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Sparsity Regularized Affine Projection Adaptive Filtering for

System Identification

SUMMARY A new type of the affine projection (AP) algorithms which
incorporates the sparsity condition of a system is presented. To exploit the
sparsity of the system, a weighted /j-norm regularization is imposed on
the cost function of the AP algorithm. Minimizing the cost function with
a subgradient calculus and choosing two distinct weightings for /;-norm,
two stochastic gradient based sparsity regularized AP (SR-AP) algorithms
are developed. Experimental results show that the SR-AP algorithms out-
perform the typical AP counterparts for identifying sparse systems.

key words: system identification, adaptive filter, affine projection, sparsity,
sparse system

1. Introduction

Adaptive filtering algorithms have gained popularity and
proven to be efficient in various applications such as system
identification, channel equalization, echo cancellation, and
so on. Among various adaptive filtering methods, the rela-
tive simplicity and ease of implementation of the normalized
least mean square (NLMS) algorithm have made it a popu-
lar choice for adaptive filtering applications. However, its
convergence rate is significantly deteriorated for correlated
input signals [1], [2]. To overcome this issue, the affine pro-
jection (AP) algorithm was introduced [3]. The AP algo-
rithm makes use of multiple input vectors in updating the
filter weights, leading to a faster convergence over the LMS-
type filters which update the filter weights based only on the
current input vector [2], [3]. In spite of the impressive fea-
tures of the AP algorithm, its use is limited when identify-
ing sparse systems, which is common in practice. Examples
include echo paths [4] and multipath wireless communica-
tion channels [5]. To address this issue, variants of the AP
algorithm which employ the variable gain parameters in ac-
cordance with the magnitude of the filter weights have been
presented [6],[7]. However, these proportionate AP algo-
rithms do not exploit the sparsity condition of an underlying
system to be identified.

More recently, motivated by compressive sensing (CS)
framework, a new type of adaptive filtering, which makes
use of the sparsity condition of the system directly, has been
presented [8], [9]. The core idea behind this approach is to
incorporate prior knowledge for the sparse system of inter-
est by imposing an /;-norm based sparsity regularization.
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Adding the sparsity constraint (/;-norm regularization) to
the cost function leads to the shrinkage of the least rele-
vant weights of the filter to zeros. However, most preced-
ing works have focused on the LMS and the recursive least
square (RLS) algorithms, thus an AP algorithm which ex-
ploits the sparsity has been lacking. Along this line, this
work presents a new family of sparse AP algorithms in
a manner of incorporating a weighted /;-norm regulariza-
tion into the cost function of the classical AP algorithm.
Through a subgradient calculus and the distinct choice of
the weighted /;-norm regularization, two stochastic gradi-
ent based sparsity regularized AP (SR-AP) algorithms are
derived: First, a simple /;-norm sparse AP algorithm is pre-
sented. Second, a weighted /;-norm sparse AP algorithm
based on an estimate of the actual sparseness of the system
is obtained.

Numerical experiments show that by inheriting the
merits of the AP algorithm, the resulting SR-AP algorithms
possess superior convergence properties over conventional
AP ones, especially when the system is sparse. The remain-
der of this letter is organized as follows: Sect.2 briefly re-
views the AP algorithm in the context of system identifica-
tion. In Sect. 3, the proposed SR-AP algorithms are devel-
oped. In Sect. 4, the simulation results are presented. Sec-
tion 5 concludes this study.

2. Affine Projection Algorithm for System Identifica-
tion

Consider a desired signal d(i) that arise from the system
identification model

d@i) = wh® + v(i), (D

where i is the time index, h° is a column vector for the im-
pulse response of an unknown system that we wish to esti-
mate, v(i) accounts for measurement noise with zero mean
and variance o2, and w; = [u(i) u(i—1) ---u(i— M+ 1)]is
an 1 X M row input vector. In [10], the cost function of the
AP algorithms is given by

Jar(i) = E[€;(U;U;) 'e/1/2, )
where
u; d(i)
w_; di—1)
Ul‘ = . ) di = . s
Wik di—-K+1)
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e; = d; — U/h,_, and h;_; is an estimate for h°® at (i — 1)th
iteration. By minimizing the cost function (2), the update
recursion of the AP algorithm is represented as

h; = hi_y +pU;(UU; + 6Ig) e, 3)

where u is the step-size, p is the regularization parameter,
and I denotes a K X K identity matrix.

