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Abstract: Squaring and exponentiation of a number are fundamental
arithmetic and widely used in the real-time applications such as image
processing, digital filtering and cryptography. In this paper, we propose
a squaring algorithm of an integer with canonical signed-digit (CSD)
number representation. For an n-digit CSD number, our method gen-
erates n/4 CSD numbers of 2n-digit length as partial products. This
result is half with respect to the conventional squaring algorithms. We
implement the squaring circuit based on this algorithm and compare
with some existing circuits. Our circuit is 40% faster than the known
squaring circuit for binary numbers.
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1 Introduction

Squaring and exponentiation are one of the important arithmetic operations.
These operations are widely used in many applications such as image pro-
cessing, digital filtering and cryptography. Therefore, developing low-power,
small-area and fast algorithms and implementations are required. In response
to those requirements, various squaring circuits based on the binary number
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system have been proposed [1, 2, 3].
The canonical signed-digit (CSD) representation is one of the number rep-

resentations in signed-digit (SD) number system which has two main prop-
erties:

1. The number of nonzero digits is minimal.

2. No two consecutive digits are both nonzeros.

For any integer, there exists only one representation which satisfies the above
property. For example, (0101) is the CSD representation of 3, where 1 stands
for −1. Since the nonzero digits is minimal, the number of additions can be
reduced if it is used for the multiplication. Thus, CSD representation is
recently used in some applications such as FIR filter [4].

To apply CSD representation to various arithmetic operations, several
recoding algorithms have been developed to obtain a CSD representation
efficiently since the first CSD recoding algorithm was proposed in [5].

In this paper, we propose a squaring circuit based on the canonical signed-
digit (CSD) number representation. Since the input of our circuit is CSD
represented number, some conversion circuit does not need to squaring the
CSD represented number. The output can be represented by SD number or
CSD number. Efficient conversion algorithms and circuits from SD number
to CSD number have been proposed in [6]. This circuit consists of a partial
product generator, CSD adder and multi operand SD adder. We propose a
new partial product generator based on a CSD number representation. For
n-digit CSD number, our partial product generator generates n/4 partial
products which are CSD number. The number of partial products is about
1/2 compare with the conventional multiplier with modified-Booth recoding.
The CSD adder and multi operand SD adder stand for merging the partial
products to obtain a square of the input.

2 SD number system

In this section, we introduce a number system and representation which are
treated in this paper.

The signed-digit (SD) number system is a redundant binary representa-
tion. The SD representation has a fixed radix 2 and a digit set {1, 0, 1} where
1 stands for −1. An integer X can be represented by an n-digit SD number
representation as follows:

X = xn−12n−1 + xn−22n−2 + · · · + x121 + x0, xi ∈ {1, 0, 1}. (1)

A given n-digit SD number representation has a value range of [−(2n−1), 2n−
1]. Obviously,

−X = (xn−1 xn−2 · · ·x0), (2)

where xi stands for −xi.
There are several representation of an integer. For example, an integer 5

can be represented as (0101), (1101) and (1011). One famous property of the
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SD number system is the carry-propagation-free addition and subtraction.
Therefore, the SD number system is suitable in the field of large number of
digit arithmetic, such as a cryptography.

3 A CSD-based partial product generator for squaring

In this section, we propose a CSD-based partial product generator for calcu-
lating a square of the input. This generator inputs an n-digit CSD number
and outputs n/4 CSD numbers of 2n-digit. Throughout this paper, we as-
sume that the length n is a multiple of 4.

For n = 4, numbers between −10 to +10 can be represented by 4-digit
CSD form. The CSD representation of the square of each value is shown in
Table I.

Table I. 4-digit CSD and its square.

value x3x2x1x0 (x3x2x1x0)2 value x3x2x1x0 (x3x2x1x0)2

0 0000 0 0 0 0 0 0 0 0
+1 0001 0 0 0 0 0 0 0 1 −1 0001 0 0 0 0 0 0 0 1
+2 0010 0 0 0 0 0 1 0 0 −2 0010 0 0 0 0 0 1 0 0
+3 0101 0 0 0 0 1 0 0 1 −3 0101 0 0 0 0 1 0 0 1
+4 0100 0 0 0 1 0 0 0 0 −4 0100 0 0 0 1 0 0 0 0
+5 0101 0 0 1 0 1 0 0 1 −5 0101 0 0 1 0 1 0 0 1
+6 1010 0 0 1 0 0 1 0 0 −6 1010 0 0 1 0 0 1 0 0
+7 1001 0 1 0 1 0 0 0 1 −7 1001 0 1 0 1 0 0 0 1
+8 1000 0 1 0 0 0 0 0 0 −8 1000 0 1 0 0 0 0 0 0
+9 1001 0 1 0 1 0 0 0 1 −9 1001 0 1 0 1 0 0 0 1
+10 1010 1 0 1 0 0 1 0 0 −10 1010 1 0 1 0 0 1 0 0

According to Table I, we obtain Z = z7z6 · · · z0 = (x3x2x1x0)2 as follows:

z7 = x3 � x1, z6 = |x3| · (x′
1),

z5 = −(x3 · x1) + (x2 � x0), z4 = (x3 · x0) + (|x2| · (x′
0)),

z3 = −(x2 · x0), z2 = |x1|,
z1 = 0, z0 = |x0|.

In the above equations,

• xi � xj = 1 when xi = xj = 1 or xi = xj = 1, otherwise xi � xj = 0.

• x′
i = 1 when xi = 0, otherwise x′

i = 0.

