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Abstract: In contrary to the existing work related with compressed
sensing based STAP technique, which adopts the original sensing ma-
trix, the proposed noise driven compressed sensing method is to con-
struct a new sensing matrix with weak coherence through incorporating
the measurement noise. The proposed method tries to build an equiv-
alent system of the classical model in compressed sensing, resulting in
an equivalent sensing matrix. Inspired by the idea that low coherence
guarantees the reconstruction of the sparse vector with large probabil-
ity, the equivalent sensing matrix is updated iteratively in a Markov
chain Monte Carlo (MCMC) based framework to reduce the large co-
herence between a set of specific columns in the original sensing matrix.
At the same time, the proposed method tries to preserve most of the
information of the original sensing matrix via adjusting a noise related
matrix. The simulation results show that the proposed method obtains
much less average reconstruction error compared with the existing com-
pressed sensing based STAP methods, and it is also very efficient when
coping with measurement noise with low SNR.
Keywords: noise driven compressed sensing, STAP, airborne radar,
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1 Introduction

STAP is a signal processing technique that was originally developed for de-
tecting slowly moving targets using airborne radars. It represents the si-
multaneous adaptive application of both Doppler filtering and spatial beam-
forming [1, 2], and allows the suppression of clutter that neither technique
could individually address. While much of the early work in STAP focuses
on the simplest case of side-looking uniform linear arrays (ULAs) operating
monostatically, STAP techniques have also been applied to bistatic systems,
conformal arrays, space-based systems, and other applications [3]. However,
the traditional STAP algorithm uses a lot of training cells to estimate the
space-time covariance matrix, which occupies large computer memory and is
time-consuming.

In recent years, a number of compressed sensing based methods are
proposed to detect unknown moving targets in strong clutter situation di-
rectly on the space-time data, which reduces the measurement data effi-
ciently [4, 5, 6, 7]. In [4], the entire radar scene, DOA-Doppler plane, is
reconstructed using a compressed sensing based approach, and an attempt is
then made to identify and zero out the clutter component. In [5] the problem
of clutter is addressed by applying a mask to the signal in the DOA-Doppler
plane before penalizing, and the proposed method is shown to outperform
the sample matrix inversion (SMI) method [1]. However, it is based on the
assumption of known clutter ridge location. The work in [6] is a combination
of the traditional STAP algorithm and compressed sensing. The STAP is
used to suppress the clutter, and the compressed sensing is then utilized toc© IEICE 2013
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reconstruct the entire radar scene which only contains the targets. In [7],
by exploiting the intrinsic sparsity of the spectral distribution, a new direct
data domain approach using sparse representation (D3SR) is proposed, which
seeks to estimate the high-resolution space-time spectrum with only the test
cell. However, the method assumes that the area where the targets locate is
known in prior.

The classical model of compressed sensing, y = Φx+ e, is adopted in the
above work. The measurement vector y represents the received echo signal
snapshot from fixed range cell, and x is the collection of the strength of
the original transmitted signals (including targets, clutter or both) from the
whole DOA-Doppler plane. e denotes the measurement noise. The sensing
matrix Φ is comprised of Spatial-Doppler steering vectors in column, which
is deterministic in nature. All the above work assumes that the sparse vector
x could be reconstructed based on the sensing matrix Φ perfectly. However,
the coherence of the sensing matrix is not low and does not guarantee a
good reconstruction of the sparse vector with large probability according to
[8, 9]. The simulation results in Section 5 in this paper show that large
reconstruction error exists when relying on the original sensing matrix Φ.

In this paper, a novel method named as noise driven compressed sensing
is proposed to decrease the reconstruction error via reducing the coherence
of the original sensing matrix Φ. The proposed method tries to build an
equivalent system of the classical model in compressed sensing via incorpo-
rating the measurement noise e, which results in an equivalent sensing matrix
ΦE . Inspired by the idea that low coherence guarantees the reconstruction of
the sparse vector with large probability [8, 9], the equivalent sensing matrix
ΦE is updated iteratively in an MCMC based framework to reduce the large
coherence between a set of specific columns in the original sensing matrix
Φ. At the same time, the proposed method tries to preserve most of the
information of Φ via adjusting a noise related matrix.

