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PAPER

Asymptotic Marginal Likelihood on Linear Dynamical Systems

Takuto NAITO†, Nonmember and Keisuke YAMAZAKI††a), Member

SUMMARY Linear dynamical systems are basic state space models lit-
erally dealing with underlying system dynamics on the basis of linear state
space equations. When the model is employed for time-series data analysis,
the system identification, which detects the dimension of hidden state vari-
ables, is one of the most important tasks. Recently, it has been found that
the model has singularities in the parameter space, which implies that anal-
ysis for adverse effects of the singularities is necessary for precise identifi-
cation. However, the singularities in the models have not been thoroughly
studied. There is a previous work, which dealt with the simplest case; the
hidden state and the observation variables are both one dimensional. The
present paper extends the setting to general dimensions and more rigor-
ously reveals the structure of singularities. The results provide the asymp-
totic forms of the generalization error and the marginal likelihood, which
are often used as criteria for the system identification.
key words: Bayesian learning, Kalman filter, time-series data analysis

1. Introduction

Linear dynamical systems (LDS) are basic state space mod-
els employed for modeling practical complex systems, time-
series analysis, and image processing [1]–[3]. For practi-
cal usage, system identification is one of the most important
modeling tasks. If the system is not identified well, which
means that a dimension of the hidden state variables is not
properly determined, estimated dynamics of inner states are
not informative. There are active and passive approaches
to the identification. For example, the frequency response
analysis, which controls input signals and analyzes the out-
put responses, is a representative active approach. When the
LDS are used for time-series analysis, we often cannot affect
the system, i.e. control of the input signal is not straightfor-
ward. Then, the system must passively be detected from the
given observable data. This procedure corresponds to model
selection in statistics.

From the statistical point of view, the LDS are one of
parametric models, the parameters of which are expressed as
coefficients of state space equations. The Kalman filter [4] is
the most popular algorithm to derive values of hidden state
variables from the observations when the coefficients of the
equations are all given. The present paper focuses on the
cases, where the parameters are unknown and the parameter
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learning is necessary. The parametric models fall into two
kinds: regular and singular. The model is referred to as reg-
ular if there is one-to-one relation between the parameters
and the model expression as a probabilistic function. Oth-
erwise, it is singular. Properties of the parameter learning
depend on whether the model is regular or not. Moreover,
the conventional statistical methods for the model selection
are not theoretically applicable to singular models.

Recently, singular models have been studied in the
Bayes statistics. A relation between performance of
the Bayesian learning and algebraic geometry has been
found [5], [6]. The singularities in the parameter space play
an important role to determine the performance. Mathe-
matical approaches to reveal the structures of singularities
have been developed [7], [8]. Based on the algebraic geo-
metrical method, singularities in many models have been
analyzed [9]–[17]. The structure of singularities depends
on a model, which means that each model requires its own
analysis. For example, a mathematical technique is an
eigen value analysis in the reduced rank approximation [16]
while it is an ideal-theoretic approach in the general Markov
model [17].

A previous study [18] pointed out that LDS are singu-
lar when there is redundancy on the hidden state variables.
It dealt with the simplest model; both the hidden state and
the observation variables are one dimensional. The result
shows that the Kalman filter can derive adverse hidden state
estimation due to singularities caused by the redundancy of
the hidden state variable. Therefore, more precise analysis
of singularities on general setting of the model is necessary
for appropriate system identification.

The present paper extends the model setting to general
dimensions of the variables, and clarifies detailed structure
of singularities. More precisely, the asymptotic forms of the
marginal likelihood and the generalization error, which are
representative criteria for the model selection, are derived.
In regular models, the criteria AIC [19] and BIC [20] are
based on the asymptotic forms of the generalization error,
and the marginal likelihood, respectively. In singular mod-
els, on the other hand, they do not have theoretical validity.
To tackle this issue, some criteria have been proposed [21]–
[23]. The results of the present paper also provide helpful
insights for managing these criteria.

The remainder of the paper is organized as follows.
Section 2 introduces the Bayesian learning connected to
the algebraic geometrical method. Section 3 describes the
structure of singularities as theorems, proofs of which are in
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Sect. 4. Sections 5 and 6 state discussions and our conclu-
sions, respectively.

2. Bayesian Parameter Learning and Analysis of Sin-
gularities

This section introduces the Bayesian learning and the con-
nection to algebraic geometry.

Let Xn = (X1, X2, . . . , Xn) be a set of training samples
taken independently and identically from the true distribu-
tion q(X), where n is the number of training samples. Be-
cause LDS deal with sequential data, each Xi (i = 1, . . . , n) is
a sequence whose length is T , i.e. Xi = (xi

1, . . . , x
i
t, . . . , x

i
T ).

