to the level of the
user, the reward was defined as Table 2. It was given
to the agent when a round was finished, regardless of
which had won.

Others: In MSA, y was fixed at 0.99 " and 7 was fixed at
1.0. In ECSA, m = 3, A = 0.1, and max_iter = 20.
The setting of RCSA was identical to that of Experi-
ment 1.

We used two versions of our adapting agent: adapt®
and adaptT. The adapt® agent was as explained in Sect. 3.
The adaptT agent was structurally the same as adapt®, but
it had been trained by a certain user (who was out of the
experiment) for 20 rounds in advance.

For a comparison purpose we developed three static
agents: weak, strong and trained. The weak agent was
very easy to defeat; 50% of its action were to stay; it only ex-
ecuted Combos 1 and 11, which meant the combo-breaker
was always p. On the other hand, the strong agent was
very difficult to defeat; it always got close to the user, exe-
cuted one of all available combos randomly whenever close
enough, and stochastically chose combo-breakers by accu-
mulation used in Experiment 1. However, it discarded the
memory after every round. The trained agent was identi-
cal to the adaptT in the beginning, but did not adapt at all
during the experiment.

We asked 30 real users to play the game. They were of
different nationalities, genders, ages, and at different levels
of expertise at playing videogames. Before the experiment,
they had a training session until they got used to the game.
In the training session, they played against a static agent
specially designed for the session, which executed simple
attacks and Combos 1, 10 and 12 randomly.

In the experiment, the users would fight against the
above five types of agents presented in a random order. They
did not know the characteristics of the agents. They were
asked to play 30 rounds against each agent, but after 15
rounds, they could quit whenever they were no longer hav-
ing fun. After playing against an agent, they took a break
for between 5 and 30 minutes (depending on the user) and
started to play against the next agent. After playing against
all of the agents, they filled in a questionnaire that asked to
rate the overall fun and difficulty of each agent in 5-point

"For example, when T in Formula 2 is 300, y” ~ 0.05. There-
fore, even if the number of turns became a few hundreds, the up-
date in Formula 2 is not negligible. Remember that the initial HP
is 200.

848
Table 3 Rating result of “fun”: Showing the number of users who gave
the score and the average scores for each agent.
Score weak strong trained adapt® adaptT
5 (fun) 2 14 4 8 7
4 3 3 13 5 9
3 6 3 8 12 10
2 4 5 4 5 4
1 (bored) 15 5 1 0 0
Avg. Score 2.1 3.53 35 3.53 3.63
SD 1.32 1.61 1.01 1.07 1.00
Table 4 Rating result of “difficulty”: Showing the number of users who
gave the score and the average scores for each agent.
Score weak strong trained adapt® adaptT
5 (difficult) 0 29 0 0 0
4 1 1 7 8 8
3 1 0 11 8 9
2 2 0 9 13 10
1 (easy) 26 0 3 1 3
Avg. Score 1.23 4.97 2.73 2.77 2.73
SD 0.68 0.18 0.94 0.90 0.98

scales and to describe comments in a free form. Also, they
were asked to rank the agents from the best to the worst.
The results of the ratings are shown in Tables 3 and 4.
From Table 3, we can see that many users had fun when
playing against the strong agent, but, in the mean, the
adaptT agent gave slightly more fun to the users. It is be-
cause, as shown in Table 4, all of the users answered that
the strong was very difficult to defeat. Remember that the
users had different levels of expertise at playing videogames.
Expert users who were good at playing videogames thought
that it was challenging to defeat the agent, but beginners
thought that it was impossible to defeat, and then, they aban-
doned the game. Indeed, Table 3 shows that one-third of
users gave | or 2 to the strong, that is, it was not interest-
ing for them to play against it. The free-form comments of
the users also support it, i.e., many users complained about
the difficulty of the strong: how it attacked too fast, how it
executed a lot of combos, and how difficult it was to defeat
it. On the other hand, no user gave 1 and only four gave 2 to
the adaptT. That is, most users enjoyed playing against it.
We also compare the length of play against each agent
in Table 5. Remember that the users were asked to play 30
rounds but could quit immediately after 15 rounds. There-
fore, users who played 30 rounds may have wanted to play
more. We see that the strong agent was played against
in the longest time in the mean, but it is not so important
because two-third of users stopped playing by 22 rounds re-
gardless of the agents the users played against. On the other
hand, it is notable that about one-third of users continued to
play against the adaptT (and the strong) for 30 rounds but
it was only three who did against the trained. This fact
shows that it is important for the agent to adapt its level to
the level of users, in order to let the users play long.
Moreover, Table 6 shows the ranking of the agents. The
agent the most users ranked the best was the strong, fol-
lowed by the adaptT. On the other hand, the agents the least

