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PAPER

Automatic Rectification of Processor Design Bugs
Using a Scalable and General Correction Model

Amir Masoud GHAREHBAGHI†∗a), Member and Masahiro FUJITA†, Nonmember

SUMMARY This paper presents a method for automatic rectification
of design bugs in processors. Given a golden sequential instruction-set ar-
chitecture model of a processor and its erroneous detailed cycle-accurate
model at the micro-architecture level, we perform symbolic simulation and
property checking combined with concrete simulation iteratively to detect
the buggy location and its corresponding fix. We have used the truth-table
model of the function that is required for correction, which is a very gen-
eral model. Moreover, we do not represent the truth-table explicitly in the
design. We use, instead, only the required minterms, which are obtained
from the output of our backend formal engine. This way, we avoid adding
any new variable for representing the truth-table. Therefore, our correc-
tion model is scalable to the number of inputs of the truth-table that could
grow exponentially. We have shown the effectiveness of our method on a
complex out-of-order superscalar processor supporting atomic execution of
instructions. Our method reduces the model size for correction by 6.0x and
total correction time by 12.6x, on average, compared to our previous work.
key words: design error diagnosis, design error correction, micro archi-
tecture debugging, formal verification, processors

1. Introduction

Design error diagnosis and correction (DEDC) is the process
of debugging and rectifying errors in a design. Given an
erroneous design and its reference design or golden model,
DEDC does the following three operations: error diagnosis,
error correction, and correction certification.

Error diagnosis is the process of analyzing the erro-
neous design and suggesting a number of candidate loca-
tions in the design whose appropriate modifications may
correct the error. The error correction process selects the
“good” candidates from the list of suggested candidates and
tries to rectify the error by changing those portions of the
design. After the design is changed, it should be veri-
fied/validated to certify that the bug is actually fixed and
no new bug is introduced, as error corrections are mostly
based on counter examples given and do not refer to the en-
tire specification.

In this paper, we address the problem of automatic
rectification of design bugs in processors at the micro-
architecture level employing formal methods. At this level
of abstraction, the elements of the datapath and their high-
level functionality as well as the flow of data and sequence
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of micro operations for each instruction are modeled. There-
fore, the bugs that are found in this level may reveal serious
control problems. In this paper, we are targeting bugs in the
controlling parts of processors. Controlling parts include the
controller itself as well as the select line of the multiplexers
in datapath. Therefore, we can find bugs related to incorrect
routing of data as well as bugs in the controller. Note that the
datapath elements, such as functional units, are assumed to
be verified separately, so they are abstracted in our method.

As shown in Fig. 1, inputs of our method are two
formal models of a processor. The first model (golden
model) represents the sequential behavior of the processor’s
instruction-set architecture (ISA). The second model (erro-
neous implementation model) represents a detailed cycle-
accurate behavior of the processor at the micro-architecture
level.

In the diagnosis phase, we insert multiplexers in differ-
ent locations of the erroneous model, similar to the previ-
ous methods for RTL/gate-level designs [1], [2], to obtain a
new enriched model. We do equivalency checking between
the erroneous model and the golden model to find the se-
quence of instructions that are executed incorrectly in form
of counter examples. Then, we use the counter examples in
the multiplexer-enriched model to determine the candidate
location for correction. In this work, we try to correct the
design by changing only one candidate location at a time.
However, it can be extended to consider more than one lo-
cation for correction at a time, as discussed later in Sect. 4.5.

In the correction phase, we find a function, which we
name it the correcting function, for the candidate location
that is obtained from the diagnosis phase, such that its
exclusive-or with the original erroneous function makes it
correct, as shown in Fig. 2. We model the correcting func-
tion in a truth-table. We find the rows of the truth-table that
should be 1 (or minterms) to correct the design in an iterative
process employing the counter examples from the diagno-
sis phase. In other words, we determine under which input
values the erroneous function must be complemented, using
the exclusive-or operation. In this phase, first we employ
a concrete simulator and the generated counter example to
quickly find and filter out the correcting functions that can-
not actually correct the design. After that, we go through the
process of formally certifying the correction, which is more
time consuming due to using formal methods.

In the correction phase, we do not explicitly represent
the truth-table in the erroneous model. Therefore, we do
not add any new variable to the model. Instead, we extract
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Fig. 1 Overview of our method.

Fig. 2 General view of correcting function.

the rows of the truth-table (or minterms), which are used
for correction, from our backend formal engine in terms
of counter examples. This way, we implicitly model truth-
tables of any size without increasing the complexity of the
model. Consequently, our correction model becomes scal-
able to any correcting function with any arbitrary number
of input variables. Note that explicitly representing a truth-
table with N inputs requires 2N new variables to show the
results of each row, which is not practical for large Ns.

After the correction phase, we formally check equiv-
alency between the corrected model and the golden model
to make sure that the error is corrected and no new error is
introduced. If correction is not successful, we continue the
diagnosis and rectification processes with a new counter ex-
ample. Note that if the correction is not possible with the
current candidate location, we select another candidate lo-
cation in the diagnosis phase and continue the process.

We have presented the idea of automatic correction
of design errors of complex processors employing formal
methods with bug models in [3] and without bug models in
[4]. In this work, we have improved our previous works
through the following main contributions:

1. Introducing a new correction method based on implicit
representation of truth-tables for correction, which
makes the correction model scalable for large functions
as well as significantly reducing the model size for our
backend formal engines; hence, improving runtime and
memory usage of the method.

2. Introducing a method based on concrete simulation to
accelerate the correction phase by finding and filtering
out the correcting functions that are not actually cor-
recting; consequently, accelerating the overall correc-
tion process.

3. Introducing a new approach for diagnosis and correc-
tion by splitting our previous diagnosis formula, which
substantially reduces the model size for our backend
formal engine; hence, improving runtime and memory
usage of the method.

