LETTER IEICE Electronics Express, Vol.10, No.9, 1-7

Breaking the performance
bottleneck of sparse
matrix-vector multiplication
on SIMID processors

Kai Zhang, Shuming Chen®, Yaohua Wang, and Jianghua Wan
School of Computer, National University of Defense Technology,
#109, Deya Road, Changsha, 410073, China

a) smchen@nudt.edu.cn

Abstract: The low utilization of SIMD units and memory bandwidth
is the main performance bottleneck on SIMD processors for sparse
matrix-vector multiplication (SpMV), which is one of the most im-
portant kernels in many scientific and engineering applications. This
paper proposes a hybrid optimization method to break the performance
bottleneck of SpMV on SIMD processors. The method includes a new
sparse matrix compressed format, a block SpMV algorithm, and a vec-
tor write buffer. Experimental results show that our hybrid optimiza-
tion method can achieve an average speedup of 2.09 over CSR vector
kernel for all the matrices. The maximum speedup can go up to 3.24.
Keywords: SpMV, SIMD, CSR, stride-combination CSR, with trans-
pose

Classification: Integrated circuits

[1] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging multi-
core platforms,” SC’07, Nevada, USA, pp. 1-7, 2007.

[2] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Multipli-
cation on Throughput-Oriented Processors,” SC’°09, Portland, Oregon,
pp- 1-11, Nov. 2009.

[3] D. DuBois, A. DuBois, C. Connor, and S. Poole, “Sparse Matrix-Vector
Multiplication on a Reconfigurable Supercomputer,” FCCM’08, Califor-
nia, USA, pp. 239-247, April 2008.

[4] X. Feng, H. Jin, et al., “Optimization of Sparse Matrix-Vector Multipli-
cation with Variant CSR on GPUs,” Proc. 17th Int. Conf. Parallel and
Distributed Systems, Taiwan, pp. 165-172, Dec. 2011.

[6] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner,
“AnySP: Anytime Anywhere Anyway Signal Processing,” ISCA’09, June
2009.

[6] S. Chen, et al., “YHFT-QDSP: High-Performance Heterogeneous Multi-
Core DSP,” J. Comput. Sci. Technol., vol. 25, pp. 214-224, 2010.

IEICE Electronics Express, Vol.10, No.9, 1-7

1 Introduction

The SpMV arise in many scientific and engineering applications. It has
proven to be of frequent bottleneck in scientific computing applications, and
is notorious for the low utilization of peak processor performance [1]. The
low peak performance utilization is mainly caused by the bound of mem-
ory bandwidth and low utilization of computation units. Massive researches
improve the performance of SpMV by breaking the bound of memory band-
width or improving the utilization of computation pipeline [2, 3, 4]. Most of
which provide parallel computing resource to accelerate the SpMV.

The SpMV computation is usually represented by the computation of
y = Ax, in which A is a sparse matrix and x is a dense vector. The number
of nonzeors in A is usually little than 1% in proportion. Thus, the matrix A
is generally stored in compressed format. These compressed formats include
CSR, DIA, ELL, COO, HYB and so on. There is no affirmative answer for
which storage format is best. And also, some of these formats can be only
applied to a limited range of matrices and are only efficient for a specified
architecture [4]. The CSR is the most common and flexible format. It is easy
to transplant onto variant platforms. Many formats are based on the idea of
CSR.

The single instruction multiple data (SIMD) technology has been a popu-
lar method to accelerate the parallel computation on many processors. When
implementing the CSR-based SpMV on SIMD processors, there are three
main problems which are the performance bottleneck. Firstly, the utiliza-
tion of SIMD units is always low. Secondly, the performance losing caused
by indirect memory access to x is worse. Lastly, as each iteration of SpMV
produces a scalar result, the memory bandwidth is not fully utilized when
storing the result.