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.4 APRIL 2014

Table 5 Result of length: Showing how many users played against the
agent until the round.
Round weak strong trained adapt® adaptT
15 12 6 5 4 6
16 6 3 4 1 3
17 0 2 3 2 0
18 1 2 3 3 4
19 1 1 3 3 1
20 0 2 2 2 2
21 1 0 2 2 1
22 0 0 0 3 1
23 0 0 0 1 1
24 2 2 0 1 0
25 0 0 3 0 0
26 0 0 0 0 1
27 0 0 0 1 1
28 0 1 0 0 0
29 0 0 2 0 0
30 7 11 3 7 9
Avg. Rounds 19.73 2243 20.2 21.77 21.93
SD 6.25 6.55 5.15 5.39 6.16

Table 6 Ranking result: Showing how many users put the agent into the
rank order.
Rank weak strong trained adapt® adaptT
1 (best) 0 13 4 6 7
2 4 5 5 8
3 4 1 8 8 9
4 2 8 7 9 4
5 (worst) 20 3 3 2 2

users ranked the worst were the adapt0 and the adaptT. In
particular, if we see both the 4th and the 5th, the strong
and the adapt® were ranked by 11 users, although only six
ranked the adaptT them.

Thus far, we saw the results from a collective view.
Next, we investigate the results from each user’s point
of view; in particular, we compare the proposed agents
(adapt® and adaptT) and the trained because the results
so far seem similar. As above mentioned, the trained has
the same architecture of the proposed agents and trained for
20 rounds in advance, but it does not adapt to the user at all
during the experiment. Then, the difference of them shows
the effect of adaptation to the user.

Figure 8 shows the transition of final HP differences
when a subject played against the three agents. The plots
tell us that in most rounds the subject defeated the trained,
whereas the subject sometimes won and sometimes lost
when playing against the proposed agents. As a result, the
average values of absolute HP difference per round were
96.17 when the opponent was the trained, 58.2 when it
was the adapt®, and 55.3 when it was the adaptT. In
addition, the winning rates of the user were 0.833 when it
was the trained, 0.767 when it was the adapt®, and 0.633
when it was the adaptT. Note that the best winning rate is
0.5 (even) and the worst is 1.0 (always win) or 0.0 (always
lose) from the viewpoint of adaptation.

Table 7 shows a summary of the HP differences and the
winning rates for all subjects. It shows that, for at least 15
subjects, both of the proposed agents were more matching

MORIYAMA et al.: AN INTELLIGENT FIGHTING VIDEOGAME OPPONENT ADAPTING TO BEHAVIOR PATTERNS OF THE USER

Trained

S
©
o
I
100 | 1
E
hel
o 0
I
-100 |
200
0 5 10 15 20 25 30
Round
AdaptT
200
100 1 [
E
kel
o 0
I
-100
200
0 5 10 15 20 25 30

Round

Fig.8 The transition of final HP differences when a subject played
against the trained, the adapt®, and the adaptT. This subject played
30 rounds with each agent. X-axis shows the number of rounds and y-axis
shows the HP difference, in which a positive value shows the winning of
the subject.

Table 7 Comparing the trained, the adapt®, and the adaptT from
each subject’s point of view.
(a) Average of final (absolute) HP differences

better < worse #subjects
trained < adapt0® < adaptT 3
trained < adaptT < adapt® 3
adapt® < trained < adaptT 4
adapt® < adaptT < trained 6
adaptT < trained < adapt® 5
adaptT < adapt® < trained 9

(b) Winning rate difference from even (= 0.5)

better < worse #subjects
trained < adapt® < adaptT 2
trained < adaptT < adapt® 1
trained < adapt® = adaptT 2
adapt0® < trained < adaptT 4
adapt0® < adaptT < trained 6
adapt0® < adaptT = trained 1
adaptT < trained < adapt® 0
adaptT < adapt® < trained 12
adaptT < adapt® = trained 1
adaptT = adapt® < trained 1

than the trained, whereas the trained was the best of the
three for at most six subjects.