4. Introducing new sophisticated constraints in the diag-
nosis and rectification phases, which significantly im-
proves the correction resolution of the method.

Finally, we have shown new experiments on a 4-way out-of-
order superscalar processor, which we could not handle in
our previous methods due to the size of the model for our
backend formal engine.

The rest of the paper is organized as follows. Section 2
overviews the related work. Section 3 briefly presents back-
ground on processor verification using formal methods. In
Sect. 4 we present our diagnosis method followed by Sect. 5
that presents our correction method. Section 6 shows the
experimental results. Section 7 concludes the paper.

2. Related Work

Most of the previous works are at transistor-level [5] or gate-
level [6], [7] and they only address automatic error diagno-
sis for combinational circuits or sequential circuits assum-
ing existence of full scan chain. Although there are some
works such as [8], [9] which also propose automated correc-
tion, the correction process remains a manual task in most
of those works.

There are other works targeting RTL designs that try to
find and correct errors in RTL descriptions. One category
of works use test vectors and simulation techniques to lo-
cate the erroneous parts of the design [10], [11]. Some of
the works also try to correct the error [12] using bug mod-
els. Other category of works employs formal methods. They
need a golden model (description) to find the errors. Com-
pared to the simulation-based methods, they do not rely
on sophisticated test vectors, although formal methods can-
not deal with large designs due to the state space explosion
problem. Those methods insert some form of multiplexers
into the erroneous design [1], [2] and check a property for
error diagnosis.

[13] introduces a method for efficient error diagno-
sis in processors. The method is based on correspondence
checking on a specification and an (erroneous) implemen-
tation model of a processor to find the differences in form
of a counter example. Then, the counter example is used
to simplify the CNF formulas that are generated from the
multiplexer-enriched implementation model for SAT solver.
Finally, the minimum numbers of multiplexers that can fix
the bug are determined in an iterative manner employing a
heuristic for variable ordering of CNF formulas that dramat-
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ically reduces the debug time. However, it does not address
the correction of the errors and it remain a manual task.

Our work is different from the other previous works in
several aspects. First, we are targeting processors at micro
architecture level that is a higher and more abstracted level
than RTL/gate-level/transistor-level. Second, although our
diagnosis method is multiplexer based and uses a formal ap-
proach, like some of the RTL methods, we have proposed a
new approach to ease both the diagnosis and the correction
processes. Third, the input sequences that lead to error in
the model are generated using formal methods in the form
of counter examples. Those sequences are usually obtained
by simulation/emulation or actual hardware run in the ex-
isting RTL/gate-level methods. Fourth, for the correction
phase, we do not use bug models and we have proposed us-
ing truth-tables that are general format for correcting func-
tions. In addition, we do not resynthesize the erroneous
function for correction. Instead, we find conditions that the
function is incorrect and its output should be corrected (real-
ized as complementing the Boolean functions). Finally, for
correction certification, we do not rely on test vectors and
instead use formal methods.

3. Background

3.1 The UCLID System

The UCLID system utilizes the logic of Counter Arith-
metic with Lambda Expressions and Uninterpreted Func-
tions (CLUF) to specify and verify systems which may have
infinite or unbounded states. The UCLID system consists
of an input language, a symbolic simulator, and a decision
procedure. The UCLID input format supports CLUF re-
lated constructs including uninterpreted functions and pred-
icate symbols, an arithmetic of counters, bit-vector arith-
metic and restricted lambda expressions. The UCLID veri-
fication engine can be configured for different kinds of ver-
ification tasks, including bounded model checking, corre-
spondence checking, inductive invariant checking, property
checking of quantifier-free first-order logic formulas involv-
ing counter arithmetic, and limited property checking of for-
mulas with universal quantifiers. However, we use it as a
correspondence checker and property checker. For more de-
tails of UCLID please refer to [14] and [15].

3.2 Correspondence Checking

Correspondence checking is a method that is first introduced
for processor verification in [16]. Correspondence check-
ing proves a correspondence between the implementation
(detailed model) and the ISA (Instruction Set Architecture)
specification of a processor employing symbolic simulation
and property checking as follows.

As shown in Fig. 3, the implementation (Qimpl) is sym-
bolically simulated with an arbitrary input combination for
one step (Qimpl �→ Q1

impl). Then, the pipeline is flushed for
a number of steps (say, N2 steps) until all partially executed

Fig. 3 Correspondence checking diagram.

instructions are completed and the programmer-visible parts
of the implementation are saved (Q1

impl �→ Q′impl). After that,
we re-initialize to the start state, and in order to have a state
in the specification, which corresponds to the implemen-
tation, first, the implementation is flushed for a number of
steps (say, N1 steps) (Qimpl �→ Q2

impl), and then the state of
the implementation is projected into that of the specification
(Q2

impl �→ Qspec). Note that N1 and N2 are the maximum
cycles that are required to finish execution of all the instruc-
tions that are on-the-fly.

After symbolically simulating the specification for K
steps (K corresponds to the issue width of the processor)
(Qspec �→ Q′spec), the programmer-visible components such
as Program Counter (PC), Register File (RF) and Memory
(Mem) in the Q′impl should be equivalent to those of Q′spec,
which is the following correspondence property:

(Q′impl.PC = Q′spec.PC)&(Q′impl.RF = Q′spec.RF)&

(Q′impl.Mem = Q′spec.Mem) (1)

4. Error Diagnosis

Our error diagnosis method consists of the following steps.
Details will be presented in the following subsections.

1. Generate a list of variables of the erroneous model that
are suspicious to be the cause of the error.

2. Insert multiplexers in all the candidate variables in the
erroneous model to create an enriched model.

3. Perform the modified correspondence checking using
the golden model and the erroneous model to find an
erroneous sequence of instructions.