Note that the sequence data Xn are taken as i.i.d. whereas
each sequence Xi is not. Let p(X|ω) be a learning model,
and ϕ(ω) be a prior distribution. The posterior distribution
is given by

p(ω|Xn) =
1

Z(Xn)
L(ω)ϕ(ω), (1)

where the likelihood is defined by

L(ω) =
n∏

i=1

p(Xi|ω) (2)

and the normalizing constant Z(Xn) is the marginal likeli-
hood. In practical situations, the minus log marginal likeli-
hood − ln Z(Xn) is widely used for the model selection. Let
us define the Bayesian free energy F(n),

F(n) = EXn

[
− ln Z(Xn) +

n∑
i=1

ln q(Xi)
]
, (3)

where EXn [·] stands for the expectation over Xn. Note that
F(n) averagely reflects behavior of − ln Z(Xn) because the
second term in the expectation is independent of the learning
model and the prior.

In the Bayes method, the predictive distribution for un-
known data X is constructed as

p(X|Xn) =
∫

p(X|ω)p(ω|Xn)dω. (4)

In the maximum likelihood and the maximum a posteriori
(MAP) methods, it is given by

p(X|Xn) =p(X|ωML), (5)

p(X|Xn) =p(X|ωMAP), (6)

respectively, where the estimators are defined by

ωML = arg max
ω

L(ω), (7)

ωMAP = arg max
ω

L(ω)ϕ(ω). (8)

The performance of the model is measured by the difference
of the distributions,

G(n) = EXn

[∫
q(X) ln

q(X)
p(X|Xn)

dX
]
, (9)

which is the generalization error. In the Bayes method, the
generalization error has the following relation to F(n),

G(n) = F(n + 1) − F(n). (10)

This implies that the asymptotic form of G(n) is naturally
derived from that of F(n).

Combination of the Mellin and the Laplace transforms
changes F(n) into the zeta function given by

ζ(z) =
∫

H(ω)zϕ(ω)dω, (11)

H(ω) =
∫

q(X) ln
q(X)

p(X|ω)
dX. (12)

In algebraic analysis, it is ensured that the zeta function has
only real negative and rational poles. Let 0 > −λ1 > −λ2 >
. . . be a sequence of the poles, and m1,m2, . . . be the respec-
tive orders. The inverse transforms derive the asymptotic
form of the energy function,

F(n) =λ1 ln n − (m1 − 1) ln ln n + O(1) (13)

for n → ∞. Based on the relation Eq. (10), the generaliza-
tion error has the asymptotic form,

G(n) =
λ1

n
− m1 − 1

n ln n
+ o
( 1
n ln n

)
. (14)

In the regular models, it has been proved that λ1 =

dimω/2 and m1 = 1, i.e.,

F(n) =
dimω

2
ln n + O(1), (15)

G(n) =
dimω

2n
+ o
( 1
n ln n

)
. (16)

Note that the coefficients only depend on the dimension of
parameters. The well-known criteria BIC and AIC are de-
rived on the basis of these asymptotic forms to select the
optimal model [19], [20].

In the singular models, as seen in Eqs. (13) and (14),
analyzing singularities via the zeta function plays an impor-
tant role to know asymptotic behavior of the main objective
functions for the model selection. Therefore, the present pa-
per provides precise calculation of λ1 and m1 in LDS.

In many cases, finding the largest pole requires com-
plicated mathematical calculation such as [17], [24]. When
a pole z = −λ and its order m have been calculated, upper
bounds are derived as

F(n) ≤ λ ln n − (m − 1) ln ln n + O(1), (17)

G(n) ≤ λ
n
− m − 1

n ln n
+ o
( 1
n ln n

)
. (18)

3. Analysis for Structure of the Singularities

This section shows analysis results of singularities in the pa-
rameter space. First, the learning and the true models are
formulated as state space equations. Next, poles of the zeta
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function, which determine the asymptotic forms of the gen-
eralization error and the marginal likelihood, are described
as the main theorems.

3.1 Formulation of Linear Dynamical Systems

Let zt ∈ Rq and xt ∈ Rp be the hidden state and the output
vectors at time t, respectively. The process and the observa-
tion noises are given by wt ∈ Rq and vt ∈ Rp, respectively.
LDS have the following state space equations,

zt+1 = Azt + Dwt, (19)

xt = Czt + vt, (20)

where A ∈ Rq×q is a state matrix, C ∈ Rp×q is an output
matrix, and the elements of D ∈ Rq×q are the coefficients
of the process noise. The noises are assumed to follow a
standard normal distribution.