3. Sparsity Regularized Affine Projection Algorithm

In order to take into account the sparsity characteristic, an
augmented cost function which incorporates a weighted /-
norm into (2) is newly formulated as

Jse-ap(i) = E[e](UU}) " e| /2 + YIWhiill;,  (4)

where [|[Wh,_||; = ’;234 - wlhi—1 x| accounts for a weighted
l;-norm of the estimated filter weight, W is the M X M
weighting identity matrix whose diagonal elements are wy,
and hjx, k = 0,1,...,M — 1 denote the kth weight of h;.
In addition, 7y is a positive valued parameter which provides
a trade-off between the error related term and the sparsity.
Then, a stochastic gradient update recursion with the aim of
minimizing (4) is derived as follows:

h; = h;| — uVpJsr-apr(i)
= hi_ +pU(UU; + 61x) " e; — wyVilWhii[l1,(5)

where V} f(-) denotes a subgradient vector of the function
f(-) with respect to h. Since the weighted /;-norm is not dif-
ferentiable with respect to h;_; when h;_; equals zero, here,
the subgradient calculus is employed [12]. The subgradi-
ent vector V;||Wh;_||; can be obtained as Wsgn(Wh;_) =
Wsgn(h;_;), since W is assumed as a diagonal matrix with
positive-valued elements. Then, a framework of the AP al-
gorithms with sparsity can be written as follows as:

h; = hi_y + pU; (U;U; +6lx) 'e; — wyWsgn(hi_p). (6)

Note that an update recursion (6) reduces to the typical AP
algorithm if y = 0. Here, by choosing the weighting matrix
W, two versions of the AP algorithm with the sparsity con-
straint are developed: First, the use of the identity matrix as
the weighting matrix, i.e., W = I, leads to the following
update recursion

hi = hi—l + /JU?(U,UT + 6IK)_1e,- — ,uysgn(hi,l), (7)

which is referred to as the sparsity regularized AP-1 (SR-
AP-1) algorithm.

Second, the choice of the weights inversely propor-
tional to the magnitude of the system weights results in an
approximation of the actual sparseness of the underlying
system, i.e., the [y-norm of the system [8]. Due to unavail-
ability of the system weights, here, the magnitude of the cur-
rent filter weights are used as an alternative as follows [13]:

: 1
|hicy,jl + €

®)

wj
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where h;_y ; is the j-th tap of h;_; and € is a small positive
value to avoid singularity in the case when |h;_; ;| = 0. Then,
the weighting matrix W consists of the values of w; as the j-
th diagonal elements. Finally, the second AP algorithm with
sparsity constraint is given by

sgn(h;_p)
lhi_|+ €’

h; = hi_y + pU; (U;U; +6Ix) e, — pry ©)
where the vector division operation accounts for a
component-wise division. This update recursion is referred
to as the sparsity regularized AP-2 (SR-AP-2) algorithm.

4. Experimental Results

To assess the performance of the proposed SR-APs, the sys-
tem identification simulations were carried out. A system to
be identified has 64 taps and a few taps of them, i.e., L taps,
have non-zero values, indicating the sparse characteristic.
Then, the degree of sparsity is represented as S = L/64.
The adaptive filter is assumed to have identical length of
M = 64. Figure 1 shows an example of a sparse system h°
of L = 8. The input signal is obtained by filtering a white,
zero-mean, Gaussian random sequence through a first-order
system F(z) = 1/(1 — 0.9z7"). The signal-to-noise ratio
(SNR) is computed by 10 log]O(E[y(i)z]/E[v(i)z]), where
y(i) = u;h°. The measurement noise v(i) is added to y(i).The
mean square deviation (MSD), E|lh° — h;||?, is taken and av-
eraged over 50 independent trials. For the conventional APs
and the SR-APs, the projection order k = 4, and the step-
size parameter ¢ = 1 (and ¢ = 0.15 for the AP in Figs. 2
and 6) are chosen in the following system identifications. In
addition, the number of non-zero taps is set to L = 4 except
Fig. 5 where various values of L are considered.