4. Perform the modified correspondence checking using
the golden model and the enriched model with the erro-
neous sequence of instructions and the modified prop-
erty to find the candidate variables for error correction.

4.1 Suspicious List Generation

Suspicious list is the initial list of variables that may be the
cause of the error. The initial list contains all the controlling
parts of the model. Controlling parts contain two kinds of
variables. The first kind is the variables that are explicitly
defined by the designer in the model. The second kind is the
auxiliary variables that are added by our method and corre-
spond to the controlling functions that route a value in the
datapath. Those variables can be considered as select line of
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Fig. 4 Multiplexer insertion (a) code (b) equivalent hardware.

the multiplexers in datapath part of the processor. Note that
both kinds of variables are Boolean.

Generally, the suspicious list can contain all the design
variables; hence, it may be very large. One way to reduce
the size of the list is by user guidance. The user, who has
a good insight into the design, can specify portions of the
design that are more suspicious to be erroneous.

Another way to systematically reduce the size of the
list is to consider the changes from the previously verified
implementation model. Assuming an incremental design
method, the new changes to the previous model are error
prone and should be verified first. For example, if we have
added a timing error recovery mechanism to a verified pro-
cessor model, the new errors are most probably due to the
new changes; hence, should be considered first.

4.2 Multiplexer Insertion

Multiplexers are the heart of the automatic error diagnosis
method. They are used in a similar way to the RTL and gate-
level diagnosis methods, but they are used here in a higher
level of abstraction and a little differently as we will explain
later in this subsection.

For each variable in the suspicious candidate list, we
add a multiplexer as shown in Fig. 4. The var ctl is a new
variable that is a pseudo input that can get an arbitrary value
during the symbolic simulation. The input 0 of the multi-
plexer is the original var and the other input of the multi-
plexer is complement of the original var. That is because
we are only interested in situations where var ctl becomes 1
and a different value from the original one should be propa-
gated in the design. Please note that all the control variables
are Boolean (binary). Therefore, if the value of a variable is
wrong, its complement should be correct.

In the previous RTL or gate-level diagnosis methods,
when the var ctl becomes 1, a new fresh variable is used
instead of ∼original var, in our method. This way, they cre-
ate a new function for correcting the incorrect cases. We
use, however, the complement of the existing function for
correction, the same way as [4]. This way, we also avoid
introducing a new variable for the input 1 of the multiplexer
for the formal engine, which makes the model simpler.

4.3 Erroneous Sequence Generation

Erroneous sequence of instructions are necessary to find the
buggy locations as well as their corresponding fixes. The
erroneous sequence can be generated by correspondence
checking (see Sect. 3.2) between the erroneous implemen-
tation model and the golden model. Since the model is er-

Fig. 5 Modified correspondence checking diagram.

roneous, the correspondence checking process generates a
counter example. The generated counter example can be
used to extract the sequence of instructions that is erroneous.

The correspondence checking is a very costly opera-
tion, specially for the processors with deep pipelines or su-
perscalar processors, since we need to flush the pipeline
by performing symbolic simulation. Since our goal is to
find the bugs, we begin from the initial state and do sym-
bolic simulation until the pipeline becomes full (lets say
for T cycles). This way, we generate random arbitrary se-
quence of instructions. Those sequences can reveal the
bugs much faster than the original correspondence check-
ing which needs lots of symbolic simulation for flushing the
pipeline before projecting into the specification model. Note
that we still need to flush the pipeline to make sure that ex-
ecution of all the on-the-fly instructions are finished.

The initial state that we start simulating is not the re-
set state, but it is a state that there is no instruction on the
fly. In that sense, all the programmer-visible parts, such as
program counter, register file and memory, have arbitrary
values. Moreover, the flags related to executing previously
executed instructions have arbitrary values. Therefore, the
effect of execution of the previous instructions is considered.
Moreover, since we fill the pipeline with arbitrary instruc-
tions, all the possible dependencies among the instructions
is considered. Theoretically, there may be cases that is not
covered this way. However, intuitively, almost all the possi-
ble cases are considered for bug detection. Moreover, using
the modified correspondence checking in our experiments,
we did not miss detection of any bug.

The modifications to the original correspondence
checking diagram (Fig. 3) is shown in Fig. 5. In Fig. 5, K
is is the fetch width of the processor. Therefore, if we fetch
instructions for T cycles, we need T*K cycles symbolic sim-
ulation in ISA model (Spec) to finish execution of all the in-
structions that are fetched. Note that Qimpl is a state in which
no instruction is on the fly. Therefore, we can easily project
PC, RF, and Mem, which have arbitrary values, to the ISA
model. Also note that we use exactly the same property as
the original correspondence checking method as shown in
Sect. 3.2.

In the modified correspondence checking diagram,
both Spec and Impl models are symbolically simulated in
parallel and also T � N3. That is because, when we fetch
for T cycles to fill the pipeline, K ∗ T instructions execute
in parallel. In the worst case, because of the dependencies
among the instructions, they may be executed one-by-one.
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Therefore, N3, which is the maximum number of cycles to
finish the execution of all the instruction on the fly, corre-
sponds to K ∗ T . Assuming super-scalar processors, which
have K > 1, we can conclude that T � N3.

Therefore, the dominant part becomes N3. On the
other hand, in the original correspondence checking digram
(Fig. 3), first, we have to symbolically simulate for N1 cy-
cles, then do projection, and finally symbolically simulate
the two models (Spec and Impl) in parallel for N2 cycles.
Therefore, the total symbolic simulation cycles roughly be-
comes N1 + N2. As N1 and N2 and N3 are of similar size,
we can conclude that the modified correspondence check-
ing method needs roughly half symbolic simulation cycles
compared to the original correspondence checking method.

