LETTER

A low latency semi-systolic multiplier over $G F\left(2^{m}\right)$

Kee-Won Kim ${ }^{1 \mathrm{a})}$ and Seung-Hoon Kim ${ }^{2 \mathrm{~b})}$
${ }^{1}$ College of Engineering, Dankook University, Cheonan 330-714, Korea
${ }^{2}$ Department of Multimedia Engineering, Dankook University, Cheonan 330-714, Korea

a) nirkim@gmail.com
b) edina@dankook.ac.kr(corresponding author)

Abstract

A finite field multiplier is commonly used in implementations of cryptosystems and error correcting codes. In this paper, we present a low latency semi-systolic multiplier over $G F\left(2^{m}\right)$. We propose a finite field multiplication algorithm to reduce latency based on parallel computation. The proposed multiplier saves at least 31% time complexity as compared to the corresponding existing structures.

Keywords: cryptography, finite field arithmetic, modular multiplication, semi-systolic array
Classification: Integrated circuits

References

[1] R. E. Blahut: Theory and Practice of Error Control Codes (AddisonWesley, Reading, 1983).
[2] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone: Handbook of Applied Cryptography (CRC Press, Boca Raton, 1996).
[3] S. K. Jain, L. Song and K. K. Parehi: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 6 [1] (1998) 101.
[4] C. W. Chiou, C. Y. Lee, A. W. Deng and J. M. Lin: IEICE Trans. Fundamentals, E89-A [2] (2006) 566.
[5] C. Y. Lee, C. W. Chiou and J. M. Lin: J. Electronic Testing: Theory and Applications 22 (2006) 143.
[6] W. -T. Huang, C. H. Chang, C. W. Chiou and F. H. Chou: IET Information Security 4 [3] (2010) 111.
[7] N. Weste and K. Eshraghian: Principles of CMOS VLSI Design: A System Perspective (Addison-Wesley, Reading, 1985).
[8] STMicroelectronics: STMicroelectronics datasheet (2013) http://www.st.com

1 Introduction

Finite field arithmetic operations, especially for the binary field $G F\left(2^{m}\right)$,
operation. This is because the time-consuming operations such as exponentiation, division, and multiplicative inversion can be decomposed into repeated multiplications. Thus, the fast multiplication architecture with low complexity is needed to design dedicated high-speed circuits.

Many semi-systolic multiplier over $G F\left(2^{m}\right)$ have been developed $[3,4,5$, 6]. Recently, Huang et al. [6] proposed a semi-systolic polynomial basis multiplier over $G F\left(2^{m}\right)$ to reduce both space and time complexities. They also proposed the semi-systolic polynomial basis multipliers with concurrent error detection and correction capability. However, most existing semi-systolic multipliers suffer from several shortcomings, including large time and/or hardware overhead.

In this paper, we propose an improved algorithm and multiplier over $G F\left(2^{m}\right)$ to reduce latency based on parallel computation. This architecture is compared with existing semi-systolic multipliers and the results show that there is a reduction in time complexity.

2 The proposed semi-systolic multiplier over $G F\left(2^{m}\right)$

Let the finite field over $G F\left(2^{m}\right)$ be defined, in general, by an irreducible polynomial of degree m, given by $G=x^{m}+\sum_{j=0}^{m-1} g_{j} x^{j}$, where $g_{i} \in G F(2)$. The polynomial basis $\left\{1, \alpha, \cdots, \alpha^{m-2}, \alpha^{m-1}\right\}$ is used to represent the field elements, so that any two arbitrary elements A and B in $G F\left(2^{m}\right)$ can be represented in the form of polynomials of degree $(m-1)$ as $A=\sum_{j=0}^{m-1} a_{j} \alpha^{j}$ and $B=\sum_{j=0}^{m-1} b_{j} \alpha^{j}$, where a_{j} and $b_{j} \in\{0,1\}$, for $0 \leq j \leq m-1$. The multiplication of field elements A and B over $G F\left(2^{m}\right)$ is given by $P=A B \bmod G=\sum_{j=0}^{m-1} p_{j} \alpha^{j}$.

