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Abstract: Quadratic permutation polynomial (QPP) interleaver is
more suitable for parallel turbo decoding due to it is contention-free.
However, the parallel address generation of QPP is area-consuming
when the parallel degree P is large, and the data shuffle between mem-
ory banks and processing elements (PE) introduces large interconnect
cost. This paper first evaluates the area and power cost of three typ-
ical Parallel Address Generators (PAG) and four typical Data Shuffle
Networks (DSN) from academic and industrial area, and then proposes
a novel general QPP interleaver with a highly area-efficient PAG and
an associated DSN. Our QPP interleaver can support general parallel
turbo decoder design. Experimental results show that, for P=64, the
area and power cost of the PAG are on average 9.2% and 9.8% of that
of the evaluated respectively. Meanwhile, the DSN can also achieve a
slight hardware cost reduction, compared with the evaluated works.
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1 Introduction

Turbo decoding is widely used in communication systems, like LTE, LTE-
A. It is computation-intensive and usually implemented through parallel
hardware architecture (Fig. 1). Quadratic permutation polynomial (QPP)
interleaver is more suitable for parallel turbo decoding due to it is contention-
free. However, the parallel address generation of QPP interleaver is area-
consuming when the parallel degree P is large, and the data shuffle between
memory banks and processing elements (PE) seriously restricts the frequency
of QPP interleavers, thus the throughput of parallel turbo decoding.

To reduce the complexity of Parallel Address Generators (PAG), Y. Sun [1]
proposed an on-the-fly forward and backward recursive QPP Interleaving
Address Generator (QPP-IAG). However, the QPP-IAG must be replicated
multiple times. The memory Bank Index Address (BIA) and Bank Offset Ad-
dress (BOA) are calculated directly in T. Ilnseher’s [2] work, which adopts
only two Forward Address Generators (FAG) but a large number of multipli-
ers. Work by S.J. Wang [3] reduces the number of multipliers but suffers from
the big fan-out problem. Besides, all works above do not support the calcu-
lation of the initial values for those recursive processes in the PAG, and the
works in [2, 3] do not support the backward consecutive address generation.

To reduce the complexity of the (de-)interleaving Data Shuffle Networks
(DSN), C. Studer [4] proposed a master-slave network based on Batcher’s
sorter [5]. However, it substantially increases power consumption. S.J. Wang [3]
proposed a network which reduces the scale of C. Studer’s [4] network to the
slave network. Work by C.C. Wong [6] adopted a barrel shifter network with
its control signals generated by P/2 adders that cause extra wire latency.

Fig. 1. general architecture of parallel turbo decoder
We proposed a novel PAG and an associated DSN. The PAG calculates

the initial values, BOAs and BIAs in both forward and backward direction
with step size d=1, 2, 4, .... Our PAG needs generating d BOAs and 2dP/4
BIAs in parallel while the conventional PAGs require 2dP BIAs. The DSNs
in [3, 4, 6] can not be used directly, thus our DSN is redesigned accordingly.
And, one DSN can shuffle P data determined by our PAG’s P/4 outputs.

2 Theories of the novel QPP interleaver

In order to derive the theories of our QPP interleaver, the original fundamen-
tals are briefly described first. The QPP addresses f(x) can be generated in
the forward and backward recursive directions [1] using Eq. (1)∼Eq. (3). The
works in [2, 3] calculate the BIA (bj(c)) and BOA (aj(c)) directly by Eq. (4).

f(x) = f1x + f2x
2 = f(c + jW ) = bj(c) × W + aj(c) (1)

f(x + d) = (f(x) + g(x))%K, g(x) = (g(x − d) + (2d2f2)%K)%K (2)
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f(x − d) = (f(x) − g(x − d))%K, g(x − d) = (g(x) − (2d2f2)%K)%K (3)
aj(c) = a0(c), bj(c) = (b0(c) + f1j + f2j

2W + 2f2jc)%P (4)
where 0 ≤ x, f1, f2 < K, 0 ≤ j < P , 0 ≤ c < W = K/P . Variables K, W, P
denote the block length, the sub-block length and the parallelism respectively.