4.4 Candidate Variable Selection

After obtaining the erroneous sequence, we have to find a
candidate location for correction. We perform the modified
correspondence checking, similar to what we did for erro-
neous sequence generation, using the multiplexer-enriched
model and the golden model, with the following differences.

First, as we want to find a solution to correct the error,
we use the negation of the property (1), which we have used
for erroneous sequence generation. This way, if the property
fails, the counter example contains a solution. However, if
the property satisfies, it means that no solution exists.

Second, we perform the modified correspondence
checking, as introduced in the previous subsection. More-
over, we add the sequence of instructions along with proper
constrains to the property that is checked. The constraints
are necessary to define the exact condition that the error oc-
curred as well as to ensure a valid correction. We will dis-
cuss more about the constraints in the next subsection. The
general format of the property for candidate variable selec-
tion is as follows. Note that Enr is multiplexer-enriched
model and S pec is the IS A specification model.

constraints⇒∼ ((Q′enr.PC = Q′spec.PC)&(Q′enr.RF

= Q′spec.RF)&(Q′enr.Mem = Q′spec.Mem)) (2)

If the property that we are checking fails, a counter ex-
ample is generated that shows a possible solution for cor-
rection. The candidate location for correction is the vari-
able whose select line of the multiplexer is activated in the
counter example. By selecting that candidate location, we
proceed to the correction process, which is explained in
Sect. 5.

If the property holds, it shows that correction is not pos-
sible with the given constraints. As in this work we have
considered correction by changing one location, it means
that for the given erroneous sequence, we cannot make the
result of execution on both S pec and Enr models the same
by only activating select line of one multiplexer. Therefore,
we may need to consider more candidate locations for cor-
rection at the same time. In other words, we have to change
the constraint so that more than one select line of the multi-
plexers are allowed to be activated at the same time.

The combination of the error sequence generation (pre-
vious subsection) and candidate variable selection (this sub-
section) is similar to our previous method [4]. Intuitively,
in [4] we were looking for a sequence of instructions that
was executed incorrectly on Impl model, while it was ex-
ecuted correctly on the Enr model. Moreover, Our previ-
ous method involved in handling three models (S pec, Impl,
and Enr) at the same time. However, in this work we have
divided our previous diagnosis process into two processes,
each involving two models, instead of three. As a result, the
overall process is done more efficiently as confirmed by our
experimental results.

If we rewrite formulas (1) and (2) as Pimpl and
constraints ⇒∼ Penr respectively, the combination of them
becomes as follows.

P �∼ Pimpl ⇒ (constraints⇒∼ Penr) (3)

The above formula means that if Pimpl fails and a counter
example (or erroneous sequence) is generated, then we try
to find candidate variable. Formula (3) can be rewritten ac-
cording to the Boolean algebra as follows:

P �∼ (∼ Pimpl&(constraints&Penr)) (4)

P �∼ (constraints&(∼ Pimpl&Penr)) (5)

The above formula is the same as the formula in [4] with
additional constraints. Actually, part of the constraints is
related to the erroneous sequence that is generated by Pimpl

formula, as explained in the next subsection.

4.5 Adding Constraints

The constraints, which are specified for the formal engine,
are not only important for success of the method for correc-
tion, but also crucial for the effective and efficient correction
of bugs. We have defined the following types of constraints
in our method to guide our backend formal engine.

1. Related to the erroneous sequence
2. Related to the desired solution
3. Related to the integrity of the solution

Constraints related to the erroneous sequence ensure that
the exact condition for the erroneous behavior is provided
for correction. These constraints include: specifying the se-
quence of instructions, the data dependencies among the in-
structions, and execution status of branch instructions; i.e.
the branches are taken or not.

If we do not provide the exact conditions, the input
sequence becomes a superset of the erroneous condition.
Therefore, it is possible that we miss the correction for that
specific erroneous case; hence, not correcting the design.
For example, the error may be in executing a load instruc-
tion after a register-register instruction only when the load
address depends on the output of the register-register in-
struction. If we do not specify that specific data dependency
between those two instructions, we are dealing with a se-
quence of two instructions that is sometimes erroneous and
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sometimes correct. In that sense, we are dealing with a more
general case than specifying the data dependency between
those two instructions.

The constraints that are related to the erroneous se-
quence are automatically extracted from the counter exam-
ple that is generated in Sect. 4.3.

Constraints related to the desired solution are related to
which locations should be considered for correction and un-
der what conditions. For example, in this work we are inter-
ested in correction at one location. Therefore, we define ap-
propriate cardinality constraints that allows only select line
of one of the multiplexers to become active. Similarly, if we
want to correct M locations, we have to add cardinality con-
straints that allows select line of M multiplexers to become
active. Moreover, if we are trying to fix a specific location,
which is introduced in the diagnosis, we add constraints to
prevent other multiplexers on other locations to become ac-
tive. The constraints that are related to the desired solution
depend on the correction method approach and they are gen-
erated automatically.

Constraints related to the integrity of the solution are
very important. These constraints make sure that a correct
and valid solution is provided as follows. We are not inter-
ested in any solution that involves out-of-order commit of
instructions. Therefore, we add appropriate constraints to
prevent it. Note that although instructions may be executed
out-of-order in a processor, commit is almost always done
in-order.

Another such constraint is to ensure execution of an
instruction that is followed by a branch instruction that is not
taken. Similarly, we have constraints to ensure not executing
an instruction after a branch instruction that is taken.

The constraints that are related to the integrity of the
solution are initially defined based on the previous exper-
iments with similar designs or similar bugs that are cor-
rected/not corrected. Those constraints may be gradually
evolved as we do more experiments. Once such constraints
are defined, they can be automatically generated and reused
for all the other bugs or other similar designs. As we
will show in our experimental results, these constraints can
greatly affect the correction process.