Since α is a root of $G(x)$, i.e. $G(\alpha)=0, \alpha^{m}$ and α^{m+1} are as follows:

$$
\begin{equation*}
\alpha^{m}=\sum_{j=0}^{m-1} g_{j} \alpha^{j} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{m+1}=\sum_{j=1}^{m-1}\left(g_{m-1} g_{j}+g_{j-1}\right) \alpha^{j}+g_{m-1} g_{0} \equiv \sum_{j=0}^{m-1} g_{j}^{\prime} \alpha^{j} \tag{2}
\end{equation*}
$$

Assume that $\alpha^{m+1} \bmod G$ is given in advance. Therefore, the $P=A B \bmod$ G can be expressed as follows:

$$
\begin{equation*}
P=\sum_{j=0}^{m-1} b_{j} A \alpha^{j}=\sum_{j=0}^{\lceil m / 2\rceil-1} b_{2 j} A \alpha^{2 j} \bmod G+\alpha \sum_{j=0}^{\lfloor m / 2\rfloor-1} b_{2 j+1} A \alpha^{2 j} \bmod G . \tag{3}
\end{equation*}
$$

In the above equation, we can observe that P can be divided into two parts. Let $l=\lceil m / 2\rceil$ and $k=\lfloor m / 2\rfloor$. We define P as follows:

$$
\begin{equation*}
P=C+\alpha D \bmod G \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\sum_{j=0}^{l-1} b_{2 j} A \alpha^{2 j} \bmod G \text { and } D=\sum_{j=0}^{k-1} b_{2 j+1} A \alpha^{2 j} \bmod G \tag{5}
\end{equation*}
$$

We can observe that the computations of C and D require $A \alpha^{2 j}$ in common. Define $A^{(i)}=A \alpha^{2 i}$, for $0 \leq i \leq l-1$. Then, $A^{(i)}$ is $A^{(i)}=$ $\sum_{j=0}^{m-1} a_{j}^{(i)} \alpha^{j} \bmod G$.

Then, based on (1) and (2), $A^{(i)}$ can be expressed as

$$
\begin{align*}
A^{(i)} & =A^{(i-1)} \alpha^{2} \bmod G \\
& =\sum_{j=0}^{m-1} a_{j}^{(i-1)} \alpha^{j+2} \bmod G \\
& =\sum_{j=0}^{m-3} a_{j}^{(i-1)} \alpha^{j+2}+\left(a_{m-2}^{(i-1)} \alpha^{m}+a_{m-1}^{(i-1)} \alpha^{m+1}\right) \bmod G \\
& =\sum_{j=0}^{m-3} a_{j}^{(i-1)} \alpha^{j+2}+\sum_{j=0}^{m-1} a_{m-2}^{(i-1)} g_{j} \alpha^{j}+\sum_{j=0}^{m-1} a_{m-1}^{(i-1)} g_{j}^{\prime} \alpha^{j} \\
& =\sum_{j=0}^{m-1}\left(a_{j-2}^{(i-1)}+a_{m-2}^{(i-1)} g_{j}+a_{m-1}^{(i-1)} g_{j}^{\prime}\right) \alpha^{j}, \tag{6}
\end{align*}
$$

where $A^{(0)}=A, a_{-2}^{(i-1)}=a_{-1}^{(i-1)}=0$, and $1 \leq i \leq l-1$.
From (6), we can obtain the coefficient of $A^{(i)}$ as follows:

$$
\begin{equation*}
a_{j}^{(i)}=a_{j-2}^{(i-1)}+a_{m-2}^{(i-1)} g_{j}+a_{m-1}^{(i-1)} g_{j}^{\prime} \tag{7}
\end{equation*}
$$

where $a_{j}^{(0)}=a_{j}, a_{-2}^{(i-1)}=a_{-1}^{(i-1)}=0$, and $1 \leq i \leq l-1$.
Using $A^{(i)}, C$ and D of (5) are represented as follows:

$$
\begin{equation*}
C=\sum_{i=1}^{l} b_{2(i-1)} A^{(i-1)} \text { and } D=\sum_{i=1}^{k} b_{2 i-1} A^{(i-1)} . \tag{8}
\end{equation*}
$$