Computing the likelihood L(ω) is the most necessary
in any parameter learning. As seen in the predictive dis-
tribution and the posterior distribution, the Bayes learning
also requires a value of the likelihood for the given ω. The
Kalman filter effectively constructs the computing algorithm
in LDS. The filter consists of two steps:

ẑt|t−1 = Aẑt−1|t−1, (21)

Pt|t−1 = APt−1|t−1A� + DD� (22)

for the predicting step, and

Kt = Pt|t−1C�
(
I +CPt|t−1C�

)−1
, (23)

ẑt|t = ẑt|t−1 + Kt
(
xt −Cẑt|t−1

)
, (24)

Pt|t = (I − KtC) Pt|t−1 (25)

for the updating step. The matrix I is a unit matrix and Kt is
called the Kalman gain.

The model probability p(X|ω), where the parameters
ω = (A,C,D, z1), is expressed as

p(X|ω) = p(x1|ω)
T∏

t=2

p(xt |x1, . . . , xt−1, ω). (26)

Based on properties of the normal distribution, the model
probability can be rewritten as

p(X|ω) =
T∏

t=1

N(xt |Cẑt|t−1, I +CPt|t−1C�). (27)

where the initial state setting is defined as ẑ1|0 = z1 and
P1|0 = 0. The likelihood is calculated as

L(ω)=
n∏

i=1

p(Xi|ω)=
n∏

i=1

T∏
t=1

N(xi
t |Cẑi

t|t−1, I +CPi
t|t−1C�)

(28)

where ẑi
t|t−1 and Pi

t|t−1 are iteratively evaluated on the basis
of the Kalman filter.

Assume that the true model is defined as

q(X) =
T∏

t=1

N(xt |0, I), (29)

where 0 and I are p dimensional zero vector and the unit
matrix, respectively. The true model corresponding to no-
hidden-state model generates i.i.d. data while the learning
model treats them as the time-dependent data. This setting
extracts a basic structure of singularities in more general
cases, where the true model has q∗-dimensional hidden state
vector, i.e. zt ∈ Rq∗ . Availability of the setting will again be
discussed in Sect. 5.

The length of sequences T affects the learning result.
In the present paper, we assume a sufficient long sequences
for complete parameter learning such as T > dimω.

3.2 The Main Results

The following results show poles of the zeta function. The
proofs will appear in the next section.

Theorem 1: When the true model and a learning model are
defined by Eq. (29) and Eqs. (19)–(20), respectively, the zeta
function has poles:

λ =
q
2

min
{

p,
3
2

q + 1
}
, (30)

m =

⎧⎪⎪⎨⎪⎪⎩
2 (p = 3

2 q + 1),

1 (others)
. (31)

The following larger poles are obtained when the initial state
is at the origin;

Theorem 2: When the true model and a learning model are
defined by Eq. (29) and Eqs. (19)–(20), respectively, the zeta
function has poles:

λ =
q
4

min{p, q}, (32)

m =

⎧⎪⎪⎨⎪⎪⎩
2 (p = q),

1 (others)
, (33)

where the initial state is given as z1 = 0.

Under the same conditions as [18], we obtain the exact ex-
pression instead of the bounds;

Corollary 1: When the true model and a learning model
are defined by Eq. (29) and Eqs. (19)–(20), respectively, the
zeta function has the largest pole:

λ1 =
1
4
, (34)

m1 =2, (35)

where z1 = 0, and p = q = 1.

4. Proofs of the Results

This section shows the proofs of the main results. First,
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Sect. 4.1 shows some basic lemmas employed for the proofs.
Then, the following Sects. 4.2, 4.3 and 4.4 prove Theorems
1 and 2 and Corollary 1, respectively.

4.1 Basic Lemmas

The following lemma is used for the proofs;

Lemma 1: For a positive constant ε < 1, let d × d matrix
satisfy ||Δ|| < ε, where || · || is an arbitrary norm. It holds that

Tr(I + Δ)−1 + ln det(I + Δ) =d +
1
2

TrΔ2 + Trg(Δ),

(36)

where g(M) is a matrix polynomial function consisting of
higher order terms than M2

Proof: Based on ln det M = Tr ln M,

Tr(I + Δ)−1 + ln det(I + Δ) =Tr
(
(I + Δ)−1 + ln(I + Δ)

)
.

(37)

By using the Taylor expansion with respect to Δ,

Tr(I + Δ)−1 + ln det(I + Δ)

=Tr
(
I − Δ + Δ2 − Δ3 + · · · + Δ − 1

2
Δ2 +

1
3
Δ3 + · · · )

=d +
1
2

TrΔ2 + Trg(Δ), (38)

which completes the proof. (End of Proof)
Let us introduce useful lemmas in the algebraic geo-

metrical method without the proofs (cf. [25] for mathemati-
cal details).

