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PAPER

Mapping Articulatory-Features to Vocal-Tract Parameters for
Voice Conversion

Narpendyah Wisjnu ARIWARDHANI†a), Nonmember, Masashi KIMURA†, Yurie IRIBE††,
Kouichi KATSURADA†, and Tsuneo NITTA†,†††, Members

SUMMARY In this paper, we propose voice conversion (VC) based on
articulatory features (AF) to vocal-tract parameters (VTP) mapping. An ar-
tificial neural network (ANN) is applied to map AF to VTP and to convert a
speaker’s voice to a target-speaker’s voice. The proposed system is not only
text-independent VC, in which it does not need parallel utterances between
source and target-speakers, but can also be used for an arbitrary source-
speaker. This means that our approach does not require source-speaker
data to build the VC model. We are also focusing on a small number of
target-speaker training data. For comparison, a baseline system based on
Gaussian mixture model (GMM) approach is conducted. The experimental
results for a small number of training data show that the converted voice
of our approach is intelligible and has speaker individuality of the target-
speaker.
key words: voice conversion, articulatory feature, neural network, arbi-
trary speaker

1. Introduction

Voice conversion (VC) is one of the important technologies
in the field of speech processing. VC transforms the voice
from the source-speaker onto the target-speaker. When
a source-speaker utters a certain sentence, the converted
speech will sound as if a target-speaker is speaking the
same sentence. There are several potential applications for
VC, e.g., voice restoration in old documents/movies, dub-
bing television program, and speech-to-speech translation.
Moreover, the result of VC can be applied to speech synthe-
sizers in which we can expand the variety of speakers and
make the synthesizer more flexible and cost-efficient.

One of the most widely used VC methods is the statisti-
cal parametric approach, Gaussian mixture model (GMM)-
based algorithm [1]–[3]. While this Gaussian system is rec-
ognized as effective in individuality conversion, the speech
quality of conventional GMM-based VC is not satisfac-
tory, particularly in small number of training data. This
might be owing to two main limitations of the conventional
GMM-based VC, i.e., discontinuity and over smoothing.
The first limitation comes from the fact that conventional
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GMM-based VC is conducted as a frame by frame oper-
ation, while the second limitation occurs because the sys-
tem can only capture gross detail of the converted spec-
tra. Therefore, most research on GMM-based VC were con-
ducted to overcome these limitations, e.g., by combining dy-
namic features and incorporating global variance (GV) into
the system. The newest improvement in this approach is the
implementation of real-time GMM-based VC [4].

From a different perspective, another transformation
paradigm was also conducted, namely frequency warping.
This transformation function maps significant positions of
the frequency axis (e.g., central frequency of formants) from
the source-speaker to the target-speaker. As this method
does not modify the fine spectral details of the source spec-
trum, it preserves very well the quality of the converted
speech [5]. However, it is less accurate than that of GMM-
based VC.

On the other hand, there exists other issues in typical
VC systems, that is, they are text-dependent and need par-
allel training utterances of source and target-speaker. Be-
cause such parallel data may not always be feasible, there
have been some approaches proposed in [6]–[9], which do
not need parallel data. However, even though these text-
independent VC approaches do not need parallel data, they
still require speech data from source-speakers to build the
VC model.

Regarding this issue, some research on VC application
for arbitrary speakers have been proposed [10], [11]. These
approaches do not require any speech data from a source-
speaker in building the VC model, and hence can be used to
transform an arbitrary speaker voice into a predefined target-
speaker voice.

Another approach to solve this issue is introduced by
mapping speaker-independent representation of a speech
signal onto speaker-specific representation of a speech sig-
nal. The speaker-independent representation is expected
to bring only linguistic information, while the speaker-
specific representation is expected to bring both linguis-
tic and speaker information. The study in [11] has an
idea similar to our approach. It uses the lower order
of linear prediction (LP) spectrum to capture the linguis-
tic information of the signal, and mel-cepstrum (MCEP)
to capture both the linguistic/message and speaker infor-
mation. Meanwhile, we use articulatory features (AF) as
the speaker-independent representation and vocal-tract pa-
rameter (VTP), represented by LPC coefficients, as the
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speaker-specific representation [12].
While the previous works of VC use spectrum ori-

gin features that include various factors, such as speakers,
phoneme contexts, ambient noise, etc., our proposed VC is
based on the sparse representation of articulatory features.
This also underlines our different perspective of addressing
VC problems from previous papers. We also do not need
manual efforts to carefully prepare training data.

