
LETTER IEICE Electronics Express, Vol.10, No.23, 1–12

A scalable RNS Montgomery
multiplier over F2m

Jingwei Hu1a), Wei Guo1,2b), Jizeng Wei1c), and Ray C.C. Cheung3d)

1 School of Computer Science and Technology, Tianjin University
2 Tianjin Key Laboratory of Cognitive Computing and Application
3 Department of Electronic Engineering, City University of Hong Kong

a) jingweihu@tju.edu.cn

b) weiguo@tju.edu.cn

c) weijizeng@tju.edu.cn

d) r.cheung@cityu.edu.hk

Abstract: This paper presents a fully parallelized and scalable RNS
Montgomery multiplier over binary field. By generalizing the RNS
Montgomery Multiplication (RNS MM) and elaborating a highly ef-
ficient RNS base selection, we are able to obtain a considerably high
speed in our FPGA implementation experiments with acceptable cir-
cuit area and modest critical path delay. Furthermore, this design can
be easily scalable by adjusting a variety of field sizes and field polyno-
mials.
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1 Introduction

Finite field arithmetic is used in many different digital communication sys-
tems and theoretical researches. Two well-known examples are error-coding
theory and cryptography. Finite field is usually divided into prime field (Fp)
and binary extension field (F2m). F2m is becoming rapidly attractive due to
its “carry-free” logic which is well suitable for the hardware implementation.

In most cases, field multiplication (modular multiplication) defines the
system overall performance, the efficient implementation of (F2m) multiplier
is now gaining an extensive attention. Among them, well-known MSbit-first
(MSB), LSBit-first (LSB) and Karatsuba multipliers [6] have been proposed
and expanded by many researchers. However, one big disadvantage of these
multipliers is that they usually work in a specific, fixed field F2m , cannot
be easily extended to any other fields. What’s more, to achieve a higher
speed and low space complexity these multipliers adopt special polynomi-
als as moduli, like AOL, trinomials or pentanomials [8], making their work
not so scalable when defined over arbitrary field polynomial. Among alterna-
tive modular multiplication algorithms found in the literature, Montgomery’s
method has been extensively analyzed, since it replaces divisions with addi-
tions, multiplications and shifts [3]. Also this method can be easily tuned
into different field sizes and field polynomials, putting the concept of scalable
design methodology into practice [4, 9]. In recent years, RNS has enjoyed
renewed scientific interest due to its ability to perform fast and parallel mod-
ular arithmetic. This method splits large-scale numbers into smaller ones
(RNS channel reduction) by exploiting different small co-prime modulis (RNS
bases). As a result, integrating the two methods above together, a series of
RNS Montgomery multiplier (RNS MM) architectures over prime field have
been proposed [1, 2].

In this paper, RNS MM algorithm over F2m is elaborately studied and
optimized. After a careful mapping into the FPGA platform, an efficient scal-
able RNS MM architecture is proposed. The main contributions of this paper
include proposing a binary field version of RNS MM algorithm, concluding
a modified base extension algorithm without parameter approximations and
adopting pseudo-Mersenne-like modulis reducing the time and area complex-
ity in the architecture. Additionally, our design is scalable for different field
sizes and field polynomials.

The paper is organized as follows: A brief introduction to RNS and
Montgomery algorithm is given in section 2. The proposed RNS MM algo-
rithm is detailed in section 3. Section 4 depicts the hardware implementation
of our design on FPGA platform. Relevant analyses, results and comparisons
are concluded in section 5.

2 Preliminaries

2.1 Extended binary field F2m

Let β ∈ F2m and be a root of the irreducible polynomial f(x) = xm +
fm−1x

m−1 + . . . + f1x + f0 over F2. Then, the set of {1, β, . . . , βm−1} con-
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stitutes the polynomial basis in F2m . With polynomials basis, the elements
in F2 can be represented as polynomials of degree at m-1 in the form F2m =
{a(β)|a(β) = am−1β

m−1 + . . . + a1β + a0}, where the coefficients ai are
the polynomial basis coordinates in F2. Polynomial basis can also be rep-
resented as the set {1, x, . . . , xm−1} and, therefore, F2m = {a(x)|a(x) =
am−1x

m−1 + . . . + a1x + a0}.
Arithmetic operations in F2m are performed modulo an irreducible poly-

nomial f(x) over F2. Addition of polynomials is carried out under modulo 2
arithmetic. Therefore, the addition of two polynomials becomes the bitwise
exclusive-or (XOR) of their binary representations. Subtraction is exactly
the same as addition in modulo 2 arithmetic, so 1 − x equals 1 + x.