To address these problems, this paper proposes a hybrid optimization
method to break the performance bottleneck of SpMV on SIMD processors.
A new sparse matrix compressed format, which is called stride-combination
CSR with transpose (SCT), is proposed to increase the utilization of SIMD
units. A block SpMV algorithm is proposed to increase the utilization of
memory bandwidth for reading x. A vector write buffer (VWB) is designed
to increase the utilization of memory bandwidth for storing the result.

2 CSR SpMV on SIMD processors

The CSR format is one of the most popular and universal sparse matrix
representations. Fig. 1(a) shows an example in which the sparse matrix
is stored in CSR format. Given a sparse matrix A, CSR stores A into a
compressed format with three one-dimensional arrays: wval, col_ind, and
row_ptr. The array val stores the nonzeros of A. The array col_ind stores
the column indices of nonzeros. The array row_ptr is used to represent rows
of varying length. It stores pointers to the first nonzero of each matrix row.

Two approaches have been proposed to parallelize the CSR SpMV on
the SIMD architecture. One approach is referred as the scalar CSR kernel

IEICE Electronics Express, Vol.10, No.9, 1-7

VPE1 VPE2

Val=[5§4 7 82 6i1] Iteration O [5]
’ P Iteration 1 [4 7]

= colind=[310 230 1:0] [eration 2[8]
Iteration 3 [2 6]
Iteration 4 [1]

(2) (b)

Fig. 1. (a) CSR fromat for a simple example matrix A.
(b) Iteration process of vector CSR SpMYV kernel.

ST -
S o © o
S O 9 o
S O 0 W

row ptr=[0 14 6 7]

and the other is the vector kernel. The experimental results show that the
performance of the vector kernel is always better than that of the scalar
kernel [2]. The performance benefit is mainly caused by accessing indices and
data contiguously, and which therefore overcomes the principal deficiency of
the scalar approach.

A SIMD processor generally consists of multiple Vector Processing El-
ements (VPEs) to accelerate the parallel computation [5]. The number of
VPEs is referred as SIMD width. We employ an example of vector CSR
SpMV on the SIMD processor with 2 VPEs. Fig. 1 (b) shows the data pro-
cessed pattern in each iteration. The array val and col_ind is compressed
from the matrix which is shown in Fig. 1 (a). It is likely that many SIMD
units within one instruction controlled will remain idle while the number
of nonzeros in each matrix row is not the integer times than that of SIMD
width.

Indirect and non-contiguous memory accesses reduce bandwidth efficiency
and therefore the performance of memory-bound kernels. On SIMD pro-
cessors, each indirect parallel access to vector x is possible to bring many
memory access conflicts, which make the above problem more serious. When
mapping CSR-based SpMV onto the SIMD architecture, the vector kernel
performs a dot product operation between each matrix row and the vector x.
As only one scalar result is produced in each access to the parallel memory
of SIMD processors, the powerful memory bandwidth is usually wasted.

To address the above problems, a hybrid optimization of SpMV based on
a SCT compressed format is proposed in the following section.

3 Hybrid optimization of SpMV
3.1 SCT-based SpMV

The SCT format consists of three arrays which are val, col_ind, and row_cnt.

Given a matrix A with n rows, SCT format compresses it into S rows which
are then stored in column order. The matrix is firstly compressed into CSR
format. Then the array row_ptr is transformed into the array row_cnt,
which directly shows the number of nonzeros in each row. In the stride-
combination step, a row is chosen from the first S CSR rows in sequence.
The chosen row is taken as the head of combined-row and is combined with a
series of rows with stride S. The new S combined-rows are then transposed
to be stored in column order. After the transpose step, the array val can

IEICE Electronics Express, Vol.10, No.9, 1-7

s e
val=[574 782 6]] \
colind=[3/0 2 3{0 1} val=[542768*1]
row_ent=[1 3 2 1] colind=[300213*0] [Tag
stride- ﬁ *
combination row_cnt = [1 32 1] | Data |V‘
val=[52 6478 1] VPET VPE2
Tteration 0 [[3] 4]

col ind=[3 0 1i{0 2 3 0]