In this paper, we not only avoid the training process for
source speaker, but also focus on making VC application
with a small number of target-speaker training data. For
this purpose, speaker adaptation technique was conducted.
Because this approach requires a small number of target-
speaker training data, the proposed VC process is expected
to be more user-friendly.

This paper is organized as follows. First, an out-
line of GMM-based VC is reviewed in Sect. 2. Next, the
proposed approach articulatory feature-artificial neural net-
works (AF-ANNs)-based VC is given in Sect. 3. An evalu-
ation of VC system, in which we present and discuss exper-
imental results, is explained in Sect. 4. Finally, we summa-
rize our findings in Sect. 5.

2. GMM-Based Voice Conversion

The outline of a GMM-based VC system, comprising train-
ing and testing module, is shown in Fig. 1. VC can be de-
fined as mapping the source feature vector xt into the tar-
get feature vector yt, at each time t. At the training mod-
ule, acoustic feature vectors from both the source and target
speakers are extracted and aligned by dynamic time warping
(DTW). The source vectors are augmented with the corre-
sponding target features as zy = [xT

t yT
y ]T and the GMM is

estimated for the augmented vectors.
The means and covariances of the GMM of the aug-

mented vectors are given as
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where vectors µx
n and µy

n denote the mean of the source and
target entries of the augmented vector in Gaussian n, respec-
tively, and the superscripts of the covariance matrices denote
their respective covariances and cross-covariances. In the
conversion, for M-component Gaussian mixture model, the
mapped target vector ŷt is formed from the source vector xt

as
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where ωn,t is the posterior probability that the n-th Gaussian
has produced the t-th observation, calculated using the
source vector xt and mean µx

n and covariance Σxx
n as
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Fig. 1 Outline of GMM-based VC.

The joint density mapping Eq. (4) is the maximum-
likelihood estimate of the target vectors given the source
vectors. In this paper, we have conducted GMM-based
VC experiments on the VC setup built in FestVox distribu-
tion [13]. This VC setup is based on the study in [14], and
supports the conversion considering the correlation between
frames (MLPG) and GV of spectral trajectory.

3. AF Based Voice Conversion

3.1 Articulatory Feature Representation and Vocal Tract
Parameter

Our approach maps speech signal onto speaker-independent
representation of an AF sequence first, then the AF is con-
verted to speaker-specific representation of a speech signal.
Because the AF sequence is expected to bring only linguis-
tic information, source-speaker training data is not required
during the training process. In our proposed approach, we
use AM as the speaker-independent representation and VTP
as the speaker-specific representation.

3.1.1 AF Representation

AF describes the articulatory manners and places in human
speech production at given time t, and is combined with
its preceding and following time. In our system, this AF
sequence is represented by three time frames of a current
frame, previous frame (t − 3), and following frame (t + 3).

To generate AF from the speech signal, two stages of
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Fig. 2 Four stages of an AF extractor.

signal processing are needed (Fig. 2). The first stage em-
ploys the local feature (LF) extractor [15]. Speech signal
is sampled at 16 kHz and framed using a 25-ms Hamming
window for every 10 ms. Subsequently, a 512-point FFT is
applied. Power and delta power is calculated from the re-
sultant FFT power spectrum. Moreover, a 24-ch band pass
filter (BPF) with mel-scaled center frequencies is applied to
the resultant FFT. The BPF output undergoes three-point lin-
ear regression along the time and frequency axes [15]–[17].
Subsequently, discrete cosine transform (DCT) is applied to
the output of linear regression. Then, with the delta power
been previously calculated, a 25-dimension LF is generated.
LFs are acoustic features that represent variation in a spec-
trum pattern along time and frequency axes. We use LFs
for the input of multi-layer perceptron (MLP), because our
previous study showed that LFs provides better performance
than MFCC as input to this MLP [17].