Among the F2m arithmetic operations, multiplication is usually considered
the most important, complex, and time-consuming operation. With reference
to a degree m irreducible polynomial f(x) = xm + fm−1x

m−1 + . . .+ f1x+ f0

over F2, let a(x) and b(x) be two elements in the field and c(x) be their
product. Then field multiplication can be defined as:

c(x) = a(x)b(x) mod f(x) (1)

2.2 Montgomery multiplication on F2m

In order to reduce the computational complexity of field multiplication over
F2m , Koc [3] proposed Montgomery multiplication on F2m . The basic idea
of this method is to achieve field multiplication efficiently without trial divi-
sions. Algorithm 1 [3] depicts the word-level algorithm for the Montgomery
multiplication on F2m . Operand X is partitioned into �m/w� words of length
w where X =

∑�m
w
�

i=0 Xix
iw. Let S0 and P0 be the least significant words of

S and P , respectively. This algorithm is similar to the algorithm given for
the Montgomery multiplication of integers. The only difference is that the
final subtraction step required in the integer case is not necessary in the
polynomial case.

Algorithm 1: Montgomery Multiplication on F2m

Input: X =
∑�m

w
�

i=0 Xix
iw,Y =

∑m−1
i=0 yix

i,P =
∑�m

w
�

i=0 Pix
iw,P ′0 = P−1

0 mod xw

Output: S = XY x−w mod P
1 S ← 0
2 for i← 1 to �m

w
� do

3 S ← S + XiY
4 M ← S0P

′
0 ( mod xw)

5 S ← S + MP
6 S ← S/xw

7 return S

2.3 Residue Number System (RNS)
RNS is defined by pairwise co-prime integer constants: B = {b1, b2, . . . , bn}
and MB = Πn

i=1bi, bi ∈ B. Any integer X, 0 ≤ X < MB, is uniquely
represented by {X}B = {x1, x2, . . . , xn}, where xi = X mod bi=|X|bi , 1 ≤
i ≤ n. bi, i ∈ [1, n] is called RNS base (RNS channel), {X}B is called RNS
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number, xi, i ∈ [1, n] is called RNS element and the process of X → |X|bi is
called channel reduction.

The arithmetic operations of RNS are similar to ordinary integers with
a great improvement in their parallelism. Let {X}B = {x1, x2, . . . , xn},
{Y }B = {y1, y2, . . . , yn}, {R}B = {r1, r2, . . . , rn} be the RNS representa-
tion of X, Y, R respectively, the arithmetic operations of RNS are defined as
follows:

• R = |X ± Y |MB ⇔ {R}B = {X}B ± {Y }B, where ri = |xi ± yi|bi

• R = |X · Y |MB ⇔ {R}B = {X}B · {Y }B, where ri = |xiyi|bi

• R = |X/Y |MB ⇔ {R}B = {X}B · {Y −1}B, where ri = |xiy
−1
i |bi

According to the operations above, field arithmetics become easier due to
smaller operands in length and data independency in each RNS channel.
Therefore, they are extremely suitable for parallelized hardware architectures
to implement.

Likewise, it is possible to apply RNS into binary field because Chinese
Remainder Theorem (CRT) still holds in binary field. That means, for a very
large element in F2m , RNS is capable of dividing it into several much smaller
elements as a whole for the sake of efficient computation.

On top of that, the computation of Montgomery multiplication on F2m

can become beneficiaries from RNS as well. This is primarily because op-
erations in each step in Algorithm 1 can be transformed into RNS form
and thus, it is likely to make further efforts to improve the efficiency of this
algorithm.

In the next section, RNS Montgomery multiplication is presented in ac-
cordance with this initiative.

3 Proposed RNS Montgomery multiplication on F2m

3.1 RNS Montgomery reduction
Let X, Y ∈ F2m , B = {b1, b2, . . . , bn}, C = {c1, c2, . . . , cn}, n < m be two
discrepant RNS bases and MB = Πn

i=1bi, bi ∈ B, MC = Πn
i=1ci, ci ∈ B.