In this paper, we consider the application of detecting unknown moving
targets in strong clutter situation using airborne radar system. Since the
airborne radar scenario has a high CSR (clutter-signal-ratio, > 20 dB), the
prominent elements of the spectral distribution focus along the clutter ridge
in the DOA-Doppler plane. Therefore, it is reasonable to assume that the
received data of the test cell is sparse in the DOA-Doppler plane [7]. The pro-
posed noise driven compressed sensing method is then used to reconstruct the
sparse signal representing the radar scene. From the simulation results, it can
be seen that both the prominent elements (the clutter) and the weak elements
(targets) are recovered accurately in the reconstructed DOA-Doppler plane,
and consequently the targets are distinguished from the clutter successfully.
This is due to the reason that the proposed noise driven compressed sensing
method can cope with the deterministic sensing matrix with high coherence
efficiently.

The paper is organized as follows: Section 2 introduces the general space-
time model, which is represented in a compressed sensing framework. Our
main contribution, the noise driven compressed sensing method, is introduced
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in Section 3, and the compressed sensing based multiple targets detection
algorithm is introduced in Section 4. The simulation results are listed in
Section 5, and the paper is summarized in Section 6.

2 A general space-time model and its sparse representation

In this paper, we consider an airborne radar system which transmits K coher-
ent pulse trains and samples the returns on ULAs consisting of N elements.
For each pulse, it collects Q temporal samples from each element receiver,
where each time sample corresponds to a range cell. The collection of samples
for the qth range cell is represented by an N ×K data matrix F (snapshot)
with elements f(n, k) as,

F =

⎡
⎢⎢⎢⎣

f(1, 1) f(1, 2) · · · f(1,K)
f(2, 1) f(2, 2) · · · f(2,K)
· · · · · · · · ·

f(N, 1) f(N, 2) · · · f(N,K)

⎤
⎥⎥⎥⎦ . (1)

A test cell is assumed to be comprised of target and clutter components.
First, assuming D targets are observed in the far-field, the ith target is at
a DOA angle of θt

i with Doppler frequency f t
di

. We can obtain an NK × 1
complex vector yt as,

yt = ΣD
i=1β(θt

i , f
t
di

)[sS(θt
i) ⊗ sT(f t

di
)], (2)

where β(θt
i , f

t
di

) is the reflection coefficient of the ith target, ‘⊗’ represents
the Kronecker product of two vectors. The spatial steering vector sS(θt

i) and
the Doppler filtering steering vector sT(f t

di
) are represented by

sS(θt
i) = [1, ej

2πd
λ

sin θt
i , · · · , ej(N−1) 2πd

λ
sin θt

i ]T (3)

and,

sT(f t
di

) = [1, ej
2πft

di
fr , · · · , ej(K−1)

2πft
di

fr ]T , (4)

where d is the distance between the elements of the arrays, λ and fr denote
wavelength and pulse repetition frequency, respectively.

Besides the target components, there also exists clutter component yc,
which can be considered as a collection of independent scatters as,

yc = ΣNc
i=1β(θc

i , f
c
di

)[sS(θc
i ) ⊗ sT(f c

di
)], (5)

where Nc is the number of clutter scatters. θc
i and f c

di
are the DOA angle

and Doppler frequency for the ith clutter scatter respectively, and β(θc
i , f

c
di

)
is the reflection coefficient. sS(θc

i ) and sT(f c
di

) represent the spatial steering
vector and the Doppler filtering steering vector respectively.

Using the above modeling, the NK × 1 complex vector of the test cell
can be modeled as

ytest = yt + yc + e, (6)

where e is an NK × 1 complex Gaussian noise vector.
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In this paper, compressed sensing is used to estimate the spectral distri-
butions of the targets and clutter scatters in the DOA-Doppler plane. To
do so, the DOA-Doppler plane is divided into V × L square grids, where V
and L denote the number of rows (for Doppler frequency) and columns (for
DOA angle), respectively. Each grid is with the same size Δθ × Δfd. Grid
(i, j) represents a DOA angle of θi (θ0 + (i− 1)Δθ) and a Doppler frequency
of fdj (fd0 + (i − 1)Δfd), where θ0 and fd0 represent the initial DOA angle
and initial Doppler frequency. All the grids in the DOA-Doppler plane are
mapped into a 2-D vector xtest with the jth column put at the end of the
(j − 1)th column.