5. Error Correction

Error correction deals with constructing a function, which
we name it the correcting function, for select line of the mul-
tiplexers that are suggested after diagnosis. Assuming that
we want to correct the original var in Fig. 4, we have:

var = original var∧var ctl (6)

Assuming the functions of each of the above variables:

original var = Forg(Vi · · ·Vj) (7)

var ctl = Fcorrecting(Vm · · ·Vn) (8)

var = Fnew(Vs · · ·Vt) (9)

{Vs · · ·Vt} = {Vm · · ·Vn} ∪ {Vi · · ·Vj} (10)

In this work, we have assumed that the designer has not
missed any variable when constructing the original (erro-
neous) function. In other words, the error is not due to miss-
ing an input variable. Therefore, the set of input variables
for Forg and Fnew are the same; i.e. {Vs · · ·Vt} = {Vi · · ·Vj}.
Consequently, we have {Vm · · ·Vn} ⊆ {Vi · · ·Vj}. We have
considered the general case of {Vm · · ·Vn} = {Vi · · ·Vj} in
this work. However, after the correction, we may find out
that some of the variables are don’t care; hence, can be
safely removed.

The correction is performed in an iterative manner as
follows. Details will be given in the following subsections.

1. Generate a counter example.
2. Extract the correcting function from the counter exam-

ple.
3. Validate the correcting function and resolve the con-

flicts.
4. Certify that the design is corrected.
5. If the design is not corrected, continue the above pro-

cess, otherwise finish the correction process.

5.1 Counter Example Generation

In this subsection, we briefly discuss about how the counter
example is generated. Then, in the subsequent subsections
we discuss about how to extract the correcting function from
the generated counter example.

For extracting the correcting function, we use the
counter example that is generated by the modified corre-
spondence checking method, as explained in Sect. 4.4, with
the following considerations.

1. After the diagnosis is finished and the candidate vari-
able is known, we use the same counter example that is
generated for candidate variable selection.

2. If the generated correcting function is not valid, as will
be explained later, we add additional constraints to ex-
clude the current invalid solution and run the modified
correspondence checking again to obtain a new counter
example.

3. If the generated correcting function cannot correct the
design, we add additional constraints to exclude the
current solution and run the modified correspondence
checking again to obtain a new counter example. Note
that the new counter example may suggest another can-
didate location for correction.

4. Finally, if no counter example is generated after per-
forming the modified correspondence checking, we
add additional constraint to exclude the current se-
quence of instructions and generate a new sequence of
instruction for correction as explained in Sect. 4.3.

5.2 Extracting the Correcting Function

As mentioned before, we assume that the correcting func-
tion has the same input variables as the original erroneous
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function. Therefore, its corresponding truth-table model
contains 2n rows; where n is the number of function inputs.
Each row of the truth-table represents the results of the cor-
recting function, which can be 0 or 1.

Therefore, there are generally 22n
possible correcting

functions, which can be very large for large n. However,
there are two main things to be considered. First, in most
cases there are more than one correcting function that can
actually correct the design. That is because, in general, there
are a lot of don’t cares in every logic function, including
the correcting function. As a result, the actual number of
possible correcting functions is very smaller than the general
case. Second, as we are using formal methods, the formal
engine, with our guidance through the constraints, explores
all the possible functions for a feasible one. Therefore, both
quality of the constraints as well as efficiency of the formal
engine affect the overall process of correction.

In this work, we have not explicitly specified the truth-
table in the design. However, the truth-table partially exists
in the generated counter example as follows.

At each symbolic simulation cycle, the input variables
of the truth-table have a specific value of either 0 or 1. More-
over, the result of the truth-table (or function) exists as the
value of the select line of the multiplexer on the candidate
variable. Therefore, for each symbolic simulation cycle we
can extract one row of the truth-table. As a result, for a
counter example of M cycles, we can extract maximum M
rows of the truth-table; since input variables of the truth-
table may have exactly the same combination of values in
several cycles.

Extraction of information of one cycle is straightfor-
ward. If we consider the combination of values of all the
input variables of the truth-table in each cycle, they corre-
spond to exactly one row of the truth-table. The result of
the function, which is represented in the truth-table, at that
row is also available in the same cycle. Moreover, we can
construct a minterm for each cycle. If we consider a variable
itself when its value is 1, and the complement of the variable
when its value is 0, we can easily construct the correspond-
ing minterm at each cycle by conjuncting all the correspond-
ing variables or their complement.

For example, consider a simple example for correction
as shown in Fig. 6. Assume that the correcting function is
var ctl. Furthermore, assume that it is a function of vari-
ables a1, a2, and a3. The counter example is 4 cycles long.
As it can be seen, only 3 rows of the table are determined
in this example. The remaining rows are not known in this
counter example and we assume that they are 0 for generat-
ing the correcting function.

5.3 Validity of the Correcting Function

As explained before, we extract the truth-table rows from
the generated counter example. A common situation in this
process is that we may extract a row multiple times. For ex-
ample, in Fig. 6 cycle 1 and cycle 2 correspond to the same
row. In this case, if the result of the function is different, we

Fig. 6 Example of extracting a truth-table.

Fig. 7 Aggregating the values.

call it a conflicting case and it is not acceptable. For exam-
ple, in Fig. 6 the result of the correcting function (var ctl) is
the same (0) and it is ok. But, if it was 0 in one cycle and 1
in the other cycle, it was a conflicting case.

