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Abstract: A finite field multiplier is commonly used in implemen-
tations of cryptosystems and error correcting codes. In this paper, we
present a low latency semi-systolic multiplier over GF (2m). We pro-
pose a finite field multiplication algorithm to reduce latency based on
parallel computation. The proposed multiplier saves at least 31% time
complexity as compared to the corresponding existing structures.
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1 Introduction

Finite field arithmetic operations, especially for the binary field GF (2m),
have been widely used in the areas of data communication and network se-
curity applications such as error-correcting codes [1] and cryptosystems [2].
The multiplication among these operations is the most important arithmetic
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operation. This is because the time-consuming operations such as exponenti-
ation, division, and multiplicative inversion can be decomposed into repeated
multiplications. Thus, the fast multiplication architecture with low complex-
ity is needed to design dedicated high-speed circuits.

Many semi-systolic multiplier over GF (2m) have been developed [3, 4, 5,
6]. Recently, Huang et al. [6] proposed a semi-systolic polynomial basis mul-
tiplier over GF (2m) to reduce both space and time complexities. They also
proposed the semi-systolic polynomial basis multipliers with concurrent er-
ror detection and correction capability. However, most existing semi-systolic
multipliers suffer from several shortcomings, including large time and/or
hardware overhead.

In this paper, we propose an improved algorithm and multiplier over
GF (2m) to reduce latency based on parallel computation. This architecture
is compared with existing semi-systolic multipliers and the results show that
there is a reduction in time complexity.

2 The proposed semi-systolic multiplier over GF (2m)

Let the finite field over GF (2m) be defined, in general, by an irreducible
polynomial of degree m, given by G = xm +

∑m−1
j=0 gjx

j , where gi ∈ GF (2).
The polynomial basis {1, α, · · · , αm−2, αm−1} is used to represent the field
elements, so that any two arbitrary elements A and B in GF (2m) can be
represented in the form of polynomials of degree (m− 1) as A =

∑m−1
j=0 ajα

j

and B =
∑m−1

j=0 bjα
j , where aj and bj ∈ {0, 1}, for 0 ≤ j ≤ m − 1.

The multiplication of field elements A and B over GF (2m) is given by
P = AB mod G =

∑m−1
j=0 pjα

j .
Since α is a root of G(x), i.e. G(α) = 0, αm and αm+1 are as follows:

αm =
m−1∑

j=0

gjα
j (1)

and

αm+1 =
m−1∑

j=1

(gm−1gj + gj−1)αj + gm−1g0 ≡
m−1∑

j=0

g′jα
j . (2)

Assume that αm+1 mod G is given in advance. Therefore, the P = AB mod
G can be expressed as follows:

P =
m−1∑

j=0

bjAαj =
�m/2�−1∑

j=0

b2jAα2j mod G+α

�m/2�−1∑

j=0

b2j+1Aα2j mod G. (3)

In the above equation, we can observe that P can be divided into two
parts. Let l = �m/2� and k = �m/2�. We define P as follows:

P = C + αD mod G, (4)

where

C =
l−1∑

j=0

b2jAα2j mod G and D =
k−1∑

j=0

b2j+1Aα2j mod G. (5)
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We can observe that the computations of C and D require Aα2j in
common. Define A(i) = Aα2i, for 0 ≤ i ≤ l − 1. Then, A(i) is A(i) =
∑m−1

j=0 a
(i)
j αj mod G.

Then, based on (1) and (2), A(i) can be expressed as

A(i) = A(i−1)α2 mod G

=
m−1∑

j=0

a
(i−1)
j αj+2 mod G

=
m−3∑

j=0

a
(i−1)
j αj+2 + (a(i−1)

m−2 αm + a
(i−1)
m−1 αm+1) mod G

=
m−3∑

j=0

a
(i−1)
j αj+2 +

m−1∑

j=0

a
(i−1)
m−2 gjα

j +
m−1∑

j=0

a
(i−1)
m−1 g′jα

j

=
m−1∑

j=0

(a(i−1)
j−2 + a

(i−1)
m−2 gj + a

(i−1)
m−1 g′j)α

j , (6)

where A(0) = A, a
(i−1)
−2 = a

(i−1)
−1 = 0, and 1 ≤ i ≤ l − 1.

From (6), we can obtain the coefficient of A(i) as follows:

a
(i)
j = a

(i−1)
j−2 + a

(i−1)
m−2 gj + a

(i−1)
m−1 g′j , (7)

where a
(0)
j = aj , a

(i−1)
−2 = a

(i−1)
−1 = 0, and 1 ≤ i ≤ l − 1.

Using A(i), C and D of (5) are represented as follows:

C =
l∑

i=1

b2(i−1)A
(i−1) and D =

k∑

i=1

b2i−1A
(i−1). (8)

From (8), the recurrence equations of C and D can be formulated as

C(i) = C(i−1) + b2(i−1)A
(i−1), for 1 ≤ i ≤ l (9)

and
D(i) = D(i−1) + b2i−1A

(i−1), for 1 ≤ i ≤ k, (10)

where C(0) = D(0) = 0, and C(i) =
∑m−1

j=0 c
(i)
j αj and D(i) =

∑m−1
j=0 d

(i)
j αj are

ith intermediate results.
Therefore, the coefficients of C(i) and D(i) can be computed as follows:

c
(i)
j = c

(i−1)
j + b2(i−1)a

(i−1)
j , for 1 ≤ i ≤ l (11)

and
d

(i)
j = d

(i−1)
j + b2i−1a

(i−1)
j , for 1 ≤ i ≤ k, (12)

where c
(0)
j = d

(0)
j = 0 and 0 ≤ j ≤ m − 1.