RNS Montgomery multiplication aims at computing S = |XY M−1
B |p in B, C

(namely, {S}B and {S}C), which is illustrated in Table I in comparison with
the original Montgomery method. Base Extension shown in this table is used
to transform representation in RNS base B to that in RNS base C, or the
opposite.

Table I. Derivation of RNS Montgomery Multiplication on
F2m

in base B in base C Montgomery [3]

1 {T}B ← {X}B · {Y }B {T}C ← {X}C · {Y }C T ← XY
2 {Q}B ← {T}B · {p−1}B Q← Tp−1 mod MB

3 {Q}B BaseExtension−−−−−−−−−−→ {Q}C
4 {S}C ← ({T}C + {Q}C · {p}C) · {|MB

−1|MC
}C S ← (T + Qp) ·M−1

B

5 {S}B BaseExtension←−−−−−−−−−− {S}C
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Notice that two RNS bases (B and C) are necessary for the correctness
of this algorithm. If either of them is left out, the result in step 4 will always
be zero. For instance, assume base C has been taken away, that means base
extension in step 3 is discarded. Accordingly, the computation has to be
done in base B instead: {S}B = ({T}B + {Q}B · {p}B) · {|MB

−1|MC
}B =

({T}B + {T}B) · {|MB
−1|MC

}B = 0, which is base off the right track.
We have concluded the RNS Montgomery Multiplication on F2m in Al-

gorithm 2. For a simplistic description of this algorithm, technical details
of base extension inside will be addressed in the next subsection. This algo-
rithm offers high parallelism with each RNS channel working independently.
Meanwhile, scalability is obtained by increasing RNS channel numbers in the
algorithm mentioned regardless of filed sizes or irreducible polynomials. Ad-
ditionally, the stage of pre-computation in step 1 is irrelevant to operands X

and Y . As a result, all the computations in this step can be computed be-
forehand and stored in memory components. Thus, this algorithm is further
simplified.

Algorithm 2: RNS Montgomery Multiplication
Input: RNS bases B,C, multiplication operands {X}B ,{X}C ,{Y }B ,{Y }C being

RNS representation of X and Y (X, Y < xk+1) and moduli p
Output: {S}B ,{S}B such that |S|p = |XY M−1

B |p
1 Precompute {|p−1|MB}B , {|MB

−1|MC}C and {p}C , where
MB = Πn

i=1bi, bi ∈ B, MC = Πn
i=1ci, ci ∈ C

2 {T}B ← {X}B · {Y }B
3 {Q}B ← {T}B · {|p−1|MB}B
4 {Q}B BaseExtension−−−−−−−−−−→ {Q}C
5 {T}C ← {X}C · {Y }C
6 {S}C ← (TC + {Q}C · {p}C) · {|MB

−1|MC}C
7 {S}B BaseExtension←−−−−−−−−−− {S}C
8 return {S}B

Nevertheless, the boundary values of inputs in Algorithm 2 are supposed
to be restricted so as to ensure the validity of this method. If the two base-
extension steps (step 3 and step 5 in Algorithm 2) are error-free, we can
specify the condition that MB and MC should satisfy for a given p. Condition
that gcd(MB, p) = 1 and gcd(MB, MC) = 1 is sufficient for the existence
of |p−1|MB

and |MB
−1|MC

respectively. MB ≥ xk+1 is also sufficient for
S < xk+1 when x, y < xk+1. Actually,

S =
xy + |xy × p−1|MB

p

MB
<

xy + MBp

MB

=
xy

MB
+ p < max{xk+1, p} = xk+1

(2)

This equation also shows MC ≥ xk+1 is sufficient for S < MC. In sum-
mary, the following four conditions are sufficient for the correctness of this
algorithm:

gcd(MC, p) = 1, gcd(MB, MC) = 1, MB ≥ xk+1, MC ≥ xk+1 (3)
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3.2 Base extension
The operation to transform the representation in one RNS base to another
base is called Base Extension (BE). The reason why we have to do this
is that one can not obtain the correct value S in step 4 of Algorithm 2
unless Base Extension is done in step 3 (actually one can infer S = 0). The
final base extension in step 5 of Algorithm 2 helps to convert the value
S back into the RNS form in B. To compute {T}C = {t′1, t′2, . . . , t′n} from
{T}B = {t1, t2, . . . , tn}, we exploit Chinese Remainder Theorem (CRT) to
obtain the following equations,

