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Abstract: We derive the novel asymptotic solutions for the scattered
field when a cylindrical wave is incident on a coated conducting cylinder
with a thin lossy dielectric material. We show that the extended UTD
(uniform geometrical theory of diffraction) solution and the modified
UTD solution derived by retaining the second order term are uniformly
applicable in the transition region near the shadow boundary and in
the deep shadow region in which the conventional UTD shadow region
solution produces the substantial errors. The validity of the asymp-
totic solutions proposed here is confirmed by comparing with the exact
solution.
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1 Introduction

The studies in the high-frequency scattering by a smooth convex cylinder have
been important research subjects for a variety of applications in the area of
the radiation patterns of antennas mounted near curved surfaces such as an
aircraft fuselage and the radar cross section of an airborne vehicle [1, 2, 3].

Pathak [1] considered the problem of scattering from a perfectly conduct-
ing cylinder and proposed the UTD (uniform GTD: geometrical theory of
diffraction) solution which remains uniformly in the transition region near
the shadow boundary (SB) and reduces automatically to the Keller’s GTD
solution [4] exterior to the transition region. The product of a wavenumber
and a radius of curvature is sufficiently large, and when an observation point
is moreover located to the deep shadow region comparatively near a cylinder,
it has become clear that the UTD shadow region solution in [1] produces the
substantial errors [5, 6, 7].

Kim and Wang [2] proposed the UTD solution for the scattering from a
circular cylinder with a thin lossy dielectric coating. However, it seems that
the UTD shadow region solution in [2] becomes increasingly inaccurate with
the increasing frequency because it has been derived by the same procedure
given in [1].

In this paper, we derive an extended UTD solution and a modified UTD
solution for the scattered field applicable uniformly in the transition region
near the SB and in the deep shadow region when a cylindrical wave is inci-
dent on a coated conducting cylinder with a thin lossy dielectric material [8].
We will confirm the validity of the asymptotic solutions derived here by
comparing with the exact solution calculated from the eigenfunction expan-
sion [2, 3, 8].

2 Novel asymptotic solutions for the scattered field

2.1 Integral representation for the scattered field
Fig. 1 (a) shows a coated conducting cylinder of radius a with a thin lossy
dielectric material of thickness t(= a − b) and coordinate systems (x, y, z)
and (ρ, φ). We assume that the coated conducting cylinder and the electric
line source are placed in parallel and are extended from −∞ to +∞ in the
z–direction.c© IEICE 2013
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Fig. 1. Scattering phenomena by a coated conducting
cylinder. (a) Coated conducting cylinder and
coordinate systems (x, y, z) and (ρ, φ). (b)
Schematic figure for the scattering observed at the
points P1, P2, and P3.

The integral representation for the scattered electric field Ed
z (P) arriving

at the observation point P(ρ, φ) from the counterclockwise direction without
encircling the coated conducting cylinder after radiated from the electric line
source Q(ρ0, φ0) may be given as follows [8].

Ed
z (P)= − i

8

∫ ∞
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Where, H
(1)
ν ( · ) (H(2)

ν ( · )), Jν( · ), and Yν( · ) are respectively the Hankel func-
tion of the first (second) kind, the Bessel function, and the Neumann func-
tion [9] and the prime ( ′ ) on these functions denotes the derivative with
respect to the argument. k1(= ω

√
ε1μ0) (k∗

2(= ω
√

ε∗2μ0)) and Z1(Z2) are the
wavenumber and the characteristic impedance in the surrounded medium 1
(in the dielectric medium 2). Notation ε∗2 denotes the complex dielectric con-
stant of the coating material and is given by ε∗2 = ε2 + iσ/ω where σ is the
conductivity. In (1), the time factor exp(−iωt) is suppressed in this paper.

The normalized admittance Yν in (2) turns indeterminate when the imag-
inary part of the variables k∗

2a and k∗
2b is large. In order to solve the

above-mentioned difficulty of Yν in (2), the approximate expression for Yν

obtained by using the approximations for the cylindrical functions in the
Appendix A under the condition that |k∗

2a| and |k∗
2b| become greater than |ν|

(|k∗
2a|, |k∗

2b| > |ν|) is used and is given as follows.
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The validity of the approximation expression in (3) is clarified numerically
in [8].

