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Abstract: Compressive sensing (CS) with sparse random matrix for
the random sensing basis reduces source coding complexity of sensing
devices. We propose a downsampling scheme to this framework in order
to further reduce the complexity and improve coding efficiency simulta-
neously. As a result, our scheme can deliver significant gains to a wide
variety of resource-constrained sensors. Experimental results show that
the computational complexity decreases by 99.95% compared to other
CS framework with dense random measurements. Furthermore, bit-
rate can be saved up to 46.29%, by which less bandwidth is consumed.
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1 Introduction

Our daily lives have been permeated by various sensing devices ranging from
mobile phones to biosensors. Most natural or man-made signals have correla-
tions that can be translated into a certain structure when captured by sensors.
Conventional source coding schemes leverage this structure via transform
coding, which represents the signal with only a few principal components.
These principal components along with side information are entropy-coded
using variable-length codes such as arithmetic coding. However, this near-
optimal coding process is not applicable to many resource-constrained devices
due to its complexity.

Compressive sensing (CS) shifts the complexity burden of conventional
source coding from encoder to decoder with reasonable expense in coding
efficiency [1, 2]. Thus CS methods can be applied to various types of resource-
limited sensors such as wearable devices [3]. In CS, a signal is projected onto
random sensing basis, which is essentially the computation of inner products,
that is, multiplication and summation operations.

The sparse random matrix significantly reduces CS encoding complexity
while assuring the same performance as dense random matrices that are
prevalent in CS [4]. This sparse random matrix is a binary and sparse matrix
used for random sensing basis of CS.

In this paper, we aim to reduce the complexity of these operations fur-
ther by incorporating downsampling into CS with the sparse random matrix.
We show the downsampling not only reduces the computational burden of
CS-implemented sensor devices dramatically, it also improves the coding ef-
ficiency of CS when combined with linear interpolation.

Experimental results demonstrate that our downsampling approach out-
performs existing CS framework, which can be translated into more resource
savings if we were to retain the same data quality. As a result, resource-
limited sensing devices can benefit from our low-complexity CS approach
without compromising coding performance.

2 Low-complexity CS with downsampling

Consider a time-domain signal x € RY captured by a sensor that can be
compactly represented in some orthogonal basis W with only a few large
coefficients (principal components) and many small coefficients close to zero,
which is a typical scenario in real-world sensing. We can project x onto
random sensing basis ® € RM*N as follows [5]:

y = &x = s, (1)

where the transformed signal s is K-sparse (K large coefficients).

In Eq. (1), ® is generally constructed by sampling independent identi-
cally distributed (i.i.d.) entries from the Gaussian or other sub-Gaussian
distributions that have more uniform and shorter tail than Gaussian (e.g.,
Rademacher distribution) [6]. (The moment-generating function of a sub-
Gaussian distribution is bounded by that of a Gaussian.) Consequently, ®
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is dense with virtually every entry set to non-zero real numbers. This leads
to O(M N) multiplication and summation operations; however, this can be
costly to resource-limited sensors without specific CS-supporting architec-
tures [6].

The sparse random matrix turns out to be a solution to this complexity
issue. The random sensing matrix ® now has d ones for each column; and all
other entries are zeros. (Each column has roughly the same number of ones:
slight unbalance in the number does not affect overall results [4].) It was
shown that this matrix construction could be deemed an adjacency matrix
of an unbalanced expander graph, which at the same time satisfies RIP-1
(restricted isometry property) [4]:

(1 =d)lsll, < l[@sl, < (1+d)[sl;, (2)

where 0 > 0 should not be close to one [6]. Note that ® constructed using
the Gaussian or sub-Gaussian distributions satisfies RIP-2, i.e., the £ norm
instead of the ¢; norm in Eq. (2). It was also shown that the sparse random
matrix satisfying RIP-1 was essentially as good as dense matrix satisfying
RIP-2 [4]. Furthermore, a decoder with the RIP-1 matrix can recover the
original signal using linear programming as in the case of RIP-2 matrix, which
is given by

min||5||, subject to PUS=1y. (3)

The solution s* to Eq. (3) obeys
s = sl <C-lls = skl (4)

for some constant C', where s is the vector s with all but the largest K
components set to 0: the quality of recovered signal is as good as that with
the K most significant pieces of information [4, 6]. We get progressively
better results as we compute more measurements M [7].

