
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014
989

LETTER

A Novel Joint Rate Distortion Optimization Scheme for Intra
Prediction Coding in H.264/AVC∗

Qingbo WU†a), Student Member, Jian XIONG†, Bing LUO†, Chao HUANG†, Nonmembers,
and Linfeng XU†, Student Member

SUMMARY In this paper, we propose a novel joint rate distortion opti-
mization (JRDO) model for intra prediction coding. The spatial prediction
dependency is exploited by modeling the distortion propagation with a lin-
ear fitting function. A novel JRDO based Lagrange multiplier (LM) is de-
rived from this model. To adapt to different blocks’ distortion propagation
characteristics, we also introduce a generalized multiple Lagrange multi-
plier (MLM) framework where some candidate LMs are used in the RDO
process. Experiment results show that our proposed JRDO-MLM scheme
is superior to the H.264/AVC encoder.
key words: RDO, video coding, H.264/AVC

1. Introduction

Rate distortion optimization (RDO) theory [1] plays an im-
portant role in video coding technology. By dealing with
the mode decision process as a rate constrained distortion
minimization problem [2], the RDO could select the optimal
coding option at the cost of increased complexity. Then, the
video coding becomes a trade-off task between the coding
performance and the complexity. Some works put emphasis
on improving rate-distortion (RD) performance. N’guessan
et al. proposed a region of interest based method [3], which
improved the video coding by introducing the human atten-
tion/saliency model [4]–[8]. Yang et al. proposed a tem-
poral propagation model to improve the motion compen-
sation module [9]. Other researchers have tried to reduce
the complexity of the codec by refining the candidate intra
modes [10]–[13]. In this paper, we focus on improving the
RDO performance at low complexity cost.

In [2], Wiegand et al. proposed a Lagrangian multi-
plier (LM) determination method which derived the optimal
LM as a dependent variable of the quantization parameter
(QP). Because of its simplicity and efficiency, this method
is widely employed in many hybrid video codecs. How-
ever, the encoding independence hypothesis in [2] limits its
performance to achieve global optimal rate-distortion per-
formance. Since the intra prediction depends on the neigh-
boring reconstructed coding unit (CU), the distortion in the
current block will impact the encoding performance in the
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subsequent CUs. In this paper, we improve the intra mode
determination with a joint RDO (JRDO) model. A linear
spatial distortion propagation model can be obtained by off-
line training. Based on this distortion propagation model,
we propose a JRDO LM method. Since different contents in
each block present different distortion propagation charac-
teristics, a generalized multiple Lagrange multiplier (MLM)
framework is designed to select the optimal coding option
under multiple candidate LMs. Trough a series of theoret-
ical derivations, the proposed JRDO-MLM scheme builds
a robust framework to analyze the spatial JRDO problem,
which makes an effort to approach the global optimal RDO
solution.

The remainder of this paper is organized as follows.
Section 2 describes the proposed JRDO LM derivation pro-
cess. Section 3 introduces the MLM framework. The exper-
imental results are presented in Sect. 4. Finally, we draw the
conclusion in Sect. 5.

2. The Proposed Lagrangian Multiplier Determination
Method

In this paper, we only discuss the H.264/AVC intra predic-
tion coding, where the temporal dependency is not consid-
ered. Let’s denote the number of CUs in a frame by Nc

and denote the coding option for the ith CU by oi. The op-
tion combination of all CUs can be denoted by oc where
oc = o1

⋃
o2
⋃ · · ·⋃ oNc . In LM method, the coding option

determination process can be converted to the RDO problem
by minimizing the cost of the Lagrangian formulation, i.e,

min
oc

Nc∑
i=1

Ji(oc|λ)

with Ji(oc|λ) = Di(oc) + λ · Ri(oc)

(1)

where Ji(oc|λ) is the Lagrangian cost function for the ith CU
and λ is a pre-defined LM.

To further simplify the global RDO problem in (1), an
independent assumption among CUs is made in [2], which
produces a suboptimal solution. Ideally, we can get better
LM by introducing the distortion propagation into the La-
grangian cost function. As discussed in [14], the quantiza-
tion errors meet Markov property in predictive coders. So,
we only consider the spatial prediction dependency in the
neighboring CUs. The problem in (1) can be reduced to a
JRDO model
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min
ol

c,i

i+1∑
j=i

J j(o
l
c,i|λ)

with J j(o
l
c,i|λ) = Dj(o

l
c,i) + λ · Rj(o

l
c,i)

(2)

where ol
c,i is the local neighboring CUs’ coding option com-

bination and ol
c,i = oi

⋃
oi+1.