The second stage of AF extractor comprises three
MLPs. The first MLP requires a 75 dimension LF as input
and generates 45-dimension discrete AF. The second MLP
reduces misclassification at phoneme boundaries by con-
straining the AF context. It requires 135-dimension AF and
its contextual frames as input, and generates a 45-dimension
AF. The third MLP uses delta and delta-delta AF as input
and generates a 45-dimension final AF.

3.1.2 VTP

VTPs are represented by partial autocorrelation (PARCOR)
parameters, associated with linear predictive coding (LPC)
coefficients. LPC based vocoders are designed to emulate
the human speech production mechanism. In the LPC anal-
ysis, the short-term correlations between speech samples
(formants) are modeled and removed by an LPC digital fil-
ter. These LPC coefficients describe the transfer function of
human vocal tract on the excitation signal. The excitation

Fig. 3 Training and testing modules of proposed VC system.

signal models the glottal pulses and turbulent air flow at the
glottis. This excitation signal, called as LPC residual sig-
nal, can be calculated by filtering speech signal with the in-
verse transfer function from LPC estimation. As the vocal
tract shape differs from person to person, LPC parameters
are also speaker dependent. Hence, LPC parameters possess
the characteristic of a specific speaker. To allow an easy fil-
ter stability check, the LPC coefficients are transformed into
PARCOR parameters [18]. The LPC digital filter is stable if
PARCOR parameters have a magnitude of less than unity. It
means that their values range from −1 to +1 so that they do
not need to be amplitude normalized as the input of ANN.
As we solve the LPC estimation using the Levinson-Durbin
algorithm. This algorithm guarantees that PARCOR coeffi-
cients are bounded by ±1 [19].

3.2 VTP and Residual Signal Conversion

The VC system consists of a training module and a testing
module. The training module can be divided into VTP con-
version and residual signal/F0 conversion, while the testing
module can be divided into VTP conversion and residual
signal conversion (Fig. 3).

3.2.1 VTP Conversion

The mapping of AF to VTP is conducted using an ANN
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Fig. 4 Architecture of a three layered ANN with N input nodes, M output
nodes, and K nodes in the hidden layers.

Fig. 5 Adapting ANN with target-speaker’s voice.

model. The ANN consists of interconnected processing
nodes, where each node represents the model of an artificial
neuron, and the interconnections among nodes have weights
associated with them.

A multi-layer feed forward neural network with one or
two hidden layers is used in the experiment. The ANN is
trained to map AF onto the target speaker VTP. The back-
propagation learning law is used to adjust the weights of
the neural network to get the minimum mean squared er-
ror between the desired and the actual output values. Fig-
ure 4 shows the ANN architecture used to obtain the trans-
formation function to map speaker-independent AF onto tar-
get speaker VTP. The adjusted weight on every interconnec-
tion among nodes represents the mapping function between
speaker-independent AF and target speaker VTP.

As can be seen in Fig. 5, there are three phases in the
AF to VTP converter neural network, pre-adaptation, adap-
tation, and testing. This adaptation technique enables VTP
to use only a small number of target-speaker training data.
While training phase requires a large amount of utterances
from pre-stored voices, adaptation phase requires only sev-
eral utterances from the target-speaker. In the testing phase,
one utterance of an arbitrary source-speaker can be input to
produce the converted VTP, which later will be synthesized

Fig. 6 Residual signal conversion module.

into converted speech. After AF is converted into target-
speaker VTPs, then with the residual signal, it will be resyn-
thesized using the LPC digital filter.

3.2.2 Residual Signal Conversion

As explained in Sect. 3.2, the excitation signal is represented
by the LPC residual signal. The residual signal has speaker
individuality, especially in terms of fundamental frequency
(F0). Therefore, in the testing phase, it is important to ma-
nipulate source-speaker residual signal so that the converted
speech will have similar F0 contours with the target-speaker
fundamental frequency (F0). Therefore, in the testing phase,
it is important to manipulate source-speaker residual signal
so that the converted speech will have similar F0 contours
with the target-speaker.