5. Discussion

Although the strong agent received more “most fun” qual-

849

ifications, the adaptT agent got the less amount of negative
ratings. That is, the adaptT satisfied the objective of this
work where all users at different levels of expertise would
enjoy the game. However, it is slightly regrettable that the
proposed agents did not receive the best rating. We believe
that the reason why the strong agent received better ratings
than the proposed agents is that the strong was challenging
for the users while the proposed agents tried to be a similar
level to each user’s. Table 4 shows that the average diffi-
culties of the proposed agents (and the trained) were less
than 3, which means that each user considered them slightly
easy to defeat. If the reward given to MSA had been slightly
larger when the agent had won, i.e., the proposed agents had
been designed to defeat the users by a small HP difference,
they would be perceived as more challenging by the users
and might outperform the best static opponent. Nonetheless,
since the length of play was not much different between the
strong and the proposed agents, the proposed agents pro-
vided users similar time of entertainment, even though they
gave the users slightly less fun than the strong.

Although having an agent adapt itself by only compar-
ing the HP difference is a very elegant idea, this method
arose some problems: unnecessary actions and reinforcing
suicide. The rationality theorem of Profit Sharing [7] guar-
antees that no ineffective rule will be part of the agent’s pol-
icy, but it does not prevent unnecessary actions to be rein-
forced. If the agent, while exploring actions, executes kicks
15 units away from the user, and by chance the HP differ-
ence is low enough at the end of the round, then the agent
will execute unnecessary kicks next time it is a 15 units from
the user. Although such redundant actions might eventually
disappear as the learning proceeds, they make the agent look
like stupid. Moreover, it has been observed that, in some
cases, the agent learned to lower the HP of the user to a
small level, and then jump from the platform. In the game
rule shown in Sect. 4, falling from the platform equals los-
ing the round, i.e., it reduces the HP of the agent to 0, which
results in a small HP difference and a high reward. In order
to solve these problems the reward could be assigned with
more considerations than only HP difference, or the reward
could be shared using a reinforcement function that discerns
whether or not the rule to be reinforced was essential in at-
taining a particular result.

6. Related Work

Videogames including fighting videogames are the domain
where artificial intelligence techniques have been used.
However, the used techniques are usually traditional and
static. As Graepel et al. [8] exemplifies, commercial fighting
videogames use Finite State Machines for the design of their
agents controlling the opponent characters. This traditional
approach prevents the agents from learning and adapting,
which means that such opponents are in a rut and users can
memorize their behaviors after repetitive plays.

Nakano et al. [9] dealt with the problem of a static op-
ponent being uninteresting. They proposed an agent that

850

learns behaviors from different users and adds them into its
lists of behaviors. Hence, their agent is always creating new
routines, but they do not aim adapting to the user.

There are several studies of constructing adapting ma-
chine opponents. They have two directions: constructing
the strongest opponent based on the user’s behavior patterns,
e.g., [10]; and constructing the one having the similar level
of the user. The problems in the latter direction are called
“game balancing”. Yannakakis and Hallam[11] explored
the game balancing problem in the game Pac-Man, which is
of a lower complexity compared to fighting videogames.

Andrade et al. [12], [13] dealt with the game balancing
problem in a fighting videogame using Q-learning, a rein-
forcement learning algorithm. To the best of our knowledge,
their work is the most similar to ours, but it does not consider
combos that are found in most modern fighting videogames
at all. It means that the agent does not have to predict the
user’s behaviors because all attacks can be blocked by the
block action.

The adaptation of agent in this work can be consid-
ered as a kind of human-computer interaction (HCI), specif-
ically an adaptive user interface [14], which assists its user
by predicting his/her intention through his/her model cre-
ated by monitoring how he/she has used it. Barr et al. [15]
discussed videogames from an HCI perspective. According
to them, most of existing HCI studies intend to provide ef-
ficient, error-free, easy-to-learn interfaces, because they let
people work quickly and result in high productivity. Instead,
videogames are often desired to be difficult and to take long
time to complete, which is the opposite direction from the
existing HCI studies. Therefore, they argued videogame
“values” that will be useful for the study of videogame in-
terfaces.