Lemma 2: Let ζW (z) be a zeta function with a restriction
of the parameter area;

ζW (z) =
∫

W
H(ω)zϕ(ω)dω. (39)

A pole z = −λW and its order mW of ζW (z) provide the fol-
lowing upper bounds,

F(n) ≤λW ln n − mW ln ln n + O(1). (40)

Lemma 3: Let Hu(ω) be a function such that H(ω) ≤
Hu(ω) on the support of ϕ(ω). A pole z = −λu and its order
mu in a zeta function ζu(z) =

∫
Hu(ω)ϕ(ω)dω provide the

following upper bounds,

F(n) ≤λu ln n − mu ln ln n + O(1). (41)

4.2 Proof of Theorem 1

Because it is not straightforward to calculate the integral of
H(ω) on X, we will first find a polynomial of ω bounding
H(ω) in two restricted areas of the parameter space. Based
on Lemma 2–3, a pole of the zeta function with respect to

the poly nominal is a bound of λ1. Next, applying the blow-
up to H(ω), we can change the polynomial into a monomial
form of the parameter, which makes calculation of the inte-
gral in the zeta function easier. After marginalizing out the
parameter, we will obtain a rational form of z and then find a
pole in each restricted parameter area. Comparing the poles,
we select the maximum pole as the tighter bound.

According to Eqs. (22), (23) and (25), there is a matrix
Q(1)

t consisting of ω such that

Pt|t−1 = AQ(1)
t A� + DD�, (42)

Q(1)
t = (I − Pt−1|t−2C�(I +CPt−1|t−2C�)−1C)Pt−1|t−2.

(43)

By using Pt−1|t−2 and Eqs. (21), (23) and (24),

ẑt|t−1 =A(R(1)
t ẑt−1|t−2

+ Pt−1|t−2C�(I +CPt−1|t−2C�)−1xt−1) (44)

=Ay(1)
t , (45)

R(1)
t =I − Pt−1|t−2C�(I +CPt−1|t−2C�)−1C, (46)

where y(1)
t is a q dimensional vector consisting of ω and

x1, . . . , xt−1. Because the initial state is given as z1,

P1|0 =0, (47)

ẑ1|0 =z1. (48)

Due to the expression Eq. (27),

p(X|ω) =N(x1|Cz1, I)
T∏

t=2

N(xt |CAy(1)
t ,Σ

(1)
t ), (49)

Σ
(1)
t =I +C(AQ(1)

t A� + DD�)C� (50)

Then, the Kullback information Eq. (12) is written as

H(ω) =E
[
ln
N(x1|0, I)
N(x1|Cz1, I)

]

+

T∑
t=2

E
[
ln

N(xt |0, I)

N(xt |CAy(1)
t ,Σ

(1)
t )

]
, (51)

where E[·] denotes
∫ ·q(X)dX. On the covariance matrix,

E[y(1)
t x�t ] = 0 because y(1)

t consists of x1, . . . , xt−1, which
are independent of xt due to the definition of q(X). Then,

H(ω) =
1
2

z�1 C�Cz1

+

T∑
t=2

[1
2

ln detΣ(1)
t −

p
2
+

1
2

TrΣ(1)−1
t

+
1
2

Tr(CA)�Σ(1)−1
t CAS (1)

t

]
, (52)

where S (1)
t = E[y(1)

t y
(1)�
t ]. The elements of the parameter

are denoted by

A ={ai j}, (53)
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C ={ci j}, (54)

D ={di j}, (55)

z1 =(z11, . . . , z1q)�. (56)

Let us restrict the parameter areas to W (1)
1 and W (1)

2 . such
that

W (1)
1 ={ω : ||ci j|| < ε(1)} (57)

W (1)
2 ={ω : ||ai j|| < ε(1), ||di j|| < ε(1)and||z1i|| < ε(1)},

(58)

where ε(1) is a small positive constant. Substituting Δ for
C(AQ(1)

t A� + DD�)C� in Lemma 1, we derive that there is
a positive constant α(1)

1 such that

H(ω) ≤α(1)
1 H(1)

u (ω) (59)

H(1)
u (ω) =

1
2

z�1 C�Cz1

+

T∑
t=2

[1
4
(
C(AQ(1)

t A� + DD�)C�
)2

+
1
2

Tr(CA)�Σ(1)−1
t CAS (1)

t

]
(60)

in the both area W (1)
1 and W (1)

2 . The function H(1)
u (ω) consists

of terms ci jckl or terms ai jakl, di1i2 di3i4 di5i6 di7i8 and z1iz1 j. In
the restricted areas, it holds that