In this paper, we use the traditional approach of F0
transformation, as used in a GMM-based transformation.
Figure 6 describes the detail of residual signal conversion
module depicted in Fig. 3. Subsequent to F0 extraction,
a logarithmic Gaussian transformation is used to transform
the F0 of a source-speaker to that of a target-speaker, as in-
dicated in the following equation:

log(F0 conv)=μtarget+
σtarget

σsource
(log(F0 source)−μsource) (5)

where μsource and σsource are the mean and variance, re-
spectively, of the F0 in logarithmic domain for the source-
speaker, μtarget and σtarget are the mean and variance, re-
spectively, of the F0 in logarithmic domain for the target-
speaker, F0 source is the F0 of the source-speaker and F0 conv

is the converted F0. Because our system uses an LPC digital
filter, the converted F0 has to be processed into LPC resid-
ual signal before it can be resynthesized with the converted
VTP into speech output.

4. Evaluation of VC

4.1 Speech Database

Speech data used in the experiment is sampled with 16 kHz.
We used three speech databases for three phases of AF
to VTP conversion, i.e., pre-stored speakers for the pre-
adaptation phase, target-speakers for the adaptation phase,
and source-speakers for the testing phase. These three
speech databases utter different utterances (Table 1).
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Table 1 Speech database for VC.

When people have to differentiate or identify some
speakers, they will find it easier if they already know the
speakers. Therefore, because we aim to have subjective
evaluation respondents from our lab member and surround-
ings, we recorded “Labmate database”, instead of using the
existing database. There were five persons for the overall
Labmate database, three persons (END, NIS, and IRI) as
source-speakers, and two persons (KZH and SUG) as target-
speakers. In total, there were six pairs of speakers available
from the Labmate database.

The same database (source and target-speakers) is also
used for GMM-based VC experiments. For comparison, we
also asked target-speakers to utter the same sentences as
those in Labmate2. However, this recording will be used
only for subjective evaluation and for calculating spectral
distortion (SD) during the objective evaluation.

4.2 Experimental Setup

For our proposed approach, we use a 45-dimension AF
vector, comprising a 15-dimension preceding context, 15
dimensions of current frame, and 15-dimension following
context of AF patterns for each input frame as AF repre-
sentation. Moreover, several orders of LPC analysis were
conducted to produce PARCOR parameters as VTP. For the
feature vectors of GMM-based VC, we use MCEP extracted
using FestVox distribution [15].

Two evaluations are performed, objective and subjec-
tive. For objective evaluations, spectrum distortion (SD) is
calculated on the speech segment (excluding silence part)
to measure the distance between target-speaker spectrum
and converted spectrum. We use this measure to check the
performance of mapping obtained by an ANN or a GMM
model. SD is computed as follows:

SD =
1
L

L∑
l=1

√√√
1
K

K∑
k=1

(Wconv −Wtarget)2 (6)

where L is the number of frames, K is the number of fre-
quency bins, and Wconv and Wtarget are the log amplitude of
converted and target-speaker spectra, respectively.

For subjective evaluations, three tests are conducted,
similarity test, XAB test, and MOS test, with nine listen-
ers. In the similarity test, we present the listeners with the
source-speaker utterance, target-speaker utterance, and each
converted utterance from AF-ANN and MCEP-GMM mod-
els. The listeners would be asked to provide a score indicat-
ing how similar the converted speech with either the source-
speaker or target-speaker. The range of similarity score is
from 1 to 5, where a score of 1 indicates that the converted

speech sounds very similar to source-speaker and score 5 in-
dicates that the converted speech sounds very similar to the
target-speaker.

For the XAB test, we present the listeners with X, a nat-
ural utterance of the target-speaker, to be compared against
an AF-ANN converted speech and an MCEP-GMM con-
verted speech. To ensure that the listener is not biased, we
shuffle the position of the AF-ANN/MCEP-GMM converted
speech, i.e., A and B, with X always given at the beginning
of the test. The listeners would be asked to select what they
perceive to be closer, A or B, to the target utterance X. The
last subjective test is MOS test where listeners evaluate the
speech quality of the converted voices using a 5-point scale
(1: bad, 2: poor, 3: fair, 4: good, 5: excellent).