From (8), the recurrence equations of C and D can be formulated as

$$
\begin{equation*}
C^{(i)}=C^{(i-1)}+b_{2(i-1)} A^{(i-1)}, \text { for } 1 \leq i \leq l \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{(i)}=D^{(i-1)}+b_{2 i-1} A^{(i-1)}, \text { for } 1 \leq i \leq k \tag{10}
\end{equation*}
$$

where $C^{(0)}=D^{(0)}=0$, and $C^{(i)}=\sum_{j=0}^{m-1} c_{j}^{(i)} \alpha^{j}$ and $D^{(i)}=\sum_{j=0}^{m-1} d_{j}^{(i)} \alpha^{j}$ are i th intermediate results.

Therefore, the coefficients of $C^{(i)}$ and $D^{(i)}$ can be computed as follows:

$$
\begin{equation*}
c_{j}^{(i)}=c_{j}^{(i-1)}+b_{2(i-1)} a_{j}^{(i-1)}, \text { for } 1 \leq i \leq l \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{j}^{(i)}=d_{j}^{(i-1)}+b_{2 i-1} a_{j}^{(i-1)}, \text { for } 1 \leq i \leq k \tag{12}
\end{equation*}
$$

where $c_{j}^{(0)}=d_{j}^{(0)}=0$ and $0 \leq j \leq m-1$.
The equations (11) and (12) can be simultaneously executed because therie is no data dependency between computations of C and D.

Therefore, the result of multiplication is represented as follows:

$$
P=C^{(l)}+\alpha D^{(k)}
$$

where $d_{-1}^{(k)}=0$.

$$
\begin{align*}
& =\sum_{j=0}^{m-1} c_{j}^{(l)} \alpha^{j}+\alpha \sum_{j=0}^{m-1} d_{j}^{(k)} \alpha^{j} \bmod G \\
& =\sum_{j=0}^{m-1} c_{j}^{(l)} \alpha^{j}+\sum_{j=0}^{m-2} d_{j}^{(k)} \alpha^{j+1}+d_{m-1}^{(k)} \alpha^{m} \bmod G \\
& =\sum_{j=0}^{m-1}\left(c_{j}^{(l)}+d_{m-1}^{(k)} g_{j}+d_{j-1}^{(k)}\right) \alpha^{j}, \tag{13}
\end{align*}
$$

Fig. 1. The proposed multiplier over $G F\left(2^{4}\right)$

Fig. 2. The proposed multiplier over $G F\left(2^{5}\right)$

Based on the proposed algorithm, the hardware architectures of the proposed semi-systolic multiplier are shown in Fig. 1 and 2. When m is even, the computations of both C and D take equally k clock cycles. Otherwise, the computations of C and D take l and k clock cycles, respectively. Therefore, our proposed architecture is different depending on m. The detailed circuits of the cells in Fig. 1 and 2 are depicted in Fig. 3, and \oplus, \otimes, and the boxed "D" denote XOR gate, AND gate, and one-bit latch(flip-flop), respectively.

When m is even, our architecture is composed of $0.5 m^{2}-m \mathrm{~S}_{\mathrm{j}}^{(\mathrm{i})}$ cells, $m \mathrm{~T}_{\mathrm{j}}$ cells, and $m \mathrm{U}_{\mathrm{j}}$ cells. Otherwise, it includes $0.5 m^{2}-0.5 m \mathrm{~S}_{\mathrm{j}}^{(\mathrm{i})}$ cells and $m \mathrm{~V}_{\mathrm{j}}$ cells. As shown in Fig. 3, each $\mathrm{S}_{\mathrm{j}}^{(\mathrm{i})}$ cell employs four 2-input AND gates, two 2-input XOR gates, one 3-input XOR gate, and five 1-bit