T =

∣∣∣∣∣

n∑

i=1

|tiBi
−1|biBi

∣∣∣∣∣
MB

=

∣∣∣∣∣

n∑

i=1

ξiBi

∣∣∣∣∣
MB

=
n∑

i=1

ξiBi − λMB =
n∑

i=1

ξiBi (4)

where |ξi|bi = |tiBi
−1|bi , 1 ≤ i ≤ n, and Bi = MB/bi. Ci is defined sim-

ilarly for Base C. Notice that approximation parameter λ = 0 makes the
Base Extension Transformation (Algorithm 3) quite easier in the binary
field because no additional logic is required to evaluate the approximation,
with multiplication and addition on F2m only to perform the base extension
procedure. Then {T}C = {t′1, t′2, . . . , t′n} can be computed as follows:

t′j =

∣∣∣∣∣

n∑

i=1

ξiBi

∣∣∣∣∣
cj

=

∣∣∣∣∣

n∑

i=1

ξi|Bi|cj

∣∣∣∣∣
cj

(5)

|Bi|cj (1 ≤ i, j ≤ n) can be precomputed once B and C are fixed.

Algorithm 3: Base extension algorithm for k-th element of {T}C

Input: |T |bi , for i ∈ {1, . . . , n}
Output: |T |ck

1 Precompute |Bi
−1|bi , |Bi|ck

2 z ← 0
3 for i← 1 to n do
4 ξi ← |tiBi

−1|bi

5 z ← z + ξi|Bi|ck

6 return |z|ck

3.3 Base selection
Before starting to perform RNS Montgomery multiplication (Algorithm 2),
it is required to turn primitive operands in representation of binary field
into RNS elements. This initial operation of conversion is called channel
reduction [2]. In order to expedite the processing of channel reduction, it
is essential to find an appropriate RNS base selection. Here we propose the
pseudo-Mersenne-like numbers bi = xw + ξ(i)(w < m, ξ(i) < xw/2) as RNS
bases in this paper. Consequently, for an operand X ∈ F(2m) and RNS
base B = {b1, b2, . . . , bl}, the conversion of this operand can be written as
(X → {X}B):

xi = |X|bi = (XHxw + XL) mod xw + ξ(i)

= XH(xw + ξ(i)) + XHξ(i) + XL mod xw + ξ(i)

= XHξ(i) + XL mod xw + ξ(i), i ∈ {1, . . . , l}, xi ∈ {X}B

(6)
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where XL denotes the least significant w bits of X, XH denotes the most
significant m−w bits of X and xi ∈ {X}B. It is noticeable that the conversion
can be remarkably efficient when ξ(i) < xw/2. As a matter of fact, the degree
m of X is reduced to degree m − w/2 of XHξ(i) + XL via Equation (6).
After �2m

w �− 2 iterations of Equation (6), RNS representation of X can be
obtained eventually. By using this base selection, readers can also find the
efficiency of the modular multiplication on each RNS channel presented in
the next subsection.

3.4 Fast field multiplication on F(2w)
In this subsection, we tackle the matter of efficient implementation of {R}B =
{X}B · {Y }B, where {X}B = {x1, x2, . . . , xn}, {Y }B = {y1, y2, . . . , yn},
{R}B = {r1, r2, . . . , rn}, ri = |xiyi|bi (1 ≤ i ≤ n). which is the paramount
fundamental operation in the proposed RNS Montgomery multiplication al-
gorithm (Algorithm 2).

Notice the operation of modular multiplication (namely, ri = |xiyi|bi)
on F(2w) is critical becuase each operation is performed on F(2w) in the
context of RNS. The proposed base selection method in this paper is able
to significantly reduce the computational intensiveness of this operation by
exploiting the deliberately selected RNS bases.