According to the above definition, we call an extracted
truth-table valid, if there is no conflicting case, or we can
resolve the conflicts. Resolving a conflict means to deter-
mine whether the fix is possible for the specified erroneous
sequence of instructions assuming the conflict did not exist.
In this case, we assume the same logic value 1 for all the
conflicting cases and validate the resolution by performing
concrete simulation, as will be explained in the following
subsection. In other words we exclude the conflicting cy-
cles for truth-table generation.

Note that because of limited number of symbolic sim-
ulation cycles, each extracted truth-table may have a num-
ber of rows with unknown values (shown with ? mark in
Fig. 6). As, we may not be able to find the correcting func-
tion with only one counter example, we may extract several
valid truth-tables from several counter examples and aggre-
gate the results in the final truth-table of the correcting func-
tion. In this case, there should be also no conflicting case,
or the conflicting cases can be resolved as explained above.
The rules for aggregating the values for the same row of a
truth-table are shown in Fig. 7.



GHAREHBAGHI and FUJITA: AUTOMATIC RECTIFICATION OF PROCESSOR
859

5.4 Resolving Conflicts

As explained before, during extraction of the rows of the
truth-table for the correcting function, we may find that one
row of the truth-table can be both 0 and 1, according to the
counter example, in different cycles. The reason for this sit-
uation is that the formal engine can freely assign the control
of the multiplexers to either 0 or 1 in different cycles with-
out any kind of restriction. In other words, in general, the
select line of the multiplexer is a function of all the design
variables in all the cycles. However, we are extracting a de-
terministic function of n variables, which can be either 0 or
1 for each combination of variables’ values.

One way to resolve the conflict is to use formal meth-
ods. However, this is a costly operation mainly because of
using a symbolic simulator. Therefore, we use a concrete
simulator to determine whether for the specific erroneous
sequence of instructions, correction is possible after resolv-
ing the conflict or not. The reason that we can use a concrete
simulator is that we are using the counter example, and in a
counter example all the values of inputs as well as the vari-
ables in different cycles are assigned concrete values; hence,
there is no symbolic or unknown value.

After performing the concrete simulation on the design
after adding the generated correcting function, if correction
is possible, we proceed to certifying the correction, as pre-
sented in the following subsection. However, if after resolv-
ing the conflicts and adding the generated corrected function
to the design, the erroneous sequence cannot be executed
correctly, the generated correcting function cannot correct
the bug in general. Consequently, we can skip the costly
process of certification that is based on formal methods.

The overall process of resolving a conflict is as follows.

1. Set the conflicting value to 1 (ignore the conflicting cy-
cles)

2. Create the correcting function and apply it to the model
accordingly

3. Determine the first cycle that a conflict has happened
4. Extract all the values of variables and inputs at the first

conflicting cycle from the counter example
5. Perform concrete simulation from the first conflicting

cycle until execution of all the instructions are finished
6. Determine the cycle that the execution of all the in-

structions are finished in the counter example
7. Compare the state of the processor before and after

conflict resolution by comparing the corresponding fi-
nal states from the counter example and the concrete
simulation results. If we have reached to the same
state after conflict resolution, conflict is successfully
resolved. Otherwise, correction is not possible in this
case.

As shown in Fig. 8, assuming the first conflicting cycle is
Cycle i, we begin concrete simulation from that cycle since
before that, two models behave exactly the same. We con-
tinue concrete simulation until Cycle k that execution of all

Fig. 8 Overview of conflict resolution.

the instructions are finished. Then, we compare the state of
the processor to the last cycle in the counter example that
the execution of all the instructions are finished (Cycle j).

5.5 Certification of Correction

We need to certify that the correction could actually rectify
the error. That is because each generated counter example
only guarantees the fix for that particular case. Even if we
consider more counter examples, the correction cannot be
guaranteed. Therefore, all the correction methods, including
our method, need to validate the design after fix. To certify
the correctness of the design after fix, we employ formal
methods and perform correspondence checking between the
possibly corrected design and the golden model. This way,
we guarantee that the fix has been actually successful and
the bug is corrected.

6. Experimental Results

6.1 Experimental Setup

We have chosen an out-of-order superscalar processor as our
case study, as shown in Fig. 9. In this architecture, N in-
structions (N=3,4 in our case study) are fetched, decoded,
and sent to the reservation stations at every cycle. The
processor instructions are abstracted to 7 instructions: gen-
eral register-register (RR), general register-immediate (RI),
memory load (LD), memory store (ST), conditional branch
(BR), load linked (LL), and store conditional (SC). The im-
plementation model of the processor for N=3, is about 725
lines of UCLID code and contains 28 control variables, and
for N=4, it is about 1050 lines of UCLID code and contains
36 control variables.

LL-SC instruction pair is a very powerful mechanism
for synchronization among cores and atomic execution,
which is implemented in many RISC processors such as
MIPS, PowerPC, Alpha, and ARM. The usual way of us-
ing LL-SC instruction pair is for implementation of atomic
Read-Modify-Write (RMW) operation. We have used the
MIPS implementation of LL-SC instruction pair as de-
scribed in [17]. Details of our implementation in UCLID
can be found in [4].
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Fig. 9 General architecture of a superscalar processor.

We have used UCLID v.1 [15] and Minisat 2.2 [18] in
our experiments as formal verification engines. Note that
UCLID uses Minisat as its SAT solver engine. Also, note
that UCLID v.1 does not support Minisat SAT solver, and
we have added the support to UCLID.

We have developed a program in C++ around 9200
lines of code to automate the diagnosis and correction of er-
rors. Our program reads the original UCLID models, inserts
multiplexers and truth-tables, collects the output results of
running UCLID, analyzes the counter examples, performs
concrete simulation of UCLID models, resolves conflicts,
and generates the corrected models in UCLID format.

All the experiments are performed on a PC with In-
tel Pentium Dual Core 2.5 GHz processor (only one core is
used) with 2 GB main memory running Linux kernel 2.6.39
32-bit.