Fig. 3. The detailed circuits.
latches in order to simultaneously compute $a_{j}^{(i)}, c_{j}^{(i)}$, and $d_{j}^{(i)}$ in (7), (11), and (12), respectively. Each T_{j} cell consists of two 2-input AND gates, two 2input XOR gates, and three 1-bit latches in order to simultaneously compute $c_{j}^{(l)}$ and $d_{j}^{(k)}$ in (11) and (12), and each U_{j} cell includes one 2-input AND gate, one 3 -input XOR gate, and one 1-bit latch for the sake of computing $p_{j}=c_{j}^{(l)}+d_{m-1}^{(k)} g_{j}+d_{j-1}^{(k)}$ in (13). Each V_{j} cell is composed of two 2-input AND gates, three 2-input XOR gates, and one 1-bit latch for computing $c_{j}^{(l)}$ in (11) and $p_{j}=c_{j}^{(l)}+d_{m-1}^{(k)} g_{j}+d_{j-1}^{(k)}$ in (13).

3 Analysis of performance

In CMOS VLSI technology, each gate is composed of several transistors [7]. We adopt $A_{A N D_{2}}=6, A_{X O R_{2}}=6$, and $A_{L A T C H}=8$, where $A_{G A T E_{n}}$ denotes transistor count of an n-input gate, respectively. Also, for a further comparison of time complexity, we adopt the practical integrated circuits in [8] and the following assumptions, as discussed in detail in [6], are made: $T_{A N D_{2}}=7, T_{X O R_{2}}=12$, and $T_{L A T C H}=13$, where $T_{G A T E_{n}}$ denotes the propagation delay of an i-input gate, respectively.

A circuit comparison between the proposed multiplier and the related multipliers is given in Table I. By reducing the latency by half, the proposed
architecture has not only a better space complexity but also a reduced time complexity as compared to the existing architectures. In detail, the results show that the proposed semi-systolic multiplier saves about $50,50,57$ and 31% time complexities as compared to the existing multipliers by Jain et al. [3], Chiou et al. [4], Lee et al. [5], and Huang [6], respectively.

Table I. Comparison of semi-systolic multipliers

	Jain	Chiou	Lee	Huang	The proposed multiplier	
	et al. [3]	et al. [4]	et al. [5]	et al. [6]	even m	odd m
AND_{2}	$2 m^{2}$	$2 m^{2}+2 m$	$2 m^{2}$	$2 m^{2}$	$2 m^{2}-m$	$2 m^{2}$
XOR_{2}	$2 m^{2}$	0	$2 m^{2}$	$2 m^{2}$	m^{2}	$m^{2}+2 m$
XOR_{3}	0	$m^{2}+m$	0	0	$0.5 m^{2}$	$0.5 m^{2}-0.5 m$
Latch	$3 m^{2}$	$3.5 m^{2}+3.5 m$	$2 m^{2}$	$3 m^{2}$	$2.5 m^{2}-m$	$2.5 m^{2}-1.5 m$
Transistors	$48 m^{2}$	$52 m^{2}+52 m$	$40 m^{2}$	$48 m^{2}$	$44 m^{2}-14 m$	$44 m^{2}-6 m$
Cell delay	44	44	51	32	44	44
Latency	m	$m+1$	m	m	$0.5 m+1$	$0.5 m+0.5$
Total delay	$44 m$	$44 m+44$	$51 m$	$32 m$	$22 m+44$	$22 m+22$

4 Conclusion

In this paper, we have proposed a new finite field multiplication algorithm of which the latency is reduced by half as compared to the existing algorithms. Based on the proposed algorithm, a low latency semi-systolic multiplier is proposed. We have achieved a significant improvement. By reducing the latency by half, the proposed architecture has not only a better space complexity but also a reduced time complexity as compared to the existing architectures. We expect that our architecture can be efficiently used for various applications, which demand high-speed computation.

Acknowledgments

The present research was conducted by the research fund of Dankook University in 2012.

