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Abstract: In this letter, we proposed a new algorithm to solve the
problem concerning the direction-of-arrivals (DOAs) estimation of co-
herently distributed sources based on the block sparse signal matrix
uncertainty model of compressed sensing. Considering the measure-
ment matrix corrupted by the unknown noise, the central DOA and the
angular spread estimation may degrade considerably. But our method
is robust with the measurement matrix uncertainty. Furthermore, the
proposed method has better performance in low signal-to-noise (SNR).
The effectiveness of our method is confirmed by simulation results.
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1 Introduction

The research of target localization with a set of sensors has promoted the
study on the parameter estimation in signal processing. In rural or suburban
areas, the fast fading problem existing in the wireless communications using
the high base station antenna, which is caused by the local scattering in the
vicinity of the mobile [1, 2, 3]. As a consequence, the source is no longer
viewed by the array as a point source but as a spatially distributed source
with mean direction-of-arrival (DOA) and angular spread. Depending on
the relationship between the channel coherency time and observation period,
the distributed sources have been classified into coherently distributed (CD)
and incoherently distributed (ID) sources [4]. For a CD source, the signal
components arriving from different angles within the extension width are
modeled as the delayed and attenuated replicas of the same signal (coherent).
For an ID source, these components are assumed to be uncorrelated.

The theory of compressed sensing suggests that the successful inversion
of a sparse signal for its source modes and amplitudes can be achieved at
measurement dimensions far lower than what might be expected from the
classical theories of spectrum or modal analysis. CS theory [5] provides an
efficient way to acquire and reconstruct a sparse signal from compressed mea-
surements. A new array architecture which uses a small number of receivers
to collect a large number of array outputs was put forward in [6] based on
this theory. Recently, block-sparse signal models were proposed for practical
applications according to sparse signals that have nonzero entries occurring
in clusters in [7]. This theory shows better reconstruction property compared
with the conventional method for the block-sparse signals. Then, a CS array
that has fewer receivers than sensors was used to the DOA estimation with
distributed sources in [8].
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Fig. 1. Schematic diagram of compressed sensing array

2 Data model and previously work

As shown in Fig. 1, suppose that K far-field narrowband sources impinge
onto the array of N sensors from directions of θk, k = 1, 2, · · · , K with corre-
sponding angular spread Δθk

. For simplicity, it is assumed that the sensors
and the sources are in the same plane. For T snapshots, the output of the N

sensors can be expressed as an M × T (M � N) matrix Y of the form:

Y = RAS + N (1)

where
A =

[
A1 A2 · · · AK

]
S =

[
s (1) s (2) · · · s (T )

]

Ak =
[

a
(
θk + θ̃k,1

)
a

(
θk + θ̃k,2

)
· · · a

(
θk + θ̃k,Lk

) ]T

sk (t) =
[

χk,1sk (t) χk,2sk (t) · · · χk,Lk
sk (t)

]T
, t = 1, 2, · · · , T

And R is measurement matrix. N is an N ×T additive gaussian white noise
matrix. sk,l(t) is the lth reflected signal from the th distribution source,
Lk is the number of scattered multipath sources which are suggested around
150 ∼ 200 [4], χk,l(t) is corresponding stochastic gain of each bunch of signal,
n(t) is the corresponding additive Gaussian white noise, A is the array man-
ifold matrix, θ̃k,l(t) is the th random angle migration relative to the central
DOA θk. Assume that the mean value of θ̃k,l(t) is zero and the standard devi-
ation of θ̃k,l(t) is σθ̃k

, p(θ̃k, σθ̃k
) is the probability density function of θ̃k,l(t).