Since the airborne radar scene has a high CSR (>20 dB), the significant
elements of the spectral distribution focus along the clutter ridge in the DOA-
Doppler plane. Therefore, it is reasonable to assume that the received data
of the test cell is sparse in the DOA-Doppler plane [7]. A small number of
grids are occupied by the targets and clutter scatters in the DOA-Doppler
plane, and xtest is a sparse vector.

Based on the above derivation, a system for the test cell is built in a
compressed sensing framework as in (7),

ytest = Φxtest + e. (7)

Φ is a sensing matrix with dimension NK × V L, which is defined as Φ =
[ϕ1 ϕ2 · · · ϕV L] in columns. The ((i − 1) · L + j)th column of Φ is defined
as follows,

ϕ(i−1)·L+j = sS(θi) ⊗ sT(fdj ). (8)

The sensing matrix Φ is with high coherence since V and D are set large
values to obtain a high resolution of the DOA-Doppler plane. Though in (7)
the radar vectors and matrices are complex valued in contrary to the original
compressed sensing environment, it is easy to transfer it to real variables
according to [10, 11].

For simplicity, (7) is rewritten in a classical format in compressed sensing
with subscripts removed.

y = Φx + e. (9)

3 A heuristic noise driven compressed sensing method

The existing compressed sensing based STAP methods assume that the sparse
vector x could be reconstructed based on the sensing matrix Φ perfectly.
However, the coherence of the sensing matrix Φ is not low and does not
guarantee a good reconstruction of the sparse vector with large probabil-
ity. In contrast to the existing work, the proposed method tries to build an
equivalent system of the classical model in compressed sensing (9) as follows,

y = (Φ + P )x, (10)

where
Px = e. (11)
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Since the dimension of e is much less than that of x, (11) is an underdeter-
mined system and there exists a lot of matrix P which satisfies (11). We
simply choose

P = ex†, (12)

where x† represents the pseudoinverse of x. We then let ΦE = Φ + P , and
(10) could be rewritten as

y = ΦEx. (13)

ΦE is defined as the equivalent sensing matrix. If ΦE is with low coherence,
it is possible to reconstruct x from (y,ΦE) with large probability using a
number of l1 minimization algorithms and greedy algorithms [8, 9]. The
coherence μ(Ψ) of a matrix Ψ is defined as in [9],

μ(Ψ) = max
1≤i�=j≤N

| < ψi, ψj > |
||ψi||2||ψj ||2 , (14)

where ψi and ψj represent the ith and the jth column of Ψ respectively, and
N denotes the number of columns in Ψ.

However, the K-sparse vector x is unknown and is to be reconstructed.
Without loss of generality, it is assumed that the measurement noise e dis-
tributes according to a Gaussian distribution N(μ, σ2), where μ and σ denote
the mean and standard deviation respectively and they are assumed known
in prior. It is unable to get the exact value of P via (12) since both x and e
are unknown. The following question arises: Given the deterministic sensing
matrix Φ, measurement vector y, how could we reconstruct K-sparse vector
x from the equivalent system (13)?

In this paper, an MCMC based algorithm is proposed to estimate the
K-sparse vector x, the measurement noise e and the matrix P iteratively.
Inspired by the idea that low coherence guarantees the reconstruction of the
sparse vector with large probability, the equivalent sensing matrix ΦE is up-
dated iteratively in an MCMC based framework to reduce the large coherence
between a set of specific columns. At each iteration of the proposed method,
the coherence of the current equivalent sensing matrix ΦE is evaluated and
used as the acception/rejection criteria: the move resulting in a matrix with
less coherence will be accepted with large probability, and vice verse. Accord-
ing to the theory of MCMC [12], this procedure would result in an equivalent
sensing matrix with less coherence at each iteration. As a result, at the
(τ + 1)th iteration, the obtained estimate value of x, xτ+1, is more close to
x compared with xτ , which is obtained at the τ th iteration. The estimate
measurement noise eτ+1 would be more close to the true measurement noise
e as shown in (25). The proposed method also tries to preserve most of the
information of the original sensing matrix Φ via adjusting the noise related
matrix P . The detailed procedures of the proposed method are listed in the
following:
Algorithm 1: Noise driven compressed sensing:
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(1): Initializing, set