To sequentially solve oi for the ith CU in (2), we can
assume that the subsequent CU’s coding option is known
which can be denoted by o∗i+1. The problem in (2) can be
rewritten as

ol
c∗,i = min

ol
c∗ ,i

i+1∑
j=i

J j(o
l
c∗,i|λ)

with J j(o
l
c∗,i|λ) = Dj(o

l
c∗,i) + λ · Rj(o

l
c∗,i)

(3)

where ol
c∗,i = oi

⋃
o∗i+1 and oi is the only undetermined vari-

able to be solved.
Since the joint rate distortion cost can be estimated

with the spatial distortion propagation, let’s formulate the
distortion propagation process as

D̄i+1 = f (D̄i) (4)

where D̄i is the mean square error (MSE) of the ith CU and
f (·) is the spatial distortion propagation function. Here, we
replace the rate of each CU with a R-D function r(·) which
can be represented as

R̄i = r(D̄i) (5)

where R̄i is the mean rate of the ith CU.
Then, it is easy to be shown that the optimal LM for the

JRDO framework is

λ = −
d
[
D̄(Q) + f (D̄(Q))

]
/dQ

d

[
r
(
D̄(Q)

)
+ r
(

f (D̄(Q))
)]
/dQ

(6)

where D̄(Q) is the distortion-to-quantizer relation function
and Q is the quantization step.

Thanks to the works of the predecessors in [15] and
[16], we can obtain the expressions of r(·) and D̄(Q)

r
(
D̄(Q)

)
= c log2

( d

D̄(Q)

)
(7)

D̄(Q) =
Q2

12
(8)

where c and d are the parameters to describe the functional
relationship between rate and distortion.

Based on a large number of statistical analysis, we find
that the adjacent blocks’ MSE is monotonic and near-linear
dependency with the current block’s MSE. For clarity, an
intuitive statistical result for the news sequence is shown in
Fig. 1. Accordingly, we employ the linear fitting function to
model the spatial distortion propagation process, i.e.,

f (D̄i) = a · D̄i + b (9)

Fig. 1 The relationship of adjacent blocks’ distortions. The x-axis de-
notes the boundary blocks’ MSE and the y-axis denotes current block’s
MSE.

Table 1 Analytic expression of parameters.

where a and b are the fitting parameters.
Since the impact of spatial distortion propagation in-

creases as QP becoming larger, we further represent a and b
as the dependent values of Q, i.e.,

a = k1 · Q + l1 (10)

b = k2 · Q + l2 (11)

where k1, l1 and k2, l2 are the fitting parameters for a and b
respectively, and we can obtain these four parameters by an
off-line training method.

Finally, we can obtain the JRDO LM by plugging
(10)∼(14) into (9), i.e.,

λ = w ·

(m1 · Q6 + m2 · Q5 + m3 · Q4+

m4 · Q3 + m5 · Q2 + m6 · Q
)

m7 · Q3 + m8 · Q2 + m9 · Q + m10
(12)

where w = (ln 2)/c and the other parameters are shown in
Table 1.

3. Generalized Multiple-LM Framework

The single LM use the same LM for every CU in a frame,
which can’t capture the image contents variation’s impact
on the spatial distortion propagation. Accordingly, we pro-
pose a generalized multiple-LM framework (MLM), where
multiple candidate LMs are used in the RDO process and
a new coding option determination criterion is designed for
the MLM framework.

Let’s denote the candidate coding options and LMs of
oi by pu and λu, respectively. The R-D curve that goes
through pu is denoted by RDC(pu) and the tangent line of the
R-D curve that goes through pu is denoted by RDL(pu, λu).
Let’s represent RDL(pu, λu) by

D − D(pu) = −λu(R − R(pu)) (13)
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(a) p2 is superior to p1 (b) p2 is inferior to p1

Fig. 2 RDO process of the MLM framework. The curves are the R-D
curves for each coding option and the solid lines are the tangent lines of
each R-D curve.

Table 2 Criterion of optimal coding option selection.

where D(pu) and R(pu) represent the distortion and rate un-
der coding option pu respectively.

For different LMs, there is always an intersection point
between two R-D tangent lines labeled by pc. Then, we can
solve the R-D point of pc as

R(pc) =

(D(p2) − D(p1)−
λ1R(p1) + λ2R(p2)

)

λ2 − λ1
(14)

We show two positional relations for R-D points
(D(p1),R(p1)) and (D(p2),R(p2)) where λ1 > λ2 in Fig. 2.
In Fig. 2 (a), p2 is under RDL(p1, λ1) when the slope of this
line is less than zero and p2 is on the left of pc. The the
distortion value in RDL(p1, λ1) is greater than D(p2) when
the rate is R(p2). Since RDL(p1, λ1) is the tangent line of
RDC(p1), the distortion value in RDC(p1) is equal or greater
than the one in RDL(p1, λ1) under the same rate. Then, we
know that the distortion value in RDC(p1) is also greater
than D(p2) when the rate is R(p2). Since p2 is in RDC(p2),
we can conclude that p2 will achieve better R-D perfor-
mance than p1. In Fig. 2 (b), an opposite result can be found
as p2 is on the right of pc. Based on this observation, we
design a mode determination criterion for MLM framework
as shown in Table 2.

