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Abstract: A finite field multiplier is commonly used in implemen-
tations of cryptosystems and error correcting codes. In this paper, we
present a low latency semi-systolic multiplier over GF'(2™). We pro-
pose a finite field multiplication algorithm to reduce latency based on
parallel computation. The proposed multiplier saves at least 31% time
complexity as compared to the corresponding existing structures.
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1 Introduction

Finite field arithmetic operations, especially for the binary field GF(2™),
have been widely used in the areas of data communication and network se-
curity applications such as error-correcting codes [1] and cryptosystems [2].
The multiplication among these operations is the most important arithmetic
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operation. This is because the time-consuming operations such as exponenti-
ation, division, and multiplicative inversion can be decomposed into repeated
multiplications. Thus, the fast multiplication architecture with low complex-
ity is needed to design dedicated high-speed circuits.

Many semi-systolic multiplier over GF'(2™) have been developed [3, 4, 5,
6]. Recently, Huang et al. [6] proposed a semi-systolic polynomial basis mul-
tiplier over GF'(2™) to reduce both space and time complexities. They also
proposed the semi-systolic polynomial basis multipliers with concurrent er-
ror detection and correction capability. However, most existing semi-systolic
multipliers suffer from several shortcomings, including large time and/or
hardware overhead.

In this paper, we propose an improved algorithm and multiplier over
GF(2™) to reduce latency based on parallel computation. This architecture
is compared with existing semi-systolic multipliers and the results show that
there is a reduction in time complexity.

2 The proposed semi-systolic multiplier over GF(2™)

Let the finite field over GF(2™) be defined, in general, by an irreducible
polynomial of degree m, given by G = = + 25”2_01 g;z’, where g; € GF(2).
The polynomial basis {1,a,---,a™ 2 o™ !} is used to represent the field
elements, so that any two arbitrary elements A and B in GF(2™) can be
represented in the form of polynomials of degree (m — 1) as A = Z;’L:_Ol ajaj
and B = Z}n:_ol bjal, where a; and b; € {0,1}, for 0 < j < m — 1.
The multiplication of field elements A and B over GF(2™) is given by

P=ABmod G = Y7 pjod.

Since « is a root of G(z), i.e. G(a) =0, a™ and a™*! are as follows:
m—1 )
o = Z gjo’ (1)
j=0
and
m—1 } m—1 ]
o™t = Z (gm-195 + gj—1)o? + gm-190 = Z gial. (2)
j=1 j=0

m—+1

Assume that « mod G is given in advance. Therefore, the P = AB mod

G can be expressed as follows:

" C [m/2)1 . |m/2]—1 .
P = Z bjAa! = Z szAOtQJ mod G+« Z b2j+1Aa2] mod G. (3)
j=0 j=0 §=0

In the above equation, we can observe that P can be divided into two
parts. Let [ = [m/2] and k = [m/2]. We define P as follows:

P =C+ aD mod G, (4)
where
-1 _ k-1 _
C = Z b2jAa27 mod G and D = Z b2j+1Aa2] mod G. (5)
Jj=0 j=0
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We can observe that the computations of C' and D require Aa? in
common Define A = Aa?, for 0 < i < [ —1. Then, A® is A0 =

Z aJ )/ mod G.

Then based on (1) and (2), A®) can be expressed as

AW —  AEDa2 1m0d G
m—1

— Z a§-i_1)aj+2 mod G

i 1)aj+2 + (ag—_lz)am + ag—_ll)am-l—l) mod G

y Dait2 4 Z a(z U 5 gial + Z asl ll)g;

= Y @5 +ap g +anig)ad, (6)
where A(0) = A, aﬁgl) = agfl) =0,and 1 <i<[—1.

From (6), we can obtain the coefficient of A(®) as follows:

ay) = ay 21) + a(Z 1)93 +al” ll)g;, (7)

(0)

where a;” = aj, a(l2 D= 9;1) =0,and 1 <7 <[ -1

Using A, C and D of (5) are represented as follows:

l k
C= by nAU D and D =" by 1AV, (8)

i=1 i=1
From (8), the recurrence equations of C' and D can be formulated as
CW =0V by 1y AU, for 1< i <1 (9)
and
DO = DD 4 py; 1 ACD for 1 < i <k, (10)
where C(©) = D) = 0, and C) = Z}”:_Ol C§i)aj and DU = Z;n:_ol dg-i)aj are
ith intermediate results.
Therefore, the coefficients of C and D can be computed as follows:

cg-i) = cg-i_l) + b2(i_1)a§_i—1), for 1 <i <l (11)

and
AV =i 4y 1al Y for 1 <i <k, (12)

where Cg_o) = d;o) =0and 0 <j<m—1.