2.2 Extended UTD solution for the scattered field
When the observation point is located in the transition region shown in
Fig. 1 (b), the main contribution to the integral in (1) arises from the portion
of the integration path near ν = k1a in the complex ν–plane. Therefore, one
may substitute the Airy function approximations [6, 7] for the Hankel func-
tions H

(1),(2)
ν (k1a) and H

(1),(2)′
ν (k1a). The variable is changed from ν to τ via

ν = k1a+Mτ , M = (k1a/2)1/3. While, the Hankel functions H
(1)
ν (k1ρ0) and

H
(1)
ν (k1ρ) are replaced by their second order Debye’s approximations [6, 7].

By performing the straightforward manipulation, one may obtain the
following extended UTD solution [8] (see Fig. 1 (b)):

Ed
z (P) ∼ Ez,in(Q1)T (Q1, Q2) [exp(ik1s2)/

√
s2 ] (5)

T (Q1, Q2) = −M

√
2
k1

exp(ik1	)
[
−F (X)

2ξ
√

π
e−iπ/4 + pe

s(ξ, L, qc(τ))
]
. (6)

Here Ez,in(Q1) denotes the incident cylindrical wave propagating the distance
from the source Q to the diffraction point Q1 and T (Q1, Q2) denotes the
transmission function, which expresses the scattering phenomena occurring
along the arc of the coating surface from the point Q1 to the other diffraction
point Q2. The propagation distance 	 of the creeping wave, the Fresnel
function F (X), and the extended Pekeris function pe

s(ξ, L, qc(τ)) are defined
as follows.

	 = aθ, θ = |φ − φ0| − cos−1(a/ρ0) − cos−1(a/ρ) (7)

F (X) = −i2X exp(−iX2)
∫ ∞

X
exp(iτ2)dτ, X = θ

√
2k1L/2 (8)

pe
s(ξ, L, qc(τ))=

e−iπ/4

2
√

π

∫ 0

i∞
w′

2(τ)−qc(τ)w2(τ)
w′

1(τ)−qc(τ)w1(τ)
exp

[
iξτ +i

M2

2k1L
τ2

]
dτ

+
e−iπ/4

√
π

∫ ∞

0

Ai′(τ)−qc(τ)Ai(τ)
w′

1(τ)−qc(τ)w1(τ)
exp

[
iξτ +i

M2

2k1L
τ2

]
dτ

(9)

w1(τ) = Ai(τ) − i Bi(τ) , w2(τ) = Ai(τ) + i Bi(τ) (10)

qc(τ) = iMYν(τ), ξ = Mθ, L =
s1s2

s1 + s2
, s1 =

√
ρ2

0 − a2, s2 =
√

ρ2 − a2. (11)

In (5), the term in the square brackets represents the cylindrical wave prop-
agating the distance from the point Q2 to the observation point P2. Yν(τ) in
(11) denotes a function obtained by ν = k1a+Mτ , M = (k1a/2)1/3, replacing
ν by τ in (3).

In the derivation of the conventional UTD solution in [2], the τ2 terms in
(9) are dropped by assuming k1L → ∞. This is the reason why the conven-
tional UTD shadow region solution (see (47) in [2]) produces the substantial
errors. While, the novel asymptotic solution in (5) coincides with the ex-
tended UTD solution for the scattering from the impedance cylinder in [7]
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when Yν in (2) is replaced by iZ1/Z2.

2.3 Modified UTD solution for the scattered field
When the observation point is located in the shadow region where ξ(= Mθ)
satisfies ξ > 0, the integral in (9) is evaluated rigorously by applying the
residue theorem. Then substituting the residue series solution into (6) and
then (6) into (5) and performing the straightforward manipulation yield the
following modified UTD solution [8] (see Fig. 1 (b)):

Ed
z (P)∼Ez,in(Q1)

∞∑
m=1

[
Dm(Q1)Am(Q1)eik1�−Ωm�Dm(Q2)Am(Q2)

] exp(ik1s2)√
s2

(12)
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M exp(iπ/24)
4
√

2πk1Ai′(−σm)
√

gm
, gm=1− τm

[qc(τm)]2
, qc(τm) = iMYνm(τm)

(13)

Am(Q1,2) = exp

[
−M2σ2

m

2k1s1,2
exp(iπ/6)

]
, Ωm =

M

a
σm exp(−iπ/6). (14)

Note that the coefficients Am(Q1) and Am(Q2) in (12) are obtained from
the τ2 terms in (9). The eigenvalue τm and the corresponding σm and νm

are obtained from the following characteristic equation

w′
1(τm) − qc(τm)w1(τm) = 0, m = 1, 2, 3, · · · (15)

τm = σm exp(iπ/3), νm = k1a + Mτm, M = (k1a/2)1/3 (16)

and Yνm(τm) in (13) is defined by (3) with the replacement of ν by νm in
(16).