Here, we employ a MB-level MLM scheme by explor-
ing multiple candidate LMs. First, we compute the rate and
distortion under all available coding options. Second, we
find the optimal coding options under each candidate LM.
Third, the final coding option is selected from the refined
coding options in the second step based on the criterion in
Table 2.

4. Experimental Results

To verify the performance of our proposed JRDO scheme,
we implement the proposed method on the VCEG

KTA2.4r1†. Here, both the common simulation condi-
tions (QP={22,27,32,37}) and low bitrate simulation condi-
tions (QP={36,40,44,48}) are involved in our experiment.
In this intra only simulation, the H.264/AVC High Pro-
file is used as the benchmark. All distortion propaga-
tion parameters (k1, l1, k2, l2) are obtained by off-line train-
ing. The training set is collected from the open access
database††. To be fair, the test sequences are selected
from the recommendation [17], which are not involved in
the training set. The parameter w is set to 3.7. We de-
note the single LM scheme that employs our proposed LM
by JRDO-SLM. The MLM scheme which combines our
JRDO LM and the conventional LM is denoted by JRDO-
MLM-x, where x indicates the numbers of the candidate
LMs. For JRDO-MLM-2, the JRDO LM parameters are
(k1, l1) = (0.0411,−0.0502) and (k2, l2) = (1.3270, 0.9419).
Since the distortion propagation is more significant at high
QPs, we add an extra JRDO-MLM-4 test under low bit
rate conditions, where two additional LMs are derived
with the parameters (k1, l1) = (0.0562,−0.1098), (k2, l2) =
(1.7365,−0.5345) and (k1, l1) = (0.0214, 0.0647), (k2, l2) =
(0.6983, 1.4767).

For evaluating the coding efficiency, BDPSNR (Bjon-
teggard Delta PSNR) and BDBR (Bjonteggard Delta Bit-
Rate) [18] are used in our experiment. To further evaluate
the complexity of different schemes, the percentage of dif-
ference of coding time (ΔT%) is employed, i.e.,

ΔT =
Tpro − Tanc

Tanc
× 100 (15)

where Tpro and Tanc denote the coding time of the proposed
scheme and the anchor respectively.

4.1 Coding Performance

The detailed coding results under both the common and low
bitrate conditions are shown in Table 3. It can be found that
our proposed JRDO-MLM scheme achieves superior R-D
performance under both test conditions. The robustness of
JRDO-MLM scheme is better than the JRDO-SLM scheme.
Relative to the anchor scheme, the JRDO-SLM works not
well for some sequences like ParkScence and RaceHorses.
This is consistent with our discussion in Sect. 3, i.e., the
single LM can’t capture different block contents’ impact
on distortion propagation. In the JRDO-MLM scheme, we
effectively improve the robustness with the LM switching
strategy. As shown in Table 3, the JRDO-MLM-4 scheme
achieves better performance than JRDO-MLM-2. That is,
the coding gain of JRDO-MLM scheme is positively associ-
ated with the number of candidate LMs.

In addition, it should be noted that the JRDO-MLM
scheme can achieve more significant coding gains under low
bitrate conditions. This is consistent with the fact that the
impact of the distortion propagation increases as QP becom-
ing larger.

†http://iphome.hhi.de/suehring/tml/download/KTA/
††http://media.xiph.org/video/derf/
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Table 3 Coding gains in terms of BDBR (%) and BDPSNR (dB).

Table 4 Complexity increase in term of �T (%).

4.2 Complexity Analysis

To compare the computational complexity of different
schemes, we show the �T results under both the common
and low bitrate conditions in Table 4. It can be seen that for
JRDO-SLM scheme the complexity is close to conventional
RDO scheme since we only replace the LM with our pro-
posed JRDO model. For JRDO-MLM-2 scheme, the aver-
age �T s are 11.88% and 15.97% under the common and low
bitrate conditions, respectively. For JRDO-MLM-4 scheme,
the average �T increases to 51.25%. Since the MLM frame-
work needs to explore all available LMs, the complexity lin-
early increases with the number of the LMs.

5. Conclusion and Future Work

In this paper, we proposed a spatial distortion propaga-
tion based JRDO model and MLM framework. Since the
JRDO model could minimize both the distortions in the cur-
rent block and the neighboring block, the proposed scheme
achieves superior R-D performance over H.264/AVC High
Profile. In our future work, a more flexible spatial distortion
propagation model will be studied to be compatible with the
latest HEVC codec.
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