Modular multiplication on F(2w) involves two steps: polynomial multipli-
cation and reduction modulo field polynomial. For the stage of polynomial
multiplication, the multiplication of two operands in polynomial base con-
sists of shift-operation and addition in F(2w) and it can be easily implemented
with utilization of XOR logic: Suppose yi =

∑w−1
j=0 (yi)jx

j , then

ri = xi · yi =
w−1∑

j=0

xi(yi)jx
j =

w−1∑

j=0

(xi · (yi)j) 	 j (7)

As far as the stage of reduction is concerned, with reference to the pseudo-
Mersenne-like numbers used as RNS modulis in section 3.3, the final reduction
is greatly simplified, and we choose the pentanomial on the best performance
(that is, bi = xw + ξ(i) = xw + xl + xm + xn + 1, we abandon the sim-
plest trinomial because there are not enough co-prime trinomials for us to
use). Nevertheless, these RNS bases in pentanomial form, unlike other liter-
ature [6, 8] mentioned in our introduction, do not exert negative influence on
the scalability of our work. This is simply because all kinds of field polyno-
mials (trinomials, pentanomials or whatever they are) can be adapted into
RNS modulis via Channel Reduction. In other words, although RNS mod-
ulis are constructed in the form of pentanomials, our work is still capable
of handling different type of filed polynomials, resulting in intactness of the
hardware scalability. Algorithm 4 depicts the simplicity of the field multi-
plication on F(2w). This algorithm can be easily deduced from Equation (6)
aforementioned (ξ(i) = xl + xm + xn + 1).
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Algorithm 4: Fast Field Multiplication on F(2w)
Input: x ∈ F(2w), y ∈ F(2w) and b = xw + xl + xm + xn + 1, l < �w/2�
Output: |xy|b ∈ F(2w)

1 c← xy
2 for i← 0 to 1 do
3 cH ← c/xw

4 cL ← c mod xw

5 c← xlcH + xmcH + xncH + cH + cL

6 return c

4 Hardware implementation

We have implemented the algorithm aforementioned on Xilinx Virtex-II plat-
form. Figure 1 depicts the suitable architecture for the proposed RNS
Montgomery multiplication algorithm (digit size w = 33, of F2m). In our im-
plementation, �m

w � dual-mode multipliers (DMMs) are exploited to achieve

Fig. 1. Proposed F2m RNS Montgomery Multiplier Archi-
tecture
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the highest parallelism. These multipliers controlled by a scheduling se-
quencer which performs the Algorithm 2 in section 3. In fact, the sequencer
is a finite state machine with 4 states (S 1, BT A, BT B, S 2). Step 1 and
step 2 computed on RNS channel B in Algorithm 2 are executed in S 1,
which takes two clock cycles each. On the other hand, step 5 and step 6,
which are the computation on RNS channel C. Differently, S 2 takes three
cycles to execute as step 5 takes one clock cycle while step 6 takes two (first
perform multiply-accumulation then multiplication). BT A and BT B are
about the Base Extension procedure in step 3 and step 4 respectively. Both
of them take two cycles to achieve the task, which is detailed in Algorithm
3. The initial operands are conveyed into the multipliers through the sys-
tem bus. The outputs of the multipliers are connected to the main MUX
component which functions as the custodian for the bus entrance. There
are interconnects between each of the multipliers because some intermediate
results are shared during the Base Extension procedure (Algorithm 3).

Each DMM has two RNS channels (one in B and the other in C) due
to the two RNS bases employed within the algorithm. Our DMM is advan-
tageous when one has to alter the modulis in the RNS channel to pursue a
better time-area tradeoff, because one simply need to tune the nbitshifter

to the modulis they want (as long as the modulis are pseudo-Mersenne-like
pentanomials, that is, f = xw + xl + xm + xn + 1, l < 
w/2�) without any
other additional consumption. ROM is embedded into the multiplier with
pre-computed {|p−1|MB

}B, {|MB
−1|MC

}C, {p}C, |Bi|ck
, |Ci

−1|ci and |Ci|bk

stored. Table II summarizes the memory requirements of the proposed ar-
chitecture for F2m RNS Montgomery multiplication, note that there are ex-
actly 5�m

w �w + 2�m
w �2w bits pre-computed data in total stored in the ROM.

ALU serves as the arithmetic core component of the multiplier targeting the
computation of multiplication and multiply-accumulation on F2w (namely,
mul x op×mul y op and mac op + mul x op×mul y op respectively). The
intermediate result generated in Base Extension procedure (Algorithm 3)
is stored in tmp reg, which is shared by all the other dual-mode multipliers.