τ = 0, (15)

x0 = Reconstruct(Φ, y), (16)

Sample e0 ∼ N(μ, σ2), (17)

P0 = e0x
−1
0 , (18)

ΦE,0 = Φ + P0, (19)

ERR0 = y − (Φx0 + e0). (20)

(2): Obtain Φ′
E via reducing the coherence of ΦE,τ (Algorithm 2),

Φ′
E = Reduce Coherence(ΦE,τ ). (21)

(3): Sample ρ ∼ U(0, 1), where U(0, 1) is a uniform distribution in the
interval (0, 1).
(4): Calculate the acceptance ratio,

a =
μ(ΦE,τ )
μ(Φ′

E)
. (22)

(5): If ρ ≤ min{1, a}, then accept move:

xτ+1 = Reconstruct(Φ′
E , y), (23)

else reject move:

xτ+1 = Reconstruct(ΦE,τ , y). (24)

The estimates of e, P and Φ are updated as follows,

eτ+1 = y − Φxτ+1, (25)

Pτ+1 = eτ+1x
−1
τ+1, (26)

ΦE,τ+1 = Φ + Pτ+1. (27)

(6): Calculate ERRτ+1 via (29) and do the following judgements.
If ERRτ+1 > TERR and τ < D

τ = τ + 1, Go to step (2);
Else

τ = τ + 1, Goto step (7).
End

(7): Obtain the estimate value of x as per (28).

xestimate = xτ+1 (28)

In the above algorithm, ‘Reconstruct’ in (16) refers to any available re-
construction algorithm and the basis pursuit denoising (BPDN) method [9] is
chosen as the reconstruction algorithm here. ‘ERRτ+1’ in Step (6) is defined
as the error between the true measurement and the estimate measurement
as follows,

ERRτ+1 = y − (Φxτ+1 + eτ+1). (29)

c© IEICE 2013
DOI: 10.1587/elex.10.20120959
Received December 12, 2012
Accepted January 21, 2013
Published February 28, 2013

7



IEICE Electronics Express, Vol.10, No.4, 1–12

If ERRτ+1 is less than the predefined threshold TERR, the iteration would
be stopped with the resultant estimate xestimate (28). In Step (6), D denotes
the number of MCMC iterations.

The algorithm defined as Reduce Coherence in Algorithm 1 is developed
for updating the equivalent sensing matrix ΦE,τ iteratively while reducing
the matrix’s coherence. The idea is to find pairs of columns with large coher-
ence (exceeding a predefined threshold Tc) in ΦE,τ , and do Gram-Schmidt
orthonormalization on each selected pair of columns, which results in a new
matrix Φ′

E with lower coherence (21). The value of Tc should be set properly
in order to obtain a new matrix Φ′

E that is with lower coherence as well as
keeping most of the information of Φ. In the proposed algorithm, the value
of Tc is set large enough so that a small fraction of columns of ΦE,τ would be
orthonormalizd while the other columns remains unchanged. The detailed
procedure for the Reduce Coherence algorithm is listed in Algorithm 2.
Algorithm 2: Reduce coherence:
Input: an M ×N matrix Ψ and threshold Tc;
Output: an M ×N matrix Ψ′.
(1): Calculate the coherence between any two columns of the matrix Ψ,

μ(ψi, ψj) =
| < ψi, ψj > |
||ψi||2||ψj ||2 , i �= j, (30)

where ψi and ψj represent the ith and the jth column of Ψ respectively, and
< a, b > represents the inner product of two vectors a and b.
(2): For all {μ(ψi, ψj), i = 1, · · ·M, j = 1, · · · , N, and i �= j}, find pairs of
columns {ψα, ψβ} that satisfies

μ(ψα, ψβ) ≥ Tc, (31)

where ψα and ψβ represent the αth and βth column of the matrix Ψ.
(3): For each pair of columns obtained from Step (2), {ψα, ψβ}, do the Gram-
Schmidt orthonormalization and output the results directly to the matrix Ψ′,

ψ′
α = ψα, (32)

ψ′
β = ψβ − < ψβ , ψ

′
α >

< ψ′
α, ψ

′
α >

ψ′
α, (33)

where ψ′
α and ψ′

β represent the αth and βth column of the output matrix Ψ′.
And the remaining columns in Ψ that do not satisfy (31) keep unchanged in
the output matrix Ψ′.