Figure 2 illustrates the MSD curves of the classical APs
and two SR-APs, i.e., SR-AP-1 and SR-AP-2, in the case of
SNR = 30dB. For comparison purpose, the improved pro-
portionate AP (IPAP) [6], [7] and variable step-size AP (VS-
AP) [11] are considered. The parameters, @ = —0.5 for the
IPAP and C = 0.003 for the VS-AP, are chosen, respectively.
For both the SR-AP-1 and SR-AP-2, v = 3 X 104 is used.
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Fig.1  Example of sparse system h°.
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Fig.2  MSD curves of the AP, IPAP, VS-AP, and SR-AP algorithms [K =

4, L =4, SNR = 30dB].
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Fig.3 MSD curves of the SR-AP-2 algorithm with various values of y
[K =4, L =4, SNR = 30dB].

In addition, the parameter € = 0.1 is chosen for the SR-AP-
2. In the figure, it is clear that the SR-AP-2 indicates the
best performance as well as the SR-AP-1 outperforms the
classical APs, i.e., the AP, IPAP, and VS-AP in terms of the
convergence rate and the steady-state misalignment.

Figure 3 shows the MSD curves of the SR-AP-2 when
various values of y are chosen. In the figure, the conver-
gence performance is not highly sensitive to y.

Then, in order to validate the convergence performance
of the classical APs and the SR-APs under various SNRs
(from —5 to 30 dB), the steady-state MSD values are com-
pared in Fig.4. As can be seen, the SR-AP-2 outperforms
other APs under various SNRs. In addition, the SR-AP-1 is
better than the conventional APs and comparable with the
VS-AP for more than 5 dB in terms of the steady-state mis-
alignment.

Second, the convergence properties of the classical APs
and SR-AP are compared under various sparsity conditions.
The same number of tap of system with the first simula-
tion is used (M = 64) and the different sparsity conditions
(§=2/64, 8/64, and 16/64) are considered. Figure 5 shows
the MSD curves of the AP, IPAP and SR-AP-2 in the case of
SNR = 30dB. It clearly shows that the more severe the spar-
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Fig.4  Steady-state MSD values of the AP, IPAP, VS-AP and SR-
AP algorithms under various SNRs [K = 4, L = 4, SNR =
-5,0,5,10, 15,20, 25, 30dB].
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Fig.5 MSD curves of the AP, IPAP, and SR-AP-2 algorithms for various
sparsity conditions [K = 4, SNR = 30dB, S = 2/64,8/64,16/64].
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Fig.6  MSD curves of the AP, IPAP, VS-AP, and SR-AP algorithms for
time-varying system identification setup [K = 4, L = 4, SNR = 30dB].

sity of the system, the better the convergence performance
of the SR-AP over the classical APs.

Finally, Fig.6 illustrates the tracking performance of
the SR-AP algorithms with regard to a sudden change in the
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unknown system. At the 1500t/ iteration, the sparsity condi-
tion of the unknown system is altered in that the positions of
non-zero taps (L = 4) are changed. The figure clearly shows
that the proposed SR-AP algorithms keep track of sudden
weight change without degrading the convergence rate and
the steady-state error, outperforming the AP counterparts.

5. Conclusion

This work presented a novel family of the AP algorithms
which employs the sparsity constraint in identifying sparse
systems. The proposed AP algorithms take into account the
sparsity property by incorporating the variants of the sys-
tem’s /;-norm into the cost function. Employing the sub-
gradient calculus and choosing the weighting matrix, two
stochastic gradient AP algorithms with the sparsity con-
straint were developed. The resulting SR-AP algorithms
have proven their superiority over the conventional AP
counterparts, especially in cases when systems are severely
sparse.
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