Considering uniform linear array (ULA), a(θk + θ̃k,l) can be presented as
follows:

a(θ′k,l) =
[

1 e−j2πd/λ sin θ′k,l · · · e−j(N−1)2πd/λ sin θ′k,l

]T
(2)

where θ′k,l = θk + θ̃k,l, d is the array element distance and λ is the wavelength
of signals. The estimation of DOA is to solve following optimization:

B̂ = arg min
B

⎧⎨
⎩‖y(t) − RΦB‖2 + η1

J∑
j

‖Bj‖2 + η2

I∑
i=1

‖vec (GiB)‖1

⎫⎬
⎭ (3)
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where Φ is a N ×Na basic matrix, Φ =
[

a
(
θ̄1

)
a

(
θ̄2

) · · · a
(
θ̄Na

) ]
and:

GN×N
i =

[
Gi,1

Gi,2

]
(4)

Gi,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Gi,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 · · · 0 −1 1
0 0 0 · · · 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where 1 and −1 is a 1 × i vector with entire elements 1 and −1. A series of
software packages such as CVX and SeDuMi can work out the optimal solu-
tion [10]. Then, we make B̂ =

[
b̂ (1) b̂ (2) · · · b̂ (T )

]
as the recovered

solution. For T snapshots, we can obtain the angle spectrum as:

Pcs(θ) =
1
T

T∑
t=1

∥∥∥b̂θ(t)
∥∥∥2

, θ = θ̄1, θ̄2, · · · , θ̄Na (7)

The central DOA and the angular spread with respect to the kth source can
be calculated by

(
θ̂k
max + θ̂k

min

)
/2 and

(
θ̂k
max − θ̂k

min

)
/2, respectively, where

θ̂k
max and θ̂k

min are corresponding maximum index value and minimum index
value found by searching the spectral peak.

3 Proposed method

Recently, some researches have peoposed the problem of sparse signal recov-
ery with matrix uncertainty [11, 12]. This model uncertainty also exists in
the CS array. The model (1) is reformulated as:

Y = (R + Ξ)AS + N (8)

where Ξ is a random noise matrix which corrupt the measurement matrix R.
Under matrix uncertainty, the LASSO and Dantzig selector turned out to be
extremely unstable in recovering the sparsity pattern, even if the noise level is
vary small. We proposed a new MU-selector (matrix uncertainty selector) to
recover the block sparse matrix B̂. In what follows, without loss of generality,
we mainly assume that Ξ are deterministic and satisfy the assumption:

|Ξ|2 ≤ δ (9)

where δ ≥ 0.Here ||2 stands for the l2 norm. This MU-selector is based on
the signal-subspace method. From (8), we can take the SVD of Y to reduce
the computational cost:

Ryy =
1
T

YYH = (R + Ξ)ARSS((R + Ξ)A)H + σ2
nIM (10)
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Because RSS is a sparse matrix with few nonzero elements in block diagonal
element, RSS((R + Ξ)A)H has few nonzero elements in some rows. Define
B = RSS((R + Ξ)A)H , we write the model in (10) in sparse form as:

Ryy =
1
T

YYH = RAB + ΞAB + σ2
nIM (11)

This MU-selector is defined as a solution to the minimization problem:

B̂ = arg min
B

{
‖Ryy − RΦB‖2

2 + δ ‖ΦB‖2
2 + η1

J∑
j
‖Bj‖2

+η2

I∑
i=1

‖vec (GiB)‖1

} (12)

Since:∥∥∥Ryy − RΦB − σ2
nIM

∥∥∥2

2
= ‖ΞΦB‖2

2 < ‖Ξ‖2
2 ‖ΦB‖2

2 ≤ δ ‖ΦB‖2
2 (13)

For matrix B̂, we can obtain the angle spectrum as:

Pcs(θ) =
1
M

M∑
t=1

∥∥∥b̂θ(t)
∥∥∥2

, θ = θ̄1, θ̄2, · · · , θ̄Na (14)

The central DOA and the angular spread can be estimated simultaneously
by solving the convex optimization problem (12). The effectiveness of our
method is confirmed by simulation results.