4 Compressed sensing based multiple target detection algo-
rithm

In recent work related with compressed sensing based STAP [4, 5, 6, 7], the
coherence of the sensing matrix is not low due to the high resolution of the
DOA-Doppler plane, which does not guarantee a good reconstruction of the
sparse vector with large probability. Consequently, the direct estimation of
the target amplitude may be unreliable using sparse representation when
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locating a moving target from the surrounding strong clutter. The weak
element (target) is always submerged in the prominent elements (the clutter).
In [7], only the prominent elements are extracted from the sparse radar scene,
and an additional adaptive filter is used to suppress the clutter to identify
the target.

However, in this paper, we can obtain a reconstructed radar scene with
high accuracy based on the test cell using the proposed noise driven com-
pressed sensing algorithm. Both the prominent elements (the clutter) and
the weak elements (multiple targets) can be identified accurately with the
proposed method. Consequently, it is not difficult to distinguish the weak
elements from the prominent elements in the reconstructed radar scene. In
the following, a simple algorithm is proposed to detect multiple targets in
the reconstructed radar scene.
Algorithm 3: Compressed sensing based multiple target detection
algorithm

1. Use the proposed noise driven compressed sensing algorithm to ob-
tain the estimate of the original sparse vector (xtest), x̂test, based on
the original sensing matrix Φ, and the measurement vector ytest (the
snapshot from the test cell). The entries corresponding to noise in the
original sparse vector xtest are set as zero in x̂test according to the
proposed algorithm. The nonzero elements of the reconstructed sparse
vector x̂test contain the prominent elements (the clutter) and the weak
elements (the targets).

2. Distinguish the weak elements from the prominent elements to detect
multiple targets. For each element of the estimated sparse vector,
x̂test(i), i = 1, · · · , V D,
if |x̂test(i)| > Tclutter

x̂test(i) corresponds to clutter.
else if |x̂test(i)| > 0

x̂test(i) corresponds to a target.
end

Here Tclutter is a threshold set to distinguish the targets from the clutter. It
is assumed that the CSR is sufficient large (> 20 dB). The clutter scatters
are with much higher amplitudes than the targets. The entries of x̂test can
be arranged in descend order according to their amplitudes as,

|x̂test[1]| > |x̂test[2]| > · · ·> |x̂test[k]| >> |x̂test[k+1]| > · · ·> |x̂test[NK×V L]|,
(34)

where x̂test[1] denotes the entry that with the largest amplitude, and the
similar definitions for x̂test[2], · · · , x̂test[NK×V L]. The sudden change of the
amplitude between x̂test[k] and x̂test[k + 1] is caused by the large difference
between the amplitudes of the clutter scatter and target element. And the
value of Tclutter is set proportional to the smallest amplitude of the clutter
scatters, as Tclutter = κ|x̂test[k]|. The constant κ is drawn from the range
of [10−2, 10−1] to ensure that the targets can be distinguish from the clutter
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scatters accurately. The proposed algorithm can identify multiple targets
directly from the reconstructed radar scene (the DOA-Doppler plane), which
reduces the computing complexity efficiently.

5 Simulation results and analysis

In this section, the proposed noise driven compressed sensing algorithm is
compared with the D3SR method [7], in reconstructing sparse radar sce-
narios. Furthermore, the proposed algorithm is also compared with several
classic STAP algorithms, e.g. the SMI method [1], the angle-Doppler com-
pensation (ADC) method [13] and the D3SR method using the improvement
factor loss (IFLoss), which is a common metric in evaluating the performance
of the STAP methods.

An airborne, side-looking radar system consisting of half-wavelength
spaced ULAs is considered in this section. The radar system is comprised
of 16 arrays and the data is organized in CPIs of 16 pulses. The clutter is
uniformly distributed between the directions of −80o ∼ 70o and is contained
in both the training cells and the test cell. The DOA-Doppler plane is di-
vided into 200 × 180 square grids, where x-axis is for DOA angle and y-axis
for Doppler frequency. The initial DOA angle (θ0), the DOA angle interval
(Δθ), the initial Doppler frequency (fd0) and the Doppler frequency interval
(Δfd) equal −90o, 1o, −400 Hz and 4 Hz, respectively.