6.2 Results

In the first experiment, we show the effectiveness of the
new proposed method to reduce the model size for verifica-
tion as well as the verification time compared to our previ-
ous method [4]. We have chosen the same processor model
(N=3) and the same set of bugs of [4] for this experiment.
We have added multiplexers on all the controlling variables
in the reorder buffer, assuming existence of designers guid-
ance. This way, the total number of variables in the sus-
picious list is reduced around 15%. Results are shown in
Table 1. Note that our previous method cannot handle the
processor with N=4 due to size of the model, which is not
handled by the backend formal engine.

As shown in Table 1, we could correct all the bugs as
our previous method, while reducing the model size as well
as the total correction time by 6x and 12.6x on average, re-
spectively. Note that Model size (column 4) is the number
of clauses in the CNF formula that is generated for the SAT
solver engine. Also note that the average reduction in cor-
rection time is among the first four bugs that are corrected
and bugs 5-6 are excluded because of timeout in the correc-
tion process.

For the bugs 5 and 6, both our previous method and
the new one could not correct the error within the speci-
fied time limit. Note that in both not-corrected cases, our
method could correctly diagnose the bug. This means that
the bug location could be correctly determined, but an ap-

propriate correcting function was not found. As we investi-
gated, in both cases the method have suggested some rows
of the truth-table for correcting function to be 1, while they
should not. This means that those rows are don’t cares for
those counter examples. However, in general case, those
rows should be 0 to be able to correct the design.

In the second experiment we have used the processor
model with N=4. We have selected 8 different variables in
the reorder buffer (ROB) of the processor and injected 10
bugs on them as shown in Table 2. We selected all the 20
variables of ROBs as initial suspicious list for multiplexer
insertion. We have done the experiments in three different
manners as will be explained later. The results of applying
our correction method is shown in Table 2.

In Table 2, #Vars is the number of input variables of
the correcting function, #Candidates is the number of can-
didate locations that are tried, #Sequences is the number of
erroneous sequences that are generated for correction, and
#UCLID runs is the number of times that UCLID is run. To-
tal time reduction shows reducing the total time for correc-
tion comparing constraint2 vs. constraint1, and simulation
vs. constraint2. Finally, the average reduction in total cor-
rection time is reported for constraint2 (vs. constraint1),
and simulation (vs. constraint2). Note that for all the ex-
periments, the total time for correction is due to UCLID
runtime and our analysis program runs less than a second
for all the cases.

The three manners that we have used in this experi-
ment are as follows. constraint1 represents our primary
set of constraints for correction as explained before. In
constriant2 manner, we added some additional constraints
related to the integrity of the solution (as explained in
Sect. 4.5) that forces the formal engine to more strictly fol-
low the execution behavior of instructions like the specifi-
cation model. In the simulation manner, we have also used
our concrete simulation engine for resolving the conflicts, as
explained in Sect. 5.4.

The results for constraint1 manner show that 4 bugs
out of 10 could not be corrected, although the bug was diag-
nosed correctly. As we examined, among the 20 suspicious
variables for correction, the actual buggy location has been
selected as first or second candidates in 8 cases out of ten.
For two cases the buggy location was selected as third can-
didate. This shows that even in the cases that we could not
correct the bug, the diagnosis has done very well.

We analyzed the four cases that we could not correct
and the following results obtained. In two cases, the rea-
son for not correcting was due to our valid truth-table detec-
tion mechanism. As we explained before, when we detect a
conflicting case, we make the extracted truth-table invalid,
exclude the conflicting case, and try to obtain a valid truth-
table. The problem is that sometimes the excluded case is
actually necessary to correct the error.

The other two cases that we could not correct were due
the counter example that was generated by our backend for-
mal engine (UCLID). The problem was that due to some un-
known reason, most of the generated counter examples were
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Table 1 Correction results for N=3.

Bug Brief Description Correction Model Size Model Size Total Time Total Time Fixed?
No Method Reduction Reduction

1 Adding an erroneous term [4] 4,242,928 51m 19s Yes
new 2,688,667 1.6x 4m 50s 10.6x Yes

2 Removing several correct terms [4] 599,185 9m 55s Yes
new 338,260 1.8x 32s 18.6x Yes

3 Removing a correct term [4] 4,606,825 33m 29s Yes
new 530,767 8.7x 3m 25s 9.8x Yes

4 Adding a negation operator [4] 4,443,136 27m 41s Yes
new 530,845 8.4x 2m 27s 11.3x Yes

5 Changing an operator type [4] 4,004,443 > 2h No
new 540,497 7.4x > 1h N/A No

6 Multiple above changes [4] 4,606,825 > 2h No
new 569,385 8.1x > 1h N/A No

Average Average
Reduction 6.0x Reduction 12.6x

Table 2 Results of correction for N=4.

Bug Brief Correction #Vars #Candidates #Sequences #UCLID Total Time Total Time Fixed?
No Description Manner runs Total Time Reduction

constraint1 7 1 1 5 3m 28s - Yes
1 Adding an erroneous term constraint2 7 1 2 5 3m 24s 1.9% Yes

simulation 7 1 2 5 3m 25s −0.5% Yes
constraint1 7 1 1 5 4m 8s - Yes

2 Removing a correct term constraint2 7 1 2 6 5m 22s −29.8% Yes
simulation 7 1 2 5 5m 4s 5.6% Yes
constraint1 7 2 1 13 10m 43s - Yes

3 Adding a “not” operator constraint2 7 1 5 11 6m 32s 39.0% Yes
simulation 7 1 5 11 6m 29s 0.8% Yes
constraint1 7 3 4 22 15m 8s - Yes