H(ω) ≤
p∑

i,k=1

q∑
j,l=1

ci jckl f (1)
1i jkl(ω), (61)

H(ω) ≤
{ q∑

i,k=1

q∑
j,l=1

ai jakl f (1)
2i jkl(ω)

+

q∑
i1,...,i8=1

di1i2 di3i4 di5i6 di7i8 f (1)
3i1...i8

(ω)

+

q∑
i, j

z1iz1 j f (1)
4i j (ω)

}
, (62)

respectively, where f (1)
1i jkl(ω), f (1)

2i jkl(ω), f (1)
3i1...i8

(ω) and f (1)
4i j (ω)

are polynomials of ω.
For Eq. (61), we can find the following blow-up ω =

Φ
(1)
1 (ω̂);

c11 =ĉ11, (63)

ci j =ĉ11ĉi j (others). (64)

Based on Lemmas 2 and 3, a pole of the zeta function ζ(1)
1 (z)

provides upper bounds of the free energy;

ζ(1)
1 (z) =

∫
W (1)

1

{
ĉ2

11 f (1)
5 (ω̂)

}z
ϕ(Φ(1)

1 (ω̂))|Φ(1)
1 |dω̂, (65)

where f (1)
5 (ω̂) is a polynomial of ω̂ and |Φ(1)

1 | stands for the

Jacobian. Because |Φ(1)
1 | = ĉpq−1

11 , the zeta function ζ(1)
1 has a

pole at z = −pq/2.
For Eq. (62), we can find the following blow-up ω =

Φ
(1)
2 (ω̂);

ai j =d̂2
11âi j (1 ≤ i, j ≤ q), (66)

d11 =d̂11, (67)

di j =d̂11d̂i j (others), (68)

z1i =d̂2
11ẑ1i. (69)

Based on Lemmas 2 and 3, a pole of the zeta function ζ(1)
2 (z)

provides upper bounds of the free energy;

ζ(1)
2 (z) =

∫
W (1)

2

{
d̂4

11 f (1)
6 (ω̂)

}z
ϕ(Φ(1)

2 (ω̂))|Φ(1)
2 |dω̂, (70)

where f (1)
6 (ω̂) is a polynomial of ω̂. Because |Φ(1)

2 | =
d̂3q2+2q−1

11 , the zeta function ζ(1)
2 (z) has a pole at z = −3q2/4−

q/2.
Comparing two cases Φ(1)

1 and Φ(1)
2 , we obtain the up-

per bounds. When p = 3q/2 + 1, the poles are at the same
position. Therefore, its order is two, which completes the
proof. (End of Proof)

4.3 Proof of Theorem 2

The structure of the proof is the same as that of Theorem 1.
According to P1|0 = 0 and Eqs. (22), (23) and (25),

there are matrices Q(2)
it and Q(3)

it consisting of ω such that

Pt|t−1 = AQ(1)
t A� + DD� (71)

=
∑

i

Q(2)
it DD�Q(3)

it . (72)

By using z1 = 0, Pt−1|t−2 and Eqs. (21), (23) and (24),

ẑt|t−1 =A
{
(I − Pt−1|t−2C�(I +CPt−1|t−2C�)−1C)ẑt−1|t−2

+ Pt−1|t−2C�(I +CPt−1|t−2C�)−1xt−1
}
, (73)

=A
∑

i

Q(4)
it DD�Q(5)

it C�y(2)
t , (74)

where Q(4)
it and Q(5)

it are matrices consisting of ω, and y(2)
t is

a q dimensional vector consisting of ω and x1, . . . , xt−1. Due
to the expression Eq. (27),

p(X|ω) =
T∏

t=1

N(xt |μ(2)
t ,Σ

(2)
t ), (75)

μ(2)
t =CA

∑
i

Q(4)
it DD�Q(5)

it C�y(2)
t , (76)

Σ
(2)
t =I +C

∑
i

Q(2)
it DD�Q(3)

it C�. (77)

Then, the Kullback information Eq. (12) is written as

H(ω) =
T∑

t=1

E
[
ln

N(xt |0, I)

N(xt |μ(2)
t ,Σ

(2)
t )

]
. (78)
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Let us restrict the parameter areas to W (2)
1 and W (2)

2 such that

W (2)
1 ={ω : ||ci j|| < ε(2)} (79)

W (2)
2 ={ω : ||di j|| < ε(2)}, (80)

where ε(2) is a small positive constant. In the similar way to
the proof of Theorem 1, there is a positive constant α(2)

1 such
that

H(ω) ≤α(2)
1 H(2)

u (ω) (81)

H(2)
u (ω) =

T∑
t=1

[1
4
(
C
∑

i

Q(2)
it DD�Q(3)

it C�
)2

+
1
2

TrR(2)�
t Σ

(2)−1
t R(2)

t S (2)
t

]
, (82)

R(2)
t =CA

∑
i

Q(4)
it DD�Q(5)

it C�, (83)

where S (2)
t = E[y(2)y(2)�], in the area W (2). The function

H(2)
u (ω) consists of terms ci1i5 ci2i6 ci3i7 ci4i8 or di1i2 di3i4 di5i6 di7i8 .