!

colind=[30021 3 *0] Memory Banks

(a) (b) (©

Fig. 2. (a) An example of CSR format to SCT format
with S = 2. (b) Iteration process of SCT SpMV
kernel. (c) The organization of VWB.

i
(::anzzf)se) Iteration 1 [‘[T‘ }7}]
aading
paceing Tteration 2 [6/ @]
val=[542768*1] . . =
Iteration 3 []

be viewed as an matrix with S columns. Each column is the combination
of multiple CSR rows with stride S. In the above steps, the col_ind array
must refresh to fit the new array val. The parameter S is usually set to
the SIMD width of the target architecture. Fig. 2 (a) displays an example of
transforming CSR format to SCT format with S = 2.

The padding step is employed to align all the columns. We propose a
heuristic padding algorithm for the col_ind array to ensure that the padding
value will not bring additional conflicted memory access to x. Given one
position for padding, the index is decreased until it is divisible by S. We
assume that the new index is 7. Then the next S elements of the col_ind
array starting from index ¢ form an exemption set. The padding value should
be different from all the elements within the exemption set.

We employ an example of SCT SpMV on the SIMD processor with 2
VPEs. Fig. 2 (b) shows the data processed pattern in each iteration. As it
can be seen, the required number of iteration in SCT SpMYV is less than CSR.
In the SCT SpMV algorithm, the SIMD units load contiguous elements of
val from multiple memory banks of the SIMD processor, which is a vector
access to memory without conflict. The loaded elements of val comes from
different matrix rows. After obtaining val and x, the MAC unit is employed
to execute the multiplication and accumulating operation.

The row_cnt array is used on each VPE to segment the computation of
variant matrix rows with the help of conditional execution. The row_cnt is
loaded to local register of each VPE. The register decreases in each iteration
to determine whether the current matrix row is completed. Thus, variant ma-
trix rows can be successively processed on each VPE, which greatly increases
the utilization of SIMD units and memory access.

3.2 Block SpMV algorithm

The SIMD access to x, which are indexed by col_ind, may generates conflicts.
The conflicts are caused by the random distribution of nonzeros in matrix
row. To address this issue, we propose a block SpMV algorithm. The matrix
is divided into several blocks by columns. The vector x is divided into several
sub-vectors by rows. We use SCT-based SpMV to process a block of data,
perform significant amount of computation, and then transfer a new block.

IEICE Electronics Express, Vol.10, No.9, 1-7

For each block of data, the sub-vector x is duplicated among all the memory
banks. Thus, the indirect and SIMD access to x can be performed without
any conflicts.

3.3 VWB for multiple memory banks

In SIMD SpMYV algorithms, only one scalar result is produced in each access
to the parallel memory of SIMD processors. Thus, the powerful memory
bandwidth is wasted when storing the result. The VWB is proposed to
address this problem. The organization of VWB is as shown in Fig. 2 (c). It
consists of several buffer lines. The number of buffer lines is referred as buffer
depth. Each buffer line contains multiple buffer registers and corresponds to
one tag field. The number of buffer registers equals to the SIMD width.
Each buffer register consists of data field and one additional bit to record the
data is valid or invalid. The valid state means the data has been modified
by Load/Store (LS) unit. The tag field is used to record the high bits of
destination address for the store operation. The recorded high bits index the
start address of one contiguous memory access. There is one bit in tag field
which is referred as dirty field to indicate whether the corresponding buffer
line has been written.

We transplant the idea of cache into VWB. While a store operation
requires write data to memory banks, VWDB employs the fully associative
method to determine that the data be placed in which buffer line. We adopt
FIFO strategy for selecting which line to replace. The VWB can be powered
off when accesses to memory banks are always contiguous. Then the data is
directly bypassed to parallel memory banks without access to VWB. When
the width of each data is larger than that of each buffer register, buffer
registers in the same position of neighbor buffer lines is combined together
to buffer each data.