4 Removing a “not” operator constraint2 7 1 4 16 12m 14s 19.2% Yes
simulation 7 1 4 12 10m 41s 12.7% Yes
constraint1 7 3 2 22 15m 26s - Yes

5 Adding two “not” operators constraint2 7 1 1 4 3m 13s 79.2% Yes
simulation 7 1 1 4 3m 15s −1.0% Yes
constraint1 7 3 8 60 43m 31s - Yes

6 Changing an “and” operator to “nor” constraint2 7 1 2 5 3m 30s 92.0% Yes
simulation 7 1 2 5 3m 31s −0.5% Yes
constraint1 7 6 14 167 > 1h - No

7 Adding a “not” operator constraint2 7 2 2 14 14m 15s - Yes
simulation 7 2 2 7 11m 46s 17.4% Yes
constraint1 7 4 11 106 > 1h - No

8 Adding a “not” operator constraint2 7 1 1 3 2m 15s - Yes
simulation 7 1 1 3 2m 17s −1.5% Yes
constraint1 7 7 19 129 > 1h - No

9 Removing a “not” operator constraint2 7 2 1 13 13m 50s - Yes
simulation 7 2 1 4 10m 53s 21.3% Yes
constraint1 7 4 16 121 > 1h - No

10 Negating the result of a term constraint2 7 5 9 98 > 1h - No
simulation 7 9 9 101 > 1h - No

Average constraint2 33.6%
Reduction simulation 6.0% (14.3%)*
*only cases that #UCLID runs is changed

not activating the buggy location. That was because the first
or second instruction in the erroneous sequence of instruc-
tions were branch instructions that were taken. Therefore,
the bug could not be reached. This means that the formal
engine needed more guidance with additional constraints to
suggest a solution for fixing the bug.

Considering the above analysis and the reasons for not
correcting the bug, we changed the constraints to better
guide the formal engine for correction. The changes that we

made was to specify a more strict condition for UCLID to
more precisely follow the execution of branch instructions,
as well as the instructions before and after the branch con-
sidering the branch has been taken or not-taken. The results
of new constraints are shown in the corresponding rows for
the correction manner constraint2 in Table 2.

The results of constraint2 show substantial improve-
ment over constraint1 as follows. The results of new con-
straints also show the importance of guidance for efficient
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and effective correction.

1. With the new constraints, 3 out of the 4 previously un-
corrected bugs were successfully corrected.

2. For the other 6 bugs that we could correct with
constraint1 manner, we could also correct all of them
with the new constraints while reducing the correction
time by 33.6% on average. Note that only in one case
(Bug #2) the correction time increased due to more
strict constraints. But, in all the other cases, the cor-
rection time decrease.

3. The diagnosis is also improved compared to constraint1
manner. As it can be seen in all the cases that are cor-
rected (bugs #1-#9), only 1 or 2 candidates are tried.
That is an average 1.2 candidates compared to average
of 3 in the constraint1 manner.

As explained in Sect. 5.3, there are cases that during the
extraction of the truth-table, conflicts happen. To show the
effect of using concrete simulation for conflict resolution, as
explained in Sect. 5.4, we did the experiments of constraint2
manner employing our concrete simulator. The results are
shown as simulation manner in Table 2.

The results of using concrete simulation for conflict
resolution shows two kinds of behaviors among the cor-
rected cases (Bugs #1-#9). For almost half of the corrected
bugs (5 out of 9) the concrete simulator did not changed the
number of UCLID runs. For the remaining bugs (4 out of
9), the technique has been effective to reduce the number of
UCLID runs and consequently the total time for correction.

For the former case, which the number of UCLID runs
is not changed, the total time changes around 1%. That neg-
ligible change is due to small change in different UCLID run
times.

For the latter case, which the number of UCLID runs is
reduced, total time is reduced on average by 14.3%. How-
ever considering all the 9 bugs together, the reduction of
total time becomes 6.0% on average. The results confirm
that using the concrete simulator is effective.

As it can be seen from the results, concrete simulation
has been less effective than the improved constraints (Con-
straint2) to reduce the correction time. The first reason is
that the conflicting cases does not happen so often. The
other reason is that the concrete simulation is performed
only when conflicting cases happen. Therefore, it does not
affect the selection of the candidates as well as the erroneous
sequence generation, which are very important for efficient
correction. However, constraints directly affect both can-
didate selection as well as erroneous sequence generation.
Therefore, constraints have been more effective to reduce
the total correction time than the concrete simulation.

Regarding bug #10 that is not corrected, as we inves-
tigated we found out that not correcting is due to adding a
row of the truth-table as 1, that is not correct in general. This
means that the row of the truth-table has been actually don’t
care for the erroneous sequences that we have tried, how-
ever, that row should be 0 to be able to correct the design.

7. Conclusions

In this paper, we have presented automatic correction of
design bugs in modern processors employing formal meth-
ods combined with concrete simulation. Given the cycle-
accurate formal specification of an erroneous processor and
its reference instruction-set architecture (ISA) model, we
employ a multiplexer-based method to find the candidate lo-
cations for correction. After that, we find the minterms, or
rows of a truth-tables that are 1, of a correcting functions in
the candidate location. We have used the truth-table model
of the correcting function, which is a very general model.
Moreover, we have not explicitly represented the truth-table
in the design, which makes the correction model scalable.
The possible correction is then formally verified to make
sure it is actually correcting the design. We have shown the
effectiveness of our method by correcting the bugs in a com-
plex out-of-order superscalar processors. Our experimental
results show that our method reduces the model size for cor-
rection by 6.0x and total correction time by 12.6x, on aver-
age, compared to our previous method. Our future work is
to optimize the correcting function and represent the whole
corrected function in a more compact way, as well as ex-
tending the work to correct in multiple locations.
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