In the restricted areas W (2)
1 and W (2)

2 , it holds that

H(ω) ≤
p∑

i1,...,i4=1

q∑
i5,...,i8=1

ci1i5 ci2i6 ci3i7 ci4i8 f (2)
1i1...i8

(ω), (84)

H(ω) ≤
q∑

i1,...,i8=1

di1i2 di3i4 di5i6 di7i8 f (2)
2i1...i8

(ω), (85)

respectively, where f (2)
1i1...i8

(ω) and f (2)
2i1...i8

(ω) are polynomials
of ω.

For Eq. (84), we can find the following blow-up ω =
Φ

(2)
1 (ω̂);

c11 =ĉ11, (86)

ci j =ĉ11ĉi j (others). (87)

Based on Lemmas 2 and 3, a pole of the zeta function ζ(2)
1 (z)

provides upper bounds of the free energy;

ζ(2)
1 (z) =

∫
W (2)

1

{
ĉ4

11 f (2)
3 (ω̂)

}z
ϕ(Φ(2)

1 (ω̂))|Φ(2)
1 |dω̂, (88)

where f (2)
3 (ω̂) is a polynomial of ω̂. Because |Φ(2)

1 | = ĉpq−1
11 ,

the zeta function ζ(2)
1 has a pole at z = −pq/4.

For Eq. (85), we can find the following blow-up ω =
Φ

(2)
2 (ω̂);

d11 =d̂11, (89)

di j =d̂11d̂i j (others). (90)

Based on Lemmas 2 and 3, a pole of the zeta function ζ(2)
2 (z)

provides upper bounds of the free energy;

ζ(2)
2 (z) =

∫
W (2)

2

{
d̂4

11 f (2)
4 (ω̂)

}z
ϕ(Φ(2)

2 (ω̂))|Φ(2)
2 |dω̂, (91)

where f (2)
4 (ω̂) is a polynomial of ω̂. Because |Φ(2)

2 | = d̂q2−1
11 ,

the zeta function ζ(2)
2 (z) has a pole at z = −q2/4.

Comparing two cases Φ(2)
1 and Φ(2)

2 , we obtain the up-
per bounds. When p = q, the poles are at the same position.
Therefore, its order is two, which completes the proof. (End
of Proof)

4.4 Proof of Corollary 1

Because all matrices A, C and D are scalar, the parameters
ω are denoted by a, c and d, respectively.

According to P1|0 = 0 and Eqs. (22), (23) and (25), it
holds that

Pt|t−1 = a2(1 − c2Pt−1|t−2(1 + c2Pt−1|t−2)−1)Pt−1|t−2 + d2

= d2Q(6)
t , (92)

where Q(6)
t is defined by the following recurrence expres-

sion;

Q(6)
1 =0 (93)

Q(6)
t+1 =1 +

a2Q(6)
t

1 + c2d2Q(6)
t

. (94)

By using z1 = 0, Pt−1|t−2 and Eqs. (21), (23) and (24),

ẑt|t−1 =a((1 − c2Pt−1|t−2(1 + c2Pt−1|t−2)−1)ẑt−1|t−2

+ cPt−1|t−2(1 + c2Pt−1|t−2)−1xt−1), (95)

=cd2y(3)
t , (96)

where y(3)
t is defined by the following expression;

y(3)
1 =0, (97)

y(3)
t+1 =

a

1 + c2d2Q(6)
t

(y(3)
t + Q(6)

t xt). (98)

Due to the expression Eq. (27),

p(X|ω) =
T∏

t=1

N(xt |c2d2y(3)
t , 1 + c2d2Q(6)

t ). (99)

Then, the Kullback information Eq. (12) is written as

H(ω) =
T∑

t=1

E
[
ln

N(xt |0, 1)

N(xt |c2d2y(3)
t , 1 + c2d2Q(6)

t )

]