4 Experimental results

We build a cycle-accurate simulator based on our previous single-core simula-
tor [6] for the SIMD architecture. The SIMD pipeline simulation is combined
with a cycle-driven memory system simulation that models the multi-banked
memory, which is organized as scratchpad memory. The number of VPE
is 16, each having a 32-entry register file. Each VPE contains four func-
tion units: ALU, two L/S and MAC. The parallel memory has 16 banks,
each corresponding to a SIMD unit. The buffer depth of VWB is 8. Each
buffer register is 64-bit wide. The above parameters are the basic configura-
tion of our simulator. Some parameters of the simulator can be dynamically
configured. Manually optimized assemble code is used as the input of the
simulator.

The experimented sparse matrices are from Tim Davis’s sparse matrix
collection, which are used by Williams et al. [1] in their multicore bench-
marking study. They represent different kind of real applications often used
in scientific computing area, including economics, epidemiology, FEM based

IEICE Electronics Express, Vol.10, No.9, 1-7

[SIMD width=8 [SIMD width=16 [l SIMD width=32 [l SIMD width=64

‘2‘0@“ Q\vav“ Q\C&\\ «ﬂﬁ& O ® Q\s\\"‘? B R S C\‘Q\S\‘ e

Fig. 3. The speedup of SCT-based SpMV over vector
CSR kernel with variant SIMD width.

modeling, protein, webbase, and so on.

4.1 Experimental results

Fig. 3 shows the speedup of SCT-based SpMV over vector CSR kernel with
variant SIMD width. As shown, all the SCT implementations outperform
the vector CSR-~based SpMV. The maximum speedup can be up to 3.24 in
Economics matrix. The average speedup is 2.09 with the buffer depth of 8.
We can see that the speedup for matrices with little number of nonzeros per
matrix row, such as Economics, Epidemiology, Circuit, and Webbase, always
outperform the others. In the CSR implementations for the above matrices,
SIMD units are not fully utilized in each iteration, while this deficiency can
be well overcome in the SCT implementations. It obviously shows that the
proposed SCT format, block algorithm and VWB are efficient for improving
the performance of SpMV by increasing the utilization of SIMD units and
memory bandwidth.

The parameter S in SCT format is set to the SIMD width of the target
architecture. So the performance of SCT implementations is influenced by
the SIMD width. For implementations with the SIMD width of 16, the
maximum speedup can be up to 2.15, and the average speedup is 1.43. The
average speedup is 1.2 with the SIMD width of 8. For the SIMD width of
32, which equals to the width of modern GPUs, the average speedup is 1.72.

4.2 Hardware cost

To evaluate the hardware cost of VWB, we implement the VWB with 8
buffer lines in Verilog HDL. Each buffer line has 32 buffer registers. Each
buffer register is 64-bit wide. The RTL implementation has been synthesized
with Synopsys Design Complier under TSMC 45 nm technology. The clock
frequency is set to 1 GHz. The area and power of VWB is 0.07mm? and
5.2703 mW respectively. Thus, we can obtain efficient performance improve-
ment with the help of VWB by spending little hardware cost.

5 Conclusions

This paper has proposed a hybrid optimization method for SpMV on SIMD
processors. The new sparse matrix compressed format SCT can increase the

IEICE Electronics Express, Vol.10, No.9, 1-7

utilization of SIMD units. The block SCT-based SpMV algorithm can elimi-
nate the memory access conflicts caused by the indirect and SIMD access to
x. The VWB combines several divergence write accesses into one contiguous
access, which further increase the utilization of memory bandwidth by effi-
ciently reducing the memory access. Our hybrid optimization method well
overcomes the deficiency of vector CSR-based SpMV whose performance is
sensitive to the distribution of nonzeros in each row.

Acknowledgments

This work is supported by the NSF of China with Grant No.61070036.