Because of the selective nature of the sparse random matrix, computa-
tional complexity is reduced to O(dN), where d = O(log(N/K)) [4, 8]. This
is a considerable saving compared to the general case of O(MN), where
M = O(Klog(N/K)). In fact, we found that d could be decreased as small
as 2 without noticeable loss in coding efficiency from our experiments where
two different signal types were used. (If d = 1, a subset of K columns taken
from @ can be linearly dependent when M < N since there can be at most
(]\14 ) unique columns. )

We now introduce the downsampling scheme, which is the main contri-
bution of this paper, so as to further reduce the computational complexity
and increase the coding performance at the same time. Fig. 1 presents our
low-complexity CS architecture. The downsampling process takes every Lth
sample and the upsampling process inserts L—1 zeros between samples, where
L is a downsampling factor. Note that the sparse random matrix generation
can be synchronized between encoder and decoder using pseudorandom num-
ber generator, which is a common practice in CS literatures [7].
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Fig. 1. Low-complexity CS architecture incorporating
downsampling.

Another important thing is that our downsampling at the encoder does
not involve prior low-pass filtering, which inevitably incurs aliasing of the
signal. However, we empirically found that using low-pass filters (LPFs) gen-
erally introduced much distortion when up-sampled and linear-interpolated.
This can be attributed to the fact that real LPFs do not compare with an
ideal LPF in terms of sharp cutoff between passband and stopband.

The downsampling in Fig. 1, combined with upsampling and linear inter-
polation, yields better coding performance than general CS framework. The
rationale behind the better coding performance with downsampling is illus-
trated in Fig. 2, where original sensor data and two approximations using
CS and CS with downsampling are drawn together. We can identify that
down-sampled approximation is smoother than general CS approximation,
resulting in less distortion. In other words, CS recovery tries to approximate
the original signal while incurring distortion bounded by Eq. (4), which can
be mitigated by less sample points recovery and smoothing out fluctuations
using linear interpolation.
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Fig. 2. Air temperature data [9] and its approxima-
tions using CS with and without downsampling
(Daubechies-8 wavelet for ¥).

The downsampling scheme further reduces the encoding complexity to
O(dN/L). We classify overall encoder complexities in Table I.
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Table I. Overview of encoder complexities.

| General CS | Sparse Random Matrix | Our Scheme |
[ONKlog(N/K)) | O(Nlog(N/K)) | O((N/L)log(N/K)) |

3 Experimental results

Two different signal types from environmental sensor data set shown in Fig. 3
were selected for our experiments [9]. In Fig. 4, we show averaged results of
our downsampling scheme and the baseline scheme without downsampling.
We here consider sum of squared error (SSE) distortion; parameters of the
sparse random matrix are M = 1024, N = 2048, and d = 2. It should be
noted that in Fig. 4, the performance of baseline scheme is equivalent to
general CS framework that uses dense Gaussian matrix for random sensing
basis.
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Fig. 3. Environmental sensor data of (a) static and (b)
dynamic types.
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In Fig. 4, the extra benefit of our scheme appears at L = 2 (and 4); how-
ever SSE increases after this point, which means too few sample points and
interpolation between them oversimplify approximations. Obviously, if re-
ducing the computational burden is the utmost importance, a sensing device
can increase the downsampling factor while sacrificing data quality.

Meanwhile, we obtain these results using d/N/L computations as com-
pared to M N computations in general CS framework, which especially is
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Fig. 4. SSE comparison with several downsampling fac-
tors for (a) air temperature and (b) solar radiation
data.

99.95% of reduction at L = 4. Furthermore, we can leverage this benefit
to reduce the length of vector y, which corresponds to rate and bandwidth
usage of sensors. Therefore, we can find the minimum number of measure-
ments that allows the same SSE as the baseline measurements. The resulting
rate savings were 46.29% for “air temperature” data and 32.62% for “solar
radiation” data.

4 Conclusion

This paper proposes a low-complexity CS that is suitable for resource-
constrained sensing devices. We can dramatically reduce typical encoding
complexity of CS, employing both sparse random matrix and downsampling
scheme. Moreover, we have shown that extra coding efficiency from down-
sampling can be transformed into extra rate savings. We plan to extend the
downsampling approach experimented temporally within individual device
to spatially distributed sensing domain.
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