Eq. (4) shows that only the first BOA (i.e. a0(c)) is needed to access all
individual memory banks, we also adopt Eq. (4) to generate BOA. However,
our BIA generation method is different. The works in [1, 2, 3] generate P
BIAs to control one DSN while our method only generates P/4 BIAs. In the
rest of this section, we first prove that our DSN can be controlled only by
P/4 BIAs in Theorem 1, then we formulate our forward and backward BIA
generation method with d=1, 2, 4, .... in Theorem 2.

Theorem 1: For the QPP interleaver, |bj+iQ(c) − bj(c)| ∈ {Q, 2Q, 3Q},
where Q = P/4, 0 ≤ j < Q and i=1,2,3. And our DSN can shuffle P data
at each clock cycle only determined by P/4 BIAs, i.e. bj=0∼Q−1(c).

Proof : Assume 0 ≤ j < Q, i=1,2,3. According to Eq. (4), we can get
|bj+iQ(c) − bj(c)| = (iQf1 + f2(2ijQW + i2Q2W + 2iQc))%P

= (iQf1 + (f2/2)P (ijW + i2(PW/8) + ic))%P
(5)

Since in QPP, f1 is an odd number, f2 is an even number, K is multiple of
8, then |bj+iQ(c) − bj(c)| = (iQf1)%P . Let f1 = 2t + 1, when i=1,2,3, then

|bj+Q(c) − bj(c)| = (Q(2t + 1))%P = [2(t%2) + 1]Q ∈ {Q, 3Q}
|bj+2Q(c) − bj(c)| = (2Q(2t + 1))%P = 2Q

|bj+3Q(c) − bj(c)| = (3Q(2t + 1))%P = [3 − 2(t%2)]Q ∈ {3Q, Q}
(6)

From the above all, |bj+iQ(c)− bj(c)| ∈ {Q, 2Q, 3Q}. Thus our PAG only
need to output bj=0∼Q−1(c) at each clock cycle, if the DSN can be controlled
only by them. Then, we will prove the feasibility of our DSN.

At the cth clock cycle, according to Eq. (6), we can get
bj+Q×(i−1)(c)%Q = bj+Q×i(c)%Q (7)

(bj+Q×(i−1)(c)/Q)%4 = (bj+Q×i(c)/Q + 1)%4 (8)
Let us denote the data read from P memory banks as dj(c), dj+Q(c),

dj+2Q(c) and dj+3Q(c). Eq. (7) indicates that these data can be packed as
Dj(c) = {dj(c), dj+Q+2Q·(t%2)(c), dj+2Q(c), dj+3Q−2Q·(t%2)(c)}∗ and shuffled
simultaneously. {}∗ denotes the concatenation operator. Shuffling the Dj(c)
is determined by bj(c)%Q. Then, Eq. (8) shows that Dj(c) need to be de-
packed and dispatched uniquely to the associate PEs. Such process can be
implemented through barrel shifters which are determined by bj(c)/Q.

So according to Eq. (5)∼Eq. (8), our DSN can shuffle P data only deter-
mined by P/4 BIAs, i.e. bj=0∼Q−1(c). Next, we formulate the calculation of
bj=0∼Q−1(c) in both forward(′+′) and backward direction(′−′) in Theorem 2.

Theorem 2: The jth BIA at cth clock cycle can be generated recursively
by bj(c ± d) = (bj(c) + Ψ0(c) ± 2df2j)%P , where 0 ≤ j < P/4, 0 ≤ c < W .

Proof : Assume 0 ≤ c < W , according to Eq. (1), we can get

bj(c ± d) =
⌊

f(jW+c±d)
W

⌋
=

⌊
(f1(jW+c±d)+f2(jW+c±d)2)%K

W

⌋

=
⌊

((f1(jW+c)+f2(jW+c)2)+(±f1d±2cdf2+f2d2)±2jdf2W )%K
W

⌋

=
⌊
(f(jW+c)−a0(c)

W + a0(c)+(±f1d±2cdf2+f2d2)
W ± 2jdf2)

⌋
%P

= (bj(c) + Ψ0(c) ± 2jdf2)%P

(9)
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Next we derive Ψ0(c). According to Eq. (2), (f1d + 2cdf2 + f2d
2)%K =

g(c) and g(c) = f(c + d) − f(c). According to Eq. (3), (−f1d − 2cdf2 +
f2d

2)%K = −g(c − d), and −g(c − d) = f(c − d) − f(c), so
Ψ0(c) =

⌊
(a0(c)+(±f1d±2cdf2+f2d2))