The internal structure of ALU is primarily composed of XOR gates and
switch MUXs. The Partial Product Accumulator (PPA) in the number of w

F2 adders is used to generate the results of the multiplication with respect to
(4). There are two reduction stages to obtain the final result by the method
proposed in Algorithm 4. With 8 adders employed only, the reduction part

Table II. Memory Consumption of the Proposed RNS MM
Architecutre over F2m

Operation Parameters stored ROM Consumptions

RNS MM in
Algorithm 2

{|p−1|MB}B �m
w
�w bits

{|MB
−1|MC}C �m

w
�w bits

{p}C �m
w
�w bits

Base Extension in
Algorithm 3

|Bi
−1|bi (i{∈ 1, . . . , �m

w
�}) �m

w
�w bits

|Bi|ck (i, k{∈ 1, . . . , �m
w
�}) �m

w
�2w bits

|Ci
−1|ci (i{∈ 1, . . . , �m

w
�}) �m

w
�w bits

|Ci|bk (i, k{∈ 1, . . . , �m
w
�}) �m

w
�2w bits
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reveals a dramatic reduction in timing and area complexity. The final adder
is functional when multiply-accumulation mode is enabled.

Another significant characteristic of our work is that the architecture
proposed is easily adjusted into a variety of field sizes and field polynomials,
making this design nicely scalable. One merely needs to trim the number
of the multipliers to get adjusted to different field sizes without making any
changes to interior of the multiplier. As for the field polynomials adopted for
various applications, rewriting the data stored in ROM is sufficient enough
to meet this requirement.

5 Performance and comparisons

In an effort to obtain the exact complexity of the proposed multiplier, we
analyze and compare the time and area complexities of the presented RNS
MM multiplier over F2233 when it comes to different digit sizes in Table III.
As the escalation of the digit size, it runs faster but with a considerable in-
crease in circuit area. Thus it can be fairly desirable to restrict the digit
size obtaining modest area consumption and an appropriate latency. The
clock frequency of the proposed pipelined RNS Montgomery multiplier im-
plementations remains almost constant as the chip covered area increases. It
indicates that our design will maintain a modestly high clock frequency with
a dynamic range of digit size.

Table III. Time and area complexity comparison of RNS
Montgomery multiplier architecture over F2233

Digit Size Clock
Cycles

Critical Path
Delay

Time Area

w = 17 35 10Txor + 6Tmux
a 350Txor+210Tmux ≤ 5488Sxor +

432Smux
b

w = 33 23 11Txor + 6Tmux 253Txor+138Tmux ≤ 9528Sxor +
344Smux

w = 63 15 12Txor + 6Tmux 180Txor + 90Tmux ≤ 16644Sxor +
292Smux

w = 127 11 13Txor + 6Tmux 143Txor + 66Tmux ≤ 33026Sxor +
274Smux

a Txor = delay of xor gate, Tmux = delay of mux
b Sxor = area of xor gate, Smux = area of mux

A casestudy on the performance for different field sizes (some of the NIST
recommended binary fields and F2193) is given in Table IV. We assume each
RNS channel is fixed on F233 and maximal parallelism is reached (�m

33� DMMs
work simultaneously) for a more intuitive and clearer illustration. In this
case, critical path delay is not affected by field size because DMM structure
remains intact once datawidth of RNS channel is determined. To cater to
different field sizes, one merely has to arrange MMs available, precomupte
data in ROMs and slightly alter the implementation of sequencer in favor of
constituting a robust scalable design.

The proposed RNS MM architecture is captured in Verilog HDL and im-
plemented in hardware using Xilinx R© VirtexTM-II Family Series XC2V3000
device as the target FPGA (Virtex-4 and Virtex-5 implementations are also
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Table IV. Scalability analysis of RNS Montgomery multi-
plier architecture over F2163 , F2193 , F2233 and F2283

Field Size Clock
Cyclesa

Critical Path
Delay

Time Area

m = 163 17 11Txor + 6Tmux 187Txor+102Tmux ≤ 5955Sxor +
215Smux

m = 193 19 11Txor + 6Tmux 209Txor+114Tmux ≤ 7146Sxor +
258Smux

m = 233 23 11Txor + 6Tmux 253Txor+138Tmux ≤ 9528Sxor +
344Smux

m = 283 25 11Txor + 6Tmux 275Txor+150Tmux ≤ 10719Sxor +
387Smux

a Assume the highest parallelism is obtained and digit size w = 33.