7. Conclusion

This work proposed an artificial agent for a fighting video-
game that can adapt to the user’s fighting style and to the
user’s level, allowing users to enjoy the game even when
playing alone. The adapting agent consists of three sub-
agents: Main Subagent (MSA), Executing-Combo Subagent
(ECSA) and Receiving-Combo Subagent (RCSA). MSA
moves the character, executes simple attacks, and passes the
control to ECSA/RCSA. ECSA executes combination at-
tacks, or combos, having similar difficulty to those executed
by the user. RCSA learns the fighting style of the user and
tries to execute the appropriate combo-breaker.

We asked 30 real users to play a fighting videogame we
developed. In addition to the proposed opponents (adapt®
and adaptT), we used three static opponents for compari-
son (weak, strong and trained). According to the ques-
tionnaire the users filled in and the play length, the adaptT
received the least amount of negative ratings, while many
users ranked the strong the best. It may be because the
users preferred an opponent slightly stronger than them. The
strong was challenging for the users whereas the proposed
agents were considered slightly easy to defeat.

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.4 APRIL 2014

There are several future directions. First, as mentioned
above, it is regrettable that the proposed agents did not re-
ceive the best rating. If the agents had been designed not
to tie but to win by a hair, they would be more challenging
and might be the best for the users. Second, it is valuable
to use not only the difference of health points but also other
kinds of data to detect users’ intentions and/or preferences.
In addition to data showing how they control the character,
it may be possible to use physiological signals such as elec-
troencephalograms and electrocardiograms [16].

References

[1] S.E. Ortiz B., K. Moriyama, M. Matsumoto, K. Fukui, S. Kurihara,
and M. Numao, “Road to an interesting opponent: An agent that pre-
dicts the users combination attacks in a fighting videogame,” Proc.
Human-Agent Interaction Symposium, Tokyo, Japan, 2009.

[2] S.E. Ortiz B., K. Moriyama, K. Fukui, S. Kurihara, and M. Numao,
“Three-subagent adapting architecture for fighting videogames,”
Proc. 11th Pacific Rim International Conference on Artificial In-
telligence (PRICAI), Lecture Notes in Artificial Intelligence 6230,
pp.649-654, Springer, 2010.

[3] E. Adams, Fundamentals of Game Design, 2nd ed., New Riders,
Berkeley, CA, 2009.

[4] S. Arai and K. Sycara, “Effective learning approach for planning and
scheduling in multi-agent domain,” Proc. 6th International Confer-
ence on Simulation of Adaptive Behavior (SAB), pp.507-516, MIT
Press, 2000.

[5] R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduc-
tion, MIT Press, Cambridge, MA, 1998.

[6] H. Cao, N. Mamoulis, and D.W. Cheung, “Mining frequent spatio-
temporal sequential patterns,” Proc. 5th IEEE International Confer-
ence on Data Mining (ICDM), pp.82-89, IEEE Computer Society,
2005.

[7]1 K. Miyazaki, M. Yamamura, and S. Kobayashi, “On the rational-
ity of profit sharing in reinforcement learning,” Proc. 3rd Interna-
tional Conference on Fuzzy Logic, Neural Nets and Soft Computing,
Tizuka, Japan, pp.285-288, 1994.

[8] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” Proc.
5th International Conference on Computer Games: Artificial Intel-
ligence, Design and Education (CGAIDE), Reading, U.K., pp.193—
200, 2004.

[9] A. Nakano, A. Tanaka, and J. Hoshino, “Imitating the behavior of
human players in action games,” Proc. 5th International Conference
on Entertainment Computing (ICEC), Lecture Notes in Computer
Science 4161, pp.332-335, Springer, 2006.

[10] L. Lee, Adaptive Behavior for Fighting Game Characters, Master’s
thesis, San Jose State University, 2005.

[11] G.N. Yannakakis and J. Hallam, “Evolving opponents for interesting
interactive computer games,” Proc. 8th International Conference on
Simulation of Adaptive Behavior (SAB), pp.499-508, MIT Press,
2004.

[12] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Challenge-
sensitive action selection: An application to game balancing,”
Proc. 2005 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT), pp.194-200, IEEE Computer Society,
2005.