4.3 Objective Evaluation of ANN-Based VC System

LPC analysis is dependent upon its filter order, i.e., the num-
ber of LPC coefficients. The order of LPC filter is typically
estimated by starting with a heuristic value according to the
sampling frequency. This heuristic value is equal to the sam-
pling rate in kHz, with 4 or 5 additional coefficients [20].
Since our speech data is sampled with 16 kHz, a 20-order of
LPC analysis is chosen for VTP. We aim to investigate the
effect of ANN architecture and different VTP orders on the
performance of AF-ANN based VC. Six ANN architectures
are compared, all with 45 nodes in the input layer, represent-
ing a 45-dimension AF.

The first architecture uses only one hidden layer and
x output layers, where the value of x represents the number
of LPC order to generate VTP. For example, for the VTP
40, the ANN architecture would be 45 input nodes, 450 hid-
den layer nodes, and 20 output nodes. From the second to
the sixth architecture, we considered augmenting VTP with
contextual frames, i.e., appending VTP from previous and
next frames to the current frame of VTP. Hence, the number
of output nodes is three times that of the VTP order, i.e., 60
output nodes for VTP 20, 120 output nodes for VTP 40, and
180 output nodes for VTP 60. In this paper, we investigate
three-layer and four-layer ANNs, i.e., one input layer (IL),
one or two hidden layers (HL), and one output layer (OL).

From the second to the sixth architecture, we consid-
ered augmented VTP, i.e., appending VTP from previous
and next frames to the current frame of VTP. Hence, the
number of output nodes was three times that of the VTP or-
der, i.e., 60 output nodes for VTP 20, 120 output nodes for
VTP 40, and 180 output nodes for VTP 60. In this paper,
we experimented with three-layer and four-layer ANNs, i.e.,
one input layer (IL), one or two hidden layers (HL), and one
output layer (OL).

Table 2 provides SD scores of END-KZH for three
VTP orders and six ANN–model architectures. From this
table, we see that three-layered architecture 45(IL) 450(HL)
3x(OL) for VTP 20 provides a better result when compared
with other architectures. We also confirmed this result by
listening to the resultant speech. Hence, for the remain-
ing experiments reported in this paper, the three-layered
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Table 2 SD obtained on one-utterance END-KZH for different architec-
tures of an ANN model.

Table 3 Averaged SD obtained for six pairs-of-speakers.

architecture 45(IL) 450(HL) 60(OL) is used. The over-
all SD scores for six pairs of speakers of both AF-ANN
and MCEP-GMM-based VC are shown in Table 3, which
indicate that the AF-ANN-based VC is comparable with
MCEP-GMM-based VC. From the objective evaluation, SD
of GMM-based VC has more than 1 dB difference than that
of AF-ANN-based approach.

We conducted the first training of AF to VTP converter
using 6 sets of phonetically balanced database. In this step,
AF to VTP converter learns to convert any phoneme, repre-
sented by AF, into VTP. Subsequently, the adaptation phase
is conducted with small number of adaptation data. Based
on the analysis in [22], the nasal sounds (e.g., N, n, m,
ny, my) and the vowel part has relatively high correlations
with the perception (speaker identity). Therefore, in our ap-
proach, we can conduct adaptation phase with a small num-
ber of target-speaker training data, in which this adaptation
data contains nasal sounds and all the needed vowels.

To determine the effect of the number of training utter-
ances for the VC models, we performed the experiments by
varying the target-speaker training data from 5 to 20 utter-
ances. Please note that our AF-ANN approach also needed
pre-stored data (non-parallel with the target-speaker utter-
ances), while MCEP-GMM approach needed parallel train-
ing utterances of source and target-speakers. GMM-based
VC performance is expected to improve as the number of
training utterances increases [11]. However, since we are fo-
cusing in building VC for a small number of target-speaker
training data, the experiments were conducted until 20 train-
ing utterances. From Fig. 7, we observe that as the num-
ber of training utterances increase, the SD scores obtained
by MCEP-GMM decreased, especially for 20 parallel train-
ing utterances. For AF-ANN, the SD scores seem to be
more stable and even have the lowest value for 15 training
utterances.