Table V. FPGA Implementations for the Proposed RNS
Montgomery Multipliers on F2163 , F2233 , and F2283

Field Size Platform LUTs Critical Path Delay(ns) Clock Cycles

163
Virtex-II 6,216 10.02 17
Virtex-4 5,481 7.16 17
Virtex-5 3,863 6.19 17

233
Virtex-II 9,978 10.13 23
Virtex-4 8,785 7.21 23
Virtex-5 6,215 6.25 23

283
Virtex-II 11,325 10.16 25
Virtex-4 9,893 7.22 25
Virtex-5 6,997 6.31 25

Table VI. Performance Comparison of FPGA Implementa-
tions for F2m Multipliers

Reference Field
Size

Platform LUTs CPDb

(ns)
Clock
Cycles

Scal.a Speed-
Up

LSBbit [6] 163 - 163 2.97 163 No 2.08

Kitsos [4] 163 Virtex-E 869 13.00 163 Yes 9.09

HybridKara [7] 233 Virtex-II 11,746 11.07 9 No 0.43

HarrisMont [5] 256 Virtex-II 5,987 6.94 144 Yes 4.29

FournarisMont [9] 163 Virtex-II 2,114 4.01 328 Yes 5.65

Ours
Virtex-II 9,978 10.13 23 Yes 1

233 Virtex-4 8,785 7.21 23 Yes -
Virtex-5 6,215 6.27 23 Yes -

a scalability
b critical path delay

included for future comparison by other people). We choose this device as
our evaluation platform mainly for a fair and square comparison with other
previous works published in literature.

To demonstrate the scalability of our work, the synthesized results of
the proposed RNS MM multiplier on F2163 , F2233 and F2283 are indicated in
Table V. Unified 33-bit DMM is adopted in this experiment. 5 DMMs
like this are instantiated to construct a F2163 RNS Montgomery multiplier,
while 8 DMMs and 9 DMMs are required for a F2233 multiplier and a F2283

multiplier seperately.
Table VI compares the synthesized results of the proposed RNS MM

multiplier on F2233 with other existing work (F2233 is the recommended bi-
nary field by NIST for elliptic curve digital signature algorithm (ECDSA)).
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To clarify the timing performance of this work, we introduce the following
indicator shown in the last column of Table IV,

speed-up =
Tbenchmark

Tours
=

CYCLESbenchmark × CPDbenchmark

CYCLESours × CPDours
(8)

Our work performs best among all the scalable design in terms of total com-
puting time elapsed, with 9.09, 4.29, 5.65 speed-up improvement when the
benchmark comes to [4, 5, 9] respectively. One can also find that the un-
scalable design (HybridKara [7]) performs even better than ours (about 57%
above ours from the perspective of speed-up). But it should be marked that
this design is defined over fixed size field F2233 and over fixed special form
irreducible polynomials (AOL, trinomials, pentanomials), which implies that
their work will be unscalable when defined over arbitrary fields. The large
LUT consumption of this design compared with [4, 5, 9] is due to the intrinsic
property of RNS parallelism, in which 8 DMMs are employed to obtain an
ultimate computational capability. But for some area or power constrained
applications, it is not so critically intended. To get adjusted to these appli-
cations, the numbers of DMMs used can be trimmed to be smaller (that is, 4
DMMs or 2 DMMs, so that LUTs can be cut down into a half or a quarter of
the primitive design). Summarizing all the above, computation speed is very
fast for the proposed RNS Montgomery multiplier implementation with the
modestly acceptable circuit area and our work features in supporting scalable
design methodology.

6 Conclusion

In this paper, the RNS Montgomery multiplication (RNS MM) has been
generalized into binary extension field and an efficient base selection method
has been examined. Then we have presented a scalable RNS Montgomery
multiplier architecture and we also have evaluated the performance of the
proposed RNS Montgomery multiplier over F233. It has been implemented in
FPGA and the area and timing results have been presented. The experimen-
tal results have shown that we are able to achieve an impressive high speed
capacity (for field F2233 , the proposed architecture attains the Montgomery
multiplication in 0.233μs, with at least 4.29 speed-up compared to other
Montgomery scalable designs in literature) and support different field sizes
and irreducible polynomials.
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