First, the proposed algorithm is compared with the D3SR method in es-
timating targets with different positions under different noise levels. Ten
targets distributes randomly in the DOA-Doppler plane. The reconstruc-
tion error is adopted to evaluate the reconstruction performance of the two
methods, which is defined as

χ =
||xestimate − x||22

||x||22
, (35)

where x and xestimate represent the true and estimated signal representing
the sparse radar scene respectively. For a given signal-noise-ratio (SNR), we
make 100 trails Monte Carlo simulations (indicated by NMC). In each trail,
the locations of ten targets are randomly distributed in the DOA-Doppler
plane. Figs. 1∼3 show the simulation results from one trial with SNR equaling
20 dB. Fig. 1 gives the actual sparse radar scene. Figs. 2∼3 provide the sparse

Fig. 1. True sparse radar scene: ten randomly distributed
targets
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Fig. 2. Estimated sparse radar scene using the D3SR
method: ten randomly distributed targets

Fig. 3. Estimated sparse radar scene using the proposed
method: ten randomly distributed targets

radar scenes reconstructed by the D3SR method and the proposed method,
respectively. From Fig. 2, it can be seen that the D3SR method wrongly
recovers the elements near the clutter ridge besides the clutter scatters in
the DOA-Doppler plane. The targets near the clutter ridge are submerged
in the wrongly recovered nearby elements. This is due to the reason that the
columns in the original sensing matrix corresponding to the elements near the
clutter are highly coherent (similar) with the columns corresponding to the
clutter scatters. The D3SR method can not distinguish the highly coherent
columns and assigns large values to their corresponding elements. However,
the proposed method can estimate the weak elements (targets) as well as
the prominent elements (the clutter) accurately, and it can distinguish the
targets from clutter successfully in the DOA-Doppler plane (Fig. 3). This
verifies that the proposed noise driven compressed sensing method can cope
with the deterministic sensing matrix with high coherence efficiently.

Fig. 4 indicates the variation of average reconstruction error (χaverage =
ΣNMC

i=1 χi/NMC) with SNR varying from 0 dB to 30 dB, which shows that the
proposed method is resilient to the measurement noise. The proposed algo-
rithm can do perfect detection (< 0.1) of ten targets with measurement noise
when the SNR is above 20 dB. For the D3SR method, large reconstruction
error (> 2) exists even when the SNR exceeds 20 dB.

Moreover, the proposed algorithm is compared with several classic STAP
algorithms, e.g. the SMI method, the ADC method and the D3SR method,
using the improvement factor loss, which is defined as [14],

IFLoss =
SCRout/SCRin

(SCRout/SCRin)opt
, (36)
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Fig. 4. Reconstruction performance (average reconstruc-
tion error) of the proposed method and the D3SR
method with varying SNRs

Fig. 5. IFLoss performance of different STAP methods at
a DOA angle of 20o as a function of the Doppler
frequency

where SCRout and SCRin denote the output signal-clutter-ratio (SCR) and
the input SCR respectively. A classic simulation setup in STAP simulations is
adopted, where a moving target is coming with a DOA angle of 20o. Different
output SCRs are then considered with varying Doppler frequencies. Fig. 5
gives the IFLoss performance of different STAP algorithms. Because the SCR
improvement is mostly achieved in the subspace orthogonal to the clutter, all
the STAP methods (the SMI, ADC and D3SR methods) suffer considerable
degradation near the clutter notch, no matter what size the total space (i.e.,
system DOF) is. However, the proposed noise driven compressed sensing
algorithm detects the target directly based on the reconstructed radar scene,
and it achieves the comparable performance with the optimal filter.

6 Conclusion

In this paper, a novel method named noise driven compressed sensing, is pro-
posed to detect unknown moving targets in strong clutter situation directly
on the space-time data. The proposed method can estimate the weak ele-
ments (targets) as well as the prominent elements (clutter) accurately, and it
can distinguish the targets from clutter successfully in the sparse radar scene
(the DOA-Doppler plane).
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