4 Performance analysis

To analyze the performance of our method, the notation is defined as: for
a vector B̂ ∈ RNa×M , B̂ =

[
b̂ (1) b̂ (2) · · · b̂ (M)

]
. For each b̂ (i) , i =

1, 2, · · · , M and a subset J of {1, · · · , Na}, we denote bJ (i) and a subset J of
{1, · · · , Na}, we denote bJ (i) the vector in RNa that has the same coordinates
as b on the set of indices J and zero coordinates on its complement Jc

We will assume that the matrix RΦ satisfies the following condition:
There exists κ > 0 such that:

min
Δ�=0:|ΔJc |1≤|ΔJ |1

|RΦΔ|√
M |ΔJ |2

≥ κ (15)

for all subsets J of {1, · · · , N} of cardinality |J | ≤ s.
Assume that there exists an block sparse solution, define that r(i)yy, i =

1, 2, · · · , M is the ith column of Ryy, we have r(i)yy −RΦb (i). Then for any
solution b̂(i) of (12) we have the following inequalities:

1
n

∣∣∣RΦ
(
b̂ (i) − b (i)

)∣∣∣ ≤ 4δ2
∣∣∣b̂ (i)

∣∣∣2
1

(16)

If (14) holds, then:

∣∣∣(b̂ (i) − b (i)
)∣∣∣

1
≤ 4

√
Kδ

κ

∣∣∣b̂ (i)
∣∣∣
1

(17)
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Proof. Set Δ = b̂ (i) − b (i) and J = J (b (i)), denotes the set of nonzero
coordinates of θ Note that:

|RΦΔ|2 =
∣∣∣(RΦ + Ξ) b̂ (i) − y − Ξb̂ (i)

∣∣∣
2

≤ √
M

(
δ
∣∣∣b̂ (i)

∣∣∣
1
+ |Ξ|2

∣∣∣b̂ (i)
∣∣∣
1

)
≤ 2δ

√
M

∣∣∣b̂ (i)
∣∣∣
1

(18)

Which proves (15). Next, we have:

|ΔJc |1 ≤ |ΔJ |1 (19)

Thus, ∣∣∣b̂ (i) − b (i)
∣∣∣
1
≤ 2|ΔJ |1 ≤ 2

√
K|ΔJ |2 ≤ 2

√
K

κ
√

M
|RΦΔ|2 (20)

Combining (18) and (19), we get (16).
In this section, we have investigated the sensitivity of compressed sensing

to measurement matrix uncertainty. Our analysis pointed out the worst
situation which is related with the known parameter κ.

5 Experiments

In this section, the proposed method is compared with the Gan’s method [8]
by simulations to demonstrate its superior performance.

The conventional array is an ULA with N = 20 array elements which are
displaced with half the wavelength between adjacent elements. The number
of compressed receivers is set to be M = 5. Each element in the random
measurement matrix R is consisted of random ±1 which satisfy a Bernoulli
distribution. The noise matrix Ξ obeys the Gaussian distribution when the
variance is 0.3 and δ = |Ξ|2. The signal to noise ratio (SNR) is defined
as 10log10

(
Pk
σ2

n

)
. We compare the Gan’s method and the proposed method

first. There are two correlated equal-power narrowband sources with SNR =
15 dB. We take Na = 360 by searching from −90◦ to 89.5◦ with step size
0.5◦. The parameters in Eq. (12) are set to be η1 = η2 = 1. Figure 2 shows
the normalized angular spectrum of the Gan’s method. Clearly, it cannot
express the angular spreads, while the proposed method can reach a good
result in Fig. 3.

Fig. 2. Angle spectrum of Gan’s method
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Fig. 3. Angle spectrum of proposed method

Fig. 4. The RMSE of the central DOA versus SNR

Fig. 5. The RMSE of the angular spread versus SNR

In the second test, all the conditions are as the same as the first test. The
root mean square errors (RMSEs) of two parameters with respect to the pro-
posed method and the Gan’s method are shown in Figs.4 and 5 respectively.
It is deriven from 200 Monte-Carlo simulations when SNR varies from 0 to
20 dB. These two figures show that the RMSE of the proposed method are
smaller than the Gan’s method in different SNRs.
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6 Conclusion

In this letter, we have proposed a matrix uncertainty selector (MU-selector)
method to estimate the central DOAs and the angular spreads of the dis-
tributed sources. This method is based on the block-sparse signal recovery
with unknown noise in measurement matrix. Compare to the method in [8],
our method is robust to the measurement matrix uncertainty and has less
computation. We also analyzed the worst performance with inequalities.
Simulation results confirm that the proposed method was robust with the
measurement matrix uncertainty.
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