[13] G. Andrade, G. Ramalho, A.S. Gomes, and V. Corruble, “Dynamic
game balancing: An evaluation of user satisfaction,” Proc. 2nd Arti-
ficial Intelligence and Interactive Digital Entertainment Conference
(AIIDE), pp.3-8, AAAI Press, 2006.

[14] J. Liu, C.K. Wong, and K.K. Hui, “An adaptive user interface
based on personalized learning,” IEEE Intell. Syst., vol.18, pp.52—
57, 2003.

[15] P. Barr, J. Noble, and R. Biddle, “Video game values: Human-

MORIYAMA et al.: AN INTELLIGENT FIGHTING VIDEOGAME OPPONENT ADAPTING TO BEHAVIOR PATTERNS OF THE USER

computer interaction and games,” Interact. Comput., vol.19, pp.180-
195, 2007.

[16] V. Vachiratamporn, R. Legaspi, K. Moriyama, and M. Numao, “To-
wards the design of affective survival horror games: An investiga-
tion on player affect,” Proc. 2013 Humaine Association Conference
on Affective Computing and Intelligent Interaction (ACII), pp.576—
581, IEEE Computer Society, 2013.

Koichi Moriyama received B.Eng., M.Eng.,
and D.Eng. from Tokyo Institute of Technology
in 1998, 2000, and 2003, respectively. After
having worked as a Research Associate at Tokyo
Institute of Technology from 2003 till 2005, he
is currently an Assistant Professor at the Insti-
tute of Scientific and Industrial Research, Osaka
University. His research interest includes artifi-
cial intelligence, multiagent systems, game the-
ory, and cognitive science. He is a member of
the Japanese Society for Artificial Intelligence

(JSAI).

Simén Enrique Ortiz Branco received
the B. Computer Eng. degree from Universidad
Simé6n Bolivar in 2007 and M.Sc. from Osaka
University in 2010. He is currently working as
a video game programmer for PlatinumGames
Inc.

Mitsuhiro Matsumoto received B.Eng.,
M.Sc., and Ph.D. from Osaka University in
2006, 2008, and 2012, respectively. He is cur-
rently with Mitsubishi Electric Corporation.

Ken-ichi Fukui received M. A. from Nagoya
University in 2003 and Ph.D. from Osaka Uni-
versity in 2010. He was a Specially Appointed
Assistant Professor at the Institute of Scientific
and Industrial Research (ISIR), Osaka Univer-
sity from 2005 to 2010. He is currently an As-
sistant Professor at ISIR, Osaka University from
2010. His research interest includes data min-
ing algorithm and its environmental contribu-
tion. He is a member of JSAI, IPSJ, and the
Japanese Society for Evolutionary Computation.

851

Satoshi Kurihara received B.E. and M.E.
degrees in Computer Science from Keio Univ.,
Tokyo, Japan, in 1990 and 1992, respectively.
In 1992, he joined the Basic Research Division,
at Nippon Telegraph and Telephone Corporation
(NTT). He received Ph.D. in 2000 from Keio
Univ. In 2004, he joined The Graduate School
of Information Science and Technology/The In-
stitute of Scientific and Industrial Research of
Osaka Univ., Osaka, Japan, as associate pro-
fessor. And, from April 2013, he joined The
Graduate School of Information Systems of The University of Electro-
Communications, as professor. His current research interest includes multi-
agent systems, ubiquitous computing, and complex network research. He is
a member of IPSJ (Information Processing Society of Japan), JSAI (Japan
Society of Artificial Intelligence), JSSST (Japan Society of Software Sci-
ence and Technology), and ACM.

Masayuki Numao is a professor in the
Department of Architecture for Intelligence, the
Institute of Scientific and Industrial Research,
Osaka University. He received a bachelor of en-
gineering in electrical and electronics engineer-
ing in 1982 and his Ph.D. in computer science
in 1987 from Tokyo Institute of Technology.
He was working in the Department of Com-
puter Science, Tokyo Institute of Technology
from 1987 to 2003, and was a visiting scholar at
CSLI, Stanford University from 1989 to 1990.
His research interests include Artificial Intelligence, Machine Learning,
Affective Computing and Empathic Computing. He is a member of In-
formation Processing Society of Japan, Japanese Society for Artificial In-
telligence, Japanese Cognitive Science Society, Japan Society for Software
Science and Technology, and the American Association for Artificial Intel-
ligence.