The residue series in (12) converges when the observation point is located
in the region satisfying the condition θ > −aRe[σm]/(4M2L) [6, 7]. Re[σm]
denotes the real part of σm. Hence the modified UTD solution in (12) can
be applied even in the lit side in the transition region satisfying the above
inequality.

The novel asymptotic solution in (12) is quite identical to the modified
UTD solution for the impedance cylinder in [7] when Yνm(τm) in (13) is
replaced by iZ1/Z2.

3 Numerical results and discussions

In this section, we perform the numerical calculations required to assess the
validity of the novel asymptotic solutions derived in Sect. 2.

In Fig. 2 (a), the scattered electric field (E-mode type) magnitude curves
are calculated by using the asymptotic solutions for the scattering from a
coated conducting cylinder with a thin lossy dielectric material. The nu-
merical results correspond to the case when the source Q(ρ0, φ0) and the
observation point P(ρ, φ) are located relatively close to the coating surface.
Numerical parameters used in the calculations are given in the caption of
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Fig. 2. In this case, the SB (see Fig. 1 (b)) is located at |φ − φ0| = 78.0◦

and the transition region is defined as a case where the variable of X in (8)
satisfies −√

3.0 ≤ X ≤ √
3.0. The switching point A from the geometrical

optics (GO) solution to the extended UTD and the modified UTD solution
is |φ − φ0| = 55.5◦.

The exact solution ( : solid curve) has been calculated from the eigen-
function expansion [2, 3, 8]. In the deep lit region 0.0◦ ≤ |φ − φ0| ≤ 55.5◦

exterior to the transition region, the GO solution (◦ ◦ ◦) consisting of the
direct and the reflected ray (see Fig. 1 (b)) is used in the calculation. While,
in the region 55.5◦ ≤ |φ − φ0| ≤ 180.0◦, which includes the deep shadow
region far away from the SB, the extended UTD solution ( : red dashed
curve) in (5) and the modified UTD solution (······· : dotted curve) in (12)
are applied and are calculated from the superposition of the scattered field
in the counterclockwise direction and the one in the clockwise direction (see
in Fig. 1 (b)). It is clarified that the GO solution (◦ ◦ ◦), the extended UTD
solution ( ), and the modified UTD solution (·······) agree excellently with
the exact solution ( ) in the respective regions. In fact, the dotted line
(·······) can not be seen in the region 55.5◦ ≤ |φ − φ0| ≤ 180.0◦ including
the interference phenomena near 180.0◦ since the dotted line (the modified
UTD solution) coincides with the solid line (the exact solution) and the red
dashed line (the extended UTD solution) (The same can be said of Fig. 2 (b),
Fig. 3, and Fig. 4). Also shown in Fig. 2 (a) is the conventional UTD shadow
region solution (see (47) in [2]) ( : blue solid curve). It is observed that
the conventional UTD shadow region solution ( ) becomes increasingly
inaccurate as the observation point P moves toward the deep shadow region.

In Fig. 2 (b), in order to examine the accuracy of the extended UTD solu-

Fig. 2. Scattered electric field (E-mode type) magnitude
vs. |φ − φ0| curves. The numerical parameters:
k1a = 100, a = 5.0m, t = 0.2λ, ε1 = ε0 (ε0: di-
electric constant in the vacuum), source point:
Q (ρ0, φ0) = (1.4a, 0.0◦), and observation point:
P (ρ, φ) = (1.2a, φ). (a): dielectric material 2,
ε∗2 = ε2 + iσ/ω (ε2 = 5ε0, σ = 0.053 S/m), (b): di-
electric material 2, ε∗2 =ε2 (ε2 =5ε0, σ=0.0 S/m).
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Fig. 3. Scattered magnetic field (H-mode type) magni-
tude vs. |φ − φ0| curves. (a): thin lossy dielectric
material case, (b): thin lossless dielectric material
case. The numerical parameters used in the cal-
culation in Figs. 3 (a) and 3 (b) are the same as
those used in Figs. 2 (a) and 2 (b), respectively.

tion and the modified UTD solution for the low-loss property of the dielectric
medium 2, we have shown the scattered electric field (E-mode type) magni-
tude curves by a coated conducting cylinder with a thin lossless dielectric
material where the conductivity σ = 0. It is observed that the GO solution
(◦ ◦ ◦), the extended UTD solution ( ) in (5), and the modified UTD
solution (·······) in (12) agree excellently with the exact solution ( ) in
the respective regions. The accuracy of the extended UTD solution and the
modified UTD solution by a coated conducting cylinder with a thin lossless
dielectric material is assessed by the numerical results shown in Fig. 2 (b).
While, one observed that the conventional UTD shadow region solution [2]
( ) deviates increasingly as the observation point P moves toward the
increasing |φ − φ0| direction in the shadow region.