=
1
2

T∑
t=1

[
−1 +

c4d4S (3)
t

1 + c2d2Q(6)
t

+
1

1 + c2d2Q(6)
t

+ ln(1 + c2d2Q(6)
t )
]
, (100)

where S (3)
t = E[y(3)2

t ]. By assuming a restricted parameter
area {ω : ||c|| < ε(3) and ||d|| < ε(3)}, where ε(3) is a small
positive constant, it holds that |c2d2Q(6)

t | < 1. Then,

H(ω) =
c4d4

2

T∑
t=1

∞∑
j=0

(
S (3)

t +
j + 1
j + 2

Q(6)2
t

)
(−c2d2Q(6)

t ) j

(101)
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on the basis of the Taylor expansion on ln(1+x) and 1/(1+x)
for |x| < 1. The smallest degree with respect to ω is c4d4

because of the definitions of S (3)
t and Q(6)

t . Then, there are
positive constants α(3)

1 and α(3)
2 such that

α(3)
1 c4d4 ≤ H(ω) ≤ α(3)

2 c4d4. (102)

Based on Lemma 3, the following zeta function ζ(3)(z) has
the same pole and order as ζ(z),

ζ(3)(z) =
∫

c4d4ϕ(ω)dω, (103)

which immediately gives a pole z = −1/4 with m = 2. The
learning model attains the true model in the parameter set
{c = 0} ∪ {d = 0}. The area {c = 0} ∩ {d � 0} has a pole
z = −1/4 with m = 1. The area {c � 0} ∩ {d = 0} has the
same pole. Therefore, the intersection point {c = 0}∩{d = 0}
has the largest pole λ1 = 1/4 with m1 = 2. (End of Proof)

5. Discussions

First, let us compare the results of the present paper with
those of [18]. The model in the previous study is limited
to one-dimensional hidden state and observable variables,
and the upper bounds of the coefficients are obtained as
λ = 1/2,m = 2 for z1 = 0 and λ = 1/2,m = 1 for
z1 � 0. The present paper provides the upper bounds in
general models. The result of the corresponding dimen-
sion in Corollary 1 derives the largest pole λ1 = 1/4 and
m1=2. The structure of singularities depends on the true
parameter set Wt = {ω∗ : H(ω∗) = 0} and the expression
of H(ω) as a polynomial with respect to ω in the neighbor-
hood of Wt. Based on the proof of the corollary, the struc-
ture is rigorously revealed, which could not be attained in
the previous study. More mathematically, the present paper
proves that the function is quartic, where the dominant term
is c4d4, while the previous study found that it is bounded by
a quadratic function such as c2d2. This precise expression
improves the asymptotic forms because the exponential part
of the term c4d4 directly appears in the denominator of λ1.
The main results provide not only theoretical but also prac-
tical insights for the system identification and the parameter
learning because the structure crucially affects the accuracy
of constructing the posterior and its convergence.

Second, let us consider the relation between the poste-
rior distribution and the asymptotic free energy. The main
formula II in the book [25] shows that the asymptotic form
of − ln Z(Xn) is similar to that of F(n);

− ln Z(Xn) +
n∑

i=1

ln q(Xi)

= λ1 ln n − (m1 − 1) ln ln n + Op(1). (104)

According to Eqs. (1)–(2), the posterior is expressed as

p(ω|Xn) =
e−nHn(ω)ϕ(ω)
αpn−λ1 (ln n)m1−1

, (105)

Hn(ω) =
1
n

n∑
i=1

ln
q(Xi)

p(Xi|ω)
, (106)

where αp is a positive random variable satisfying the con-
vergence in probability αp → 1. The derivation of λ1 and
m1 gives the shape of the posterior due to

∫
p(ω|Xn)dω = 1.

For example, let us assume that these coefficients are ob-
tained from restricted parameter area Wr around {C = 0}
in the zeta function and there is a pole z = −λ(< −λ1)
in the area W ′r around {A = 0} ∩ {D = 0}. This indicates∫

Wr
p(ω|Xn)dω → 1 for n → ∞ because the restricted inte-

gral
∫

Wr
exp{−nHn(ω)}ϕ(ω)dω achieves the value of the de-

nominator. In the area W′r , on the other hand, the restricted
integral converges to zero;

∫
W′r

e−nHn(ω)ϕ(ω)
αpn−λ1 (ln n)m1−1

dω

=
α′pn−λ(ln n)m−1

αpn−λ1 (ln n)m1−1
= O
(
n−λ+λ1 (ln n)m−m1

)→ 0, (107)

where α′p is a positive random variable satisfying the conver-
gence in probability α′p → 1. Thus, the posterior converges
to the neighborhood of {C = 0}. Using this fact, we can an-
alyze the convergence area of the posterior distribution on
the basis of the restricted area providing the pole.