The equations (11) and (12) can be simultaneously executed because
therie is no data dependency between computations of C' and D.

Therefore, the result of multiplication is represented as follows:

P = CcU4qD®
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3

m—1

= cy)aj +« Z d§k)aj mod G

, =

T 0 0 e

= c;lal + Zdj o 4 d, 7 o™ mod G
=0

31
m o

<
Il
o~ o

= S+ d® g5 +d)ad, (13)

3

.
I
o

where d(_kl) =0.

(0)
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Fig. 1. The proposed multiplier over GF(2%)
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Fig. 2. The proposed multiplier over G F(2%)

Based on the proposed algorithm, the hardware architectures of the pro-
posed semi-systolic multiplier are shown in Fig. 1 and 2. When m is even, the
computations of both C' and D take equally k clock cycles. Otherwise, the
computations of C' and D take [ and k clock cycles, respectively. Therefore,
our proposed architecture is different depending on m. The detailed circuits
of the cells in Fig. 1 and 2 are depicted in Fig. 3, and &, ®, and the boxed
“D” denote XOR gate, AND gate, and one-bit latch(flip-flop), respectively.

p
m Tj cells, and m Uj cells. Otherwise, it includes 0.5m? — 0.5m Sj(l) cells

When m is even, our architecture is composed of 0.5m? —m S:” cells,

and m Vj cells. As shown in Fig. 3, each Sj(i) cell employs four 2-input
AND gates, two 2-input XOR gates, one 3-input XOR gate, and five 1-bit
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Fig. 3. The detailed circuits.

latches in order to simultaneously compute a§i), c§i), and d;i) in (7), (11), and
(12), respectively. Each Tj cell consists of two 2-input AND gates, two 2-
input XOR gates, and three 1-bit latches in order to simultaneously compute
C;D and dgk) in (11) and (12), and each Uj cell includes one 2-input AND
gate, one 3-input XOR gate, and one 1-bit latch for the sake of computing
pj = c§l) + dgi)_l g + d;-k_)l in (13). Each Vj cell is composed of two 2-input

AND gates, three 2-input XOR gates, and one 1-bit latch for computing cg-l)

in (11) and p; = ¢ + d'%) 1 g; + d\; in (13).

3 Analysis of performance

In CMOS VLSI technology, each gate is composed of several transistors [7].
We adopt Aanp, = 6, Axor, = 6, and Aparcy = 8, where Agarg, de-
notes transistor count of an n-input gate, respectively. Also, for a further
comparison of time complexity, we adopt the practical integrated circuits in
[8] and the following assumptions, as discussed in detail in [6], are made:
Tanp, = 7, Txor, = 12, and Trarcey = 13, where Tgarg, denotes the
propagation delay of an i-input gate, respectively.

A circuit comparison between the proposed multiplier and the related
multipliers is given in Table I. By reducing the latency by half, the proposed
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architecture has not only a better space complexity but also a reduced time
complexity as compared to the existing architectures. In detail, the results
show that the proposed semi-systolic multiplier saves about 50, 50, 57 and
31% time complexities as compared to the existing multipliers by Jain et
al. [3], Chiou et al. [4], Lee et al. [5], and Huang [6], respectively.

Table I. Comparison of semi-systolic multipliers

Jain Chiou Lee Huang The proposed multiplier
et al. [3] et al. [4] et al. [5] | et al. [6] even m | odd m

AND, 2m? 2m?42m 2m? 2m? 2m?—m 2m?
XOR2 2m? 0 2m? 2m? m2 m2+2m
XORs3 0 m2+m 0 0 0.5m? 0.5m2—0.5m
Latch 3m? 3.5m2+3.5m 2m? 3m? 2.5m?—m 2.5m?—1.5m
Transistors 48m? 52m?+52m 40m? 48m? 44m? —14m 44m? —6m
Cell delay 44 44 51 32 44 44
Latency m m+1 m m 0.5m+1 0.5m+0.5
Total delay 44m 44m+44 51m 32m 22m+444 22m+422

4 Conclusion

In this paper, we have proposed a new finite field multiplication algorithm of
which the latency is reduced by half as compared to the existing algorithms.
Based on the proposed algorithm, a low latency semi-systolic multiplier is pro-
posed. We have achieved a significant improvement. By reducing the latency
by half, the proposed architecture has not only a better space complexity but
also a reduced time complexity as compared to the existing architectures. We
expect that our architecture can be efficiently used for various applications,
which demand high-speed computation.
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