We have shown in Figs. 3 (a) and 3 (b) the scattered magnetic field (H-
mode type) magnitude curves excited by a magnetic line source. Fig. 3 (a)
corresponds to the scattering from the coated conducting cylinder with a
thin lossy dielectric material. While, Fig. 3 (b) coincides with the scattering
from the coated conducting cylinder with a thin lossless dielectric material
where σ = 0. The numerical parameters in Figs. 3 (a) and 3 (b) are the same
as those used in Figs. 2 (a) and 2 (b), respectively. The results for the H-
mode type shown in Figs. 3 (a) and 3 (b) are similar to those for the E-mode
type (Figs. 2 (a) and 2 (b)), thereby the accuracy of the extended UTD and
the modified UTD solution for the scattered magnetic field (H-mode type) is
confirmed.

In Fig. 4 (a) and Fig. 4 (b), in order to investigate the accuracy of the
novel asymptotic solutions derived in Sect. 2 for the variation of the thick-
ness t(= a− b) of coating, we have shown the scattered electric field (E-mode
type) magnitude curves when the thickness t of the lossy dielectric mate-
rial and that of the lossless dielectric material are changed to t = 0.1λ,

c© IEICE 2013
DOI: 10.1587/elex.10.20130100
Received February 05, 2013
Accepted February 07, 2013
Published March 06, 2013

7



IEICE Electronics Express, Vol.10, No.5, 1–9

Fig. 4. Comparisons of the asymptotic solutions with the
exact solution for the variation of the thickness
t of coating (E-mode type). The numerical pa-
rameters: k1a = 100, a = 5.0 m, ε1 = ε0, source
point: Q (ρ0, φ0) = (1.4a, 0.0◦), and observation
point: P (ρ, φ)=(1.2a, φ). (a): dielectric material
2, ε∗2 =ε2 +iσ/ω (ε2 =5ε0, σ=0.053 S/m), (b): di-
electric material 2, ε∗2 =ε2 (ε2 =5ε0, σ=0.0 S/m).

0.12λ, 0.13λ, and 0.25λ, respectively. The scattered electric fields observed
at the observation point P located in the transition and the shadow region
55.5◦ ≤ |φ − φ0| ≤ 180.0◦ may be obtained from the extended UTD solu-
tion in (5) or the modified UTD solution in (12). From the numerical re-
sults in Fig. 4 (a) and Fig. 4 (b), one may recognize that the extended UTD
solution ( ) and the modified UTD solution (·······) agree excellently
with the exact solution (solid curve) to each thickness t. Each GO solu-
tion for the variation of the thickness t of coating in the deep lit region
0.0◦ ≤ |φ − φ0| ≤ 55.5◦ agrees excellently with the exact solution. However,
in order to avoid the confusion in a figure, the numerical results of the GO
solution are omitted in Fig. 4 (a) and Fig. 4 (b).

The validity of the extended UTD solution in (5) and the modified UTD
solution in (12) for the scattered field by a coated conducting cylinder with
a thin lossy dielectric material including the conductivity σ = 0 is confirmed
by the numerical results shown in Figs. 2, 3, and 4.

4 Conclusion

We have derived the extended UTD solution and the modified UTD solu-
tion for the scattering from a coated conducting cylinder with a thin lossy
dielectric material. The validity of the novel asymptotic solutions has been
confirmed by comparing with the exact solution. We have clarified that the
asymptotic solutions proposed here can be applied even in the deep shadow
region where the conventional UTD shadow region solution produces the
substantial errors.
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A. Approximations for the cylindrical functions

The approximations for the cylindrical functions applied in the text under
the condition that |k∗

2a| and |k∗
2b| become greater than |ν| (|k∗

2a|, |k∗
2b| > |ν|)

are listed in this appendix (see (62) and (68) in Chap. 2 in [10]).
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2a) ∼
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+
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√
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+
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+
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√
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+
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+
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√
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1
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√
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[√
(k∗
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(

ν

k∗
2b

)
+

π

4

]
.

(A.6)

Where Jν(x) and Yν(x) denote the Bessel function and the Neumann func-
tion, respectively [9]. The prime ( ′ ) on these functions denotes the derivative
with respect to the argument.
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