W

⌋
%P =

⌊
(a0(c)+f(c±d)−f(c))%K

W

⌋

=
⌊

((f(c±d)−a0(c±d))+a0(c±d)−(f(c)−a0(c)))%K
W

⌋

= (f(c±d)−a0(c±d)
W − f(c)−a0(c)

W )%P = (b0(c ± d) − b0(c))%P

(10)

We can get Ψ0(c) by combining Eq. (10)∼Eq. (12). The detailed derivation
of Eq. (11) can be referenced in [3]. Then we derive Eq. (12) analogously.
O1|2 and O1′|2′ are the byproducts of FAG and BAG(Fig. 1) respectively.
b0(c + d)− b0(c) = O1 + I(c), I(c) = (I(c− d) +

⌊
2d2f2/W

⌋
+ O2)%P (11)

b0(c−d)−b0(c) = O1′−I(c−d), I(c−d) = (I(c)−⌊
2d2f2/W

⌋
+O2′)%P (12)

Since Eq. (9) is a recursive process, P/4 forward initial values bj=0∼Q−1(c =
0) and backward initial values bj=0∼Q−1(c = W ) must be pre-computed. Ac-
cording to Eq. (4), these initial values can be got recursively using Eq. (13).

bj+1(c = 0) = (bj(c = 0) + (f1 + f2W ) + 2f2Wj)%P

bj+1(c = W ) = (bj(c = W ) + (f1 + f2W ) + 2f2W (j + 1))%P
(13)

The recursively computing pattern of Eq. (9) is similar to Eq. (13) in
both forward and backward direction. The patten can be unified as b = (b′ +
C1±C2)%P . So, Eq. (9) and Eq. (13) can be implemented using one circuit
by designing reuse. The circuit generates P/4 initial values and P/4 BIAs.

3 Implementation of the novel QPP interleaver

The proposed QPP interleaver is consisted of d PAGs and 2d DSNs. As
shown in Fig. 2 (b), one PAG is consisted of a QPP-IAG, a Forward and a
Backward Chained Address Generator (FCAG,BCAG). The QPP-IAG is re-
sponsible for generating the BOA to access memory banks in parallel(Eq. (4)),
as well as generating O1|2 to FCAG(Eq. (11)) and O1′|2′ to BCAG(Eq. (12)).

Fig. 2. the proposed QPP interleaver

In Fig. 2 (a), our FCAG generates P/4 forward initial values and P/4
BIAs in the forward direction to control a DSN. The BCAG is similar to the
FCAG, while the BCAG adopts some modulo subtractors. If the FCAG and
BCAG are active synchronously, our QPP interleaver needs 2d same DSNs
which are controlled by the FCAG and BCAG group by group, as shown
in Fig. 2 (b). Otherwise, only d DSNs are needed and they are controlled
by time-sharing. The DSNs shuffle 2dP data between the PEs and memory
banks in parallel. Since the scale of our PAG is reduced, our DSN (Fig. 2 (c))
needs to be redesigned accordingly.
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As shown in Fig. 2 (a), The FCAG requires three operation steps to gener-
ate initial values in a pipeline manner and the BIAs in parallel. Step I). chain
1 (vertical direction with adders and registers) and chain 2 (dot line, vertical
direction with MUXes, adders and registers) are both active in a pipelined
manner to generate initial values. After P/4 cycles, the initial values are
generated and stored in the registers. Step II). only chain 1 is active. The
constants (2jdf2)%P are calculated in a pipelined manner, which are used in
Eq. (9). Step III). chain 1 and chain 2 are both idle. P/4 BIAs are generated
recursively in parallel by switching all the MUXes properly. The registers in
chain 2 are accumulated. All the adders in Fig. 2 (a) are modulo adders.

As shown in Fig. 2 (c), the DSN consists of P/4 barrel shifters and a P/4-
input network. The P/4-input network can be constructed by two P/8-input
networks and P/8 SWitchers (SW) according to the iterative rule [5]. The
basic element of the P/8-input network is also the SWitcher which simply
compare the value of input a and b. The highest two bits of BIAs (bj(c)/Q)
are used to control the barrel shifter and the remnant bits (bj(c)%Q) are used
to control the P/4-input network. The width of the barrel shifter is B, while
the width of the P/4-input network is 4B as it shuffles the packed data.