To attain the true model described by Eq. (29), the
learning model defined by Eqs.(19) and (20) must have the
true parameters in a set {A = 0 ∩ D = 0 ∩ z1 = 0} ∪ {C = 0}.
Figure 1 borrowed from [18] describes experimental sam-
pling from the posterior distributions in one-dimensional
cases, where the parameter space is expressed as (a, c, d, z1).
For simplicity, Figure 1 shows the space (a, c, d). The ver-
tical and horizontal planes indicate {c = 0} and {d = 0}, re-
spectively. The sampling method is the Markov chain Monte
Carlo (MCMC) method [26], with 1,000 training sequences
and T = 10. The left and right panels show cases of z1 = 0
and z1 � 0, respectively.

In zt = 0, the points are located around the subspace
{c = 0} ∪ {d = 0}, for which the parameters express the true
model. Based on the relation between F(n) and p(ω|Xn),
the proof of Corollary 1 shows that the sampled points will
converge to the origin because the area, where both c and d
are close to zero, provides the pole z = −1/4. As shown in
the figure, the points are still scattered along the subspace,
which implies that the sampling does not precisely construct
the posterior. In singular models, the posterior converging
to a point generally requires accurate sampling techniques.
The figure confirms this difficulty.

In zt � 0, the points are around the subspace {c = 0}.
Theorem 1 shows the bounds with coefficient λ = 1/2 be-
cause p < 3q/2 + 1 for one-dimensional case. This coeffi-
cient is obtained by the neighborhood of {C = 0}. There-
fore, the plot supports the validity of the bounds. Theorem
1 also implies that the posterior distribution can converge to
the neighborhood of {A = 0} ∩ {D = 0} ∩ {z1 = 0} when
p > 3q/2 + 1 in higher dimensional cases.
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Fig. 1 Examples of the posteriors borrowed from [18].

Third, we elucidate importance of the simple setting,
where the true model is N(xt |0, I). Assume that the hidden
state has a general dimension; zt ∈ Rq∗ in the true model,
and zt ∈ Rq∗+q in a learning model. According to analyses
of other singular models e.g. [24], [25], the coefficient λ1 is
decomposed as λ1 = dt/2 + λr, where dt is the essential pa-
rameter dimension of the true model and λr is the remaining
part. The value of this remaining part is affected by redun-
dant hidden states of the learning model. The structure of
singularities found in the present paper exists in a parame-
ter space of the general case, which means that the calcula-
tion of λr requires similar derivation to the proofs in Sect. 4.
Therefore, analysis of the true modelN(xt |0, I) is mathemat-
ically important though singularities are more complicated
in practical cases.

Last, let us discuss the hidden state estimation from
the point of view of the posterior distribution. In the prac-
tical application, the state estimation with the Kalman filter
is based on the optimal parameter, i.e. the state space equa-
tions with the optimal coefficients are given. To find the
coefficients, the maximum likelihood method and the MAP
method are employed as the parameter search. The posterior
distribution provides a possible estimator in these methods.
For example, one of the points in Fig. 1 will be selected as
the MAP estimator. Thus, observation of the posterior dis-
tribution enables us to predict the result of the hidden state
estimation.

As confirmed in one-dimensional case, Theorem 1
shows that the posterior distribution can be located around
the area {C = 0} for p < 3q/2 + 1. It should be reminded
that the estimated values of C are not exactly zero due to the
noises. Then, a hidden state estimation result shows that zt

has a movement following Eq. (19) and weakly influences xt

as showed in Eq. (20) though the true model does not have zt.
For the same reason, the random walk of zt will be estimated
due to the posterior distribution around {C = 0} ∩ {D = 0}
in Theorem 2. This adverse estimation will occur when the
learning model has redundant dimension of zt in higher di-
mensional models of practical situations.

6. Conclusions

The present paper extended the previous study on LDS [18]
and more precisely analyzed singularities in the parameter
space. Due to the structure of singularities, the asymp-
totic forms of the marginal likelihood and the generaliza-
tion error are clarified, which provides theoretical and prac-
tical insights for the system identification. The previous
study pointed out that the singularities adversely affect hid-
den state estimation based on the Kalman filter when LDS
has one-dimensional variables. The results of the present
paper indicate that general models also have the same ef-
fect. To prevent the adverse estimation, the dimension of
hidden state variables must be carefully detected. The struc-
ture of singularities analyzed in the present paper will be
helpful to leverage the criteria for singular models. The cri-
teria such as [22], [23] require the structure of singularities,
where the true model has the hidden states dim zt = q∗ > 0.
Unfortunately, the results of the present paper focus on the
case q∗ = 0, which is not enough to directly apply to the
model selection. Our calculation on the zeta function, how-
ever, will provide fundamental knowledge for the general
true model, and extending it to the general case q∗ > 0 is
one of our important future works.
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