The equations (11) and (12) can be simultaneously executed because
therie is no data dependency between computations of C and D.

Therefore, the result of multiplication is represented as follows:

P = C(l) + αD(k)
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=
m−1∑

j=0

c
(l)
j αj + α

m−1∑

j=0

d
(k)
j αj mod G

=
m−1∑

j=0

c
(l)
j αj +

m−2∑

j=0

d
(k)
j αj+1 + d

(k)
m−1α

m mod G

=
m−1∑

j=0

(c(l)
j + d

(k)
m−1gj + d

(k)
j−1)α

j , (13)

where d
(k)
−1 = 0.

Fig. 1. The proposed multiplier over GF (24)

Fig. 2. The proposed multiplier over GF (25)

Based on the proposed algorithm, the hardware architectures of the pro-
posed semi-systolic multiplier are shown in Fig. 1 and 2. When m is even, the
computations of both C and D take equally k clock cycles. Otherwise, the
computations of C and D take l and k clock cycles, respectively. Therefore,
our proposed architecture is different depending on m. The detailed circuits
of the cells in Fig. 1 and 2 are depicted in Fig. 3, and ⊕, ⊗, and the boxed
“D” denote XOR gate, AND gate, and one-bit latch(flip-flop), respectively.

When m is even, our architecture is composed of 0.5m2 − m S(i)
j cells,

m Tj cells, and m Uj cells. Otherwise, it includes 0.5m2 − 0.5m S(i)
j cells

and m Vj cells. As shown in Fig. 3, each S(i)
j cell employs four 2-input

AND gates, two 2-input XOR gates, one 3-input XOR gate, and five 1-bit
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Fig. 3. The detailed circuits.

latches in order to simultaneously compute a
(i)
j , c

(i)
j , and d

(i)
j in (7), (11), and

(12), respectively. Each Tj cell consists of two 2-input AND gates, two 2-
input XOR gates, and three 1-bit latches in order to simultaneously compute
c
(l)
j and d

(k)
j in (11) and (12), and each Uj cell includes one 2-input AND

gate, one 3-input XOR gate, and one 1-bit latch for the sake of computing
pj = c

(l)
j + d

(k)
m−1gj + d

(k)
j−1 in (13). Each Vj cell is composed of two 2-input

AND gates, three 2-input XOR gates, and one 1-bit latch for computing c
(l)
j

in (11) and pj = c
(l)
j + d

(k)
m−1gj + d

(k)
j−1 in (13).

3 Analysis of performance

In CMOS VLSI technology, each gate is composed of several transistors [7].
We adopt AAND2 = 6, AXOR2 = 6, and ALATCH = 8, where AGATEn de-
notes transistor count of an n-input gate, respectively. Also, for a further
comparison of time complexity, we adopt the practical integrated circuits in
[8] and the following assumptions, as discussed in detail in [6], are made:
TAND2 = 7, TXOR2 = 12, and TLATCH = 13, where TGATEn denotes the
propagation delay of an i-input gate, respectively.

A circuit comparison between the proposed multiplier and the related
multipliers is given in Table I. By reducing the latency by half, the proposed
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architecture has not only a better space complexity but also a reduced time
complexity as compared to the existing architectures. In detail, the results
show that the proposed semi-systolic multiplier saves about 50, 50, 57 and
31% time complexities as compared to the existing multipliers by Jain et
al. [3], Chiou et al. [4], Lee et al. [5], and Huang [6], respectively.

Table I. Comparison of semi-systolic multipliers
Jain Chiou Lee Huang The proposed multiplier

et al. [3] et al. [4] et al. [5] et al. [6] even m odd m

AND2 2m2 2m2+2m 2m2 2m2 2m2−m 2m2

XOR2 2m2 0 2m2 2m2 m2 m2+2m
XOR3 0 m2+m 0 0 0.5m2 0.5m2−0.5m
Latch 3m2 3.5m2+3.5m 2m2 3m2 2.5m2−m 2.5m2−1.5m
Transistors 48m2 52m2+52m 40m2 48m2 44m2−14m 44m2−6m
Cell delay 44 44 51 32 44 44
Latency m m+1 m m 0.5m+1 0.5m+0.5
Total delay 44m 44m+44 51m 32m 22m+44 22m+22

4 Conclusion

In this paper, we have proposed a new finite field multiplication algorithm of
which the latency is reduced by half as compared to the existing algorithms.
Based on the proposed algorithm, a low latency semi-systolic multiplier is pro-
posed. We have achieved a significant improvement. By reducing the latency
by half, the proposed architecture has not only a better space complexity but
also a reduced time complexity as compared to the existing architectures. We
expect that our architecture can be efficiently used for various applications,
which demand high-speed computation.
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