A simple assessment on the computational cost is con-
ducted by measuring the program completion time on both
of the approaches. The computational complexity of the
proposed method is compared with baseline GMM-based
VC. For this computational cost, the program completion
time for learning 20 utterances of target-speaker training
data is measured on a personal computer (PC) equipped with
a quad-core 2.80 GHz CPU and 2G memory. The operating

Fig. 7 SD scores of VC based on AF-ANN and MCEP-GMM for six
pairs of speakers.

system of the PC is based on Windows 7. The results of
the computational complexity tests indicate that the com-
putational time of the proposed method is 5 times slower
when compared with GMM-based VC. Note that the com-
parison only measures the adaptation phase of our approach.
Our approach also needs a large number of pre-stored speak-
ers training data for the first ANN training (before adapta-
tion). Moreover, the F0 conversion module during the test-
ing phase is also need to be simplified.

4.4 Subjective Evaluation of GMM and ANN-Based VC
System

In voice conversion, typical objective evaluation is done
by comparing the converted speech to the ideal target
speaker utterance. However, due to inter-speaker variabil-
ity, a speaker can utter the same utterance in various ways.
Therefore, objective measures do not always support sub-
jective evaluations [23]. Currently the most accurate method
for evaluating speech quality is through subjective listening
tests [24]. Thus, subjective evaluation is needed to confirm
the result of objective evaluation.

In this section, we provide subjective evaluation re-
sults for AF-ANN and MCEP-GMM-based VC systems.
We conducted similarity, XAB, and MOS tests to evalu-
ate the performance of the AF-ANN-based transformation
against the MCEP-GMM-based transformation. A total of 9
respondents were asked to participate in the experiments.
Figure 8 provides the similarity, XAB, and MOS scores
for six pairs of speakers (END-KZH, NIS-KZH, IRI-KZH,
END-SUG, NIS-SUG, and IRI-SUG). The testing is done
on the test set of 30 utterances. The overall similarity
scores indicate that for AF-ANN based VC, the respon-
dents perceived that the converted speech is more similar
to the target-speaker than to the source-speaker. The XAB
scores indicate that compared with the MCEP-GMM-based
VC system, the AF-ANN-based VC system performs bet-
ter for a small number of target-speaker training data. MOS
test is also performed to confirm that the resulting speech of
AF-ANN based VC system is intelligible.
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Fig. 8 Similarity, XAB, and MOS scores of VC based on AF-ANN and
MCEP-GMM for six pairs of speakers.

Fig. 9 SD scores of VC based on AF-ANN and MCEP-GMM over six
pairs of speakers.

Fig. 10 Similarity scores of VC based on AF-ANN and MCEP-GMM
over six different-pairs of speakers.

4.5 Experiments on Multiple Speaker Pairs

To show that the ANN-based transformation can be gener-
alized over different databases, we conducted objective and
subjective evaluations for six pairs of speakers. Figure 9
shows SD scores of AF-ANN and MCEP-GMM based VC
systems for six pairs of speakers. This figure shows that for
all pairs of speakers, SD scores of AF-ANN-based VC are
lower than those of MCEP-GMM-based VC system.

Fig. 11 MOS scores of VC based on AF-ANN and MCEP-GMM over
six different-pairs of speakers.

Moreover, Fig. 10 and Fig. 11 show similarity and
MOS scores of AF-ANN and MCEP-GMM-based VC
systems for different pairs of speakers. While for
MOS scores, AF-ANN-based VC system outperforms
MCEP-GMM-based VC system in most cases, for similar-
ity scores, AF-ANN-based VC system always outperforms
MCEP-GMM-based VC system.

5. Conclusions

We have proposed an articulatory based VC that does not
require speech data from source-speakers, and hence can be
considered as independent of source-speaker. The experi-
mental results of subjective evaluation tests in VC show that
the converted voice is intelligible and has speaker individ-
uality of the target-speaker. For the overall performance,
AF-ANN-based VC outperforms MCEP-GMM-based VC
for a small number of target-speaker training data. Future
studies will be conducted in the AF extractor domain for
cross-lingual VC.
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