4 Experimental results

In order to evaluate the hardware complexity of our QPP interleaver, we
firstly theoretically analyze the hardware components of them using a scaling
factor with respect to P and d. Table I and Table II show the analyzed results.

Table I. hardware components of the PAGs (×2d)

multiplier FAG\BAG log2P bit log2P+1 2-1 P -1
num. width (ref. [1]) register bit add MUX MUX

[1] P 13×6 3P/2 + 2 2P P † 0 1
[2] P/4 ‡ 2 9P/4+2 9P/4+2 0 1
[3] 2 8 × 6 1 2P+4 3P+6 0 1

proposed 0 0 1 P/2+1 3P/4+2 P/4+4 0
†: the bit width of P adders in [1] is 14. ‡: (log2P − 2) × (log2P − 2). The work in [2]
also adopts 4d 8×6 multipliers and 2d 13×6 multipliers.

Table II. hardware components of the DSNs (×2d)

log2P+1bit add 2-1 MUX barrel shifter P -1 MUX
crossbar 0 0 0 P

[3] 0 Plog2P 0 0
[4] P/2log2P 2Plog2P 0 0
[6] P/2 Plog2P 0 0

proposed 0 P/4log2(P/4) P/4 0
“crossbar”denotes the traditional fully-connected shuffle network.

The hardware cost is in proportion to d. As shown in Table I, our PAG
needs no multipliers, and the number of registers is a quarter of that of [3]
which is the least number among all the evaluated works. Our PAG utilizes
the methodology of designing reuse, so it will introduce 2-1 MUXes inevitably.
However, the MUXes introduces trivial hardware overhead. Table II shows
that the proposed DSN needs no adders and the number of needed MUXes is
a quarter of that of [3, 6]. The introduced barrel shifters in our DSN result
in trivial hardware overhead either (as shown in Fig. 3 (c)).
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We also implement the proposed QPP interleaver and the evaluated works
with P=8, 16, 32 and 64. The implementations are synthesized under a 65 nm
TSMC CMOS process with timing budget of 0.6 ns. Then normalization is
done through the division of the area and power cost by each peak value.
The normalized performance is shown in Fig. 3.

As shown in Fig. 3 (a)∼(b), our PAG consumes much smaller area and
power cost. For P=64, Our PAG consumes 4%, 24.4% and 27.8% area cost
(9.2 % on average) and 4.4%, 28.6% and 22.2% power cost (9.8 % on average)
respectively, as compared to [1, 2, 3]. The hardware cost of Sun’s [1] work
increases sharply with the growth of P. Ilnseher’s [2] and Wang’s [3] work
exhibit the similar trend, while the hardware cost of our PAG increases slowly.
Because our PAG only needs generating 2dP/4 BIAs while the other PAGs
require 2dP BIAs. Compared to Wang’s [3] work, the increasing trend of
Ilnseher’s [2] area cost is sharper while the power cost is slower. Because
the former uses less multipliers, however, it adopts more recursive processes
which causes higher transition frequency and higher dynamic power.

Fig. 3. The relative area cost and power consumption

As shown in Fig. 3 (c), for P=64, our DSN consumes 21.0% area cost to
the crossbar and 28.5%, 93.3% and 99.2% respectively, compared to [3, 4, 6].
Since the crossbar has the capacity of broadcasting which is redundant for
QPP interleaver, so, it consumes the highest area cost. Studer’s [4] DSN
includes a mass of adders, which cause extra area and power overhead. As
shown in Fig. 3 (d), Studer’s [4] DSN consumes higher power cost, while ours
DSN consumes the least. These results are consistent with Table II.

5 Conclusion

This paper proposes a novel QPP interleaver which supports both forward
and backward operation with step size d=1,2,4 .... The parallel address
generator of our interleaver only generates a quarter of memory bank index
addresses of that of the compared works. For the parallel degree P=64, the
area and power cost of our parallel address generator are on average 9.2%
and 9.8% of that of the compared respectively. And our data shuffle network
is redesigned accordingly, which also contributes to hardware cost reduction.
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