• |xi| = 1 when xi �= 0, otherwise |xi| = 0.

• xi · xj = 1 when xi = xj = ±1, xi · xj = 1 when xi = −xj , otherwise
xi · xj = 0.

In the above equations, it seems that z5 and z4 need an addition of two
terms. However, one of those two terms in z5 and z4 must be zero since X is
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a CSD representation. Thus, “+” notation can be fulfilled by a simple OR
logical operation. It is easy to verify that no consecutive digits of Z are both
nonzero if X is a CSD representation. We implement a squaring circuit for
4-digit CSD by logical operations according to Table I.

For n ≥ 8, we construct a squaring circuit recursively. Some of known
squaring circuits are constructed by partition the n-bit input into two parts,
that is, upper n/2-bit and lower n/2-bit and apply the squaring and multi-
plication recursively. Although our algorithm is based on the recursive struc-
ture, the partition scheme of the input digit is different from these. For any
integer i > 1, we next show the construction of the partial product generator
for n = 4 × i. We decompose an n-digit CSD number

X =
n−1∑
i=0

xi · 2i (3)

into 2, (n − 4) and 2 digits, that is,

X = 2n−2 ×
n−1∑

i=n−2

xi · 2i−(n−2) + 22 ×
n−3∑
i=2

xi · 2i−2 + 20 ×
1∑

i=0

xi. (4)

By using this decomposition, X2 can be represented as

X2 =
(
(xn−1xn−2) × 2n−2 + (xn−3xn−4 · · ·x2) × 22 + (x1x0)

)2

= A + B + C + D,

where
A = (xn−1xn−2)2 × 22(n−2) + (xn−3xn−4 · · ·x2)2 × 22·2 + (x1x0)2 (5)

B = 2 × (xn−1xn−2) × (xn−3xn−4 · · ·x2) × 2n−2+2 (6)

C = 2 × (xn−1xn−2) × (x1x0) × 2n−2 (7)

D = 2 × (xn−3xn−4 · · ·x2) × (x1x0) × 22. (8)

We show that X2 can be represented as a sum of n/4 CSD numbers of
2n-digit by showing that A can be represented by sum of (n − 4)/4 CSD
numbers and B + C + D can be represented by one CSD number with shift
operation and inversion of the sign operation.

Let X2 = A + Z where Z = B + C + D. We place terms in A and
Z according to Fig. 1. In Fig. 1, (xn−1xn−2)2, (xn−3xn−4 · · ·x2)2, (x1x0)2

and (xn−1xn−2) × (x1x0) are placed into a blue, green, magenta, and cyan
rectangles, respectively. Shaded rectangles in Fig. 1 are filled by 0. These
regions are discussed later.

By the construction scheme, (xn−3xn−4 · · ·x2)2 can be represented by a
sum of (n − 4)/4 CSD numbers of 2(n − 4)-digit. These are placed into the
green rectangle shown in Fig. 1.

Next (xn−1xn−2)2 is placed into the blue rectangle shown in Fig. 1. The
green rectangle and the blue rectangle do not overlap, two terms can be
placed with shift operation and inversion of the sign operation. We should
pay attention to the digits placed in the rightmost of the blue rectangle and
upper-leftmost digit in the green rectangle. If both of these digits are nonzero,
then the partial product of the first column is not a CSD representation.
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Fig. 1. A partition of X2 into partial products.

To prove that an SD number is a CSD representation, it is sufficient to
show that there are no two adjacent nonzero digits since a representation of
an SD number is CSD if and only if the representation has no two adjacent
nonzero digits.

If n ≥ 8, the leftmost digits of all partial products are zeros by the
construction scheme and Fig. 1. If n = 4, the leftmost digit of a partial
product does not always zero because a partial product is generated according
to Table I. When n = 8, the leftmost digit in the green rectangle, that is,
11th digit of A is nonzero if x5 = x3 = ±1. In that case, x6 = 0 and (x7x6)2

is either 4 or 0. Therefore, the rightmost digit of the blue rectangle, that
is, 12th digit of A is zero. Thus, the CSD property holds if (xn−1xn−2)2 is
placed into the blue rectangle shown in Fig. 1.

Since (xn−3xn−4 · · ·x2)2 × 22·2 ≥ 24 and (x1x0)2 ≤ 22, (x1x0)2 can be
placed to the magenta rectangle shown in Fig. 1.

Therefore, A can be represented by sum of (n − 4)/4 CSD numbers.
Next, we show that Z can be represented by one CSD number with shift

operation and inversion of the sign operation. In Fig. 2, a notation “1∗” in the
cyan rectangle represents either 1 or 1. If (x1x0) = 0 or (xn−1xn−2) = 0, then
at most one of three terms is nonzero. Then, it is easy to see that Z is repre-
sented by CSD. Therefore, we consider that (x1x0) �= 0 and (xn−1xn−2) �= 0.
In Fig. 2, an assignment of C overlaps with that of B or D for the cases
(a),(b) and (d). It seems that we need some additions to be placed in one
partial product. However, as shown in Fig. 2, a nonzero digit in C does not
overlap with B and D. Therefore, assignment of these digits can be processed
by OR logical operation.

Next, we show that these assignments obtain a number with the CSD
representation.

Case 1: x0 �= 0 and xn−2 �= 0. The subproduct (xn−3xn−4 · · ·x2) × x0 is
placed between (n − 2)-nd digit and third digit. The subproduct
(xn−3xn−4 · · ·x2)×xn−2 is placed between (2n−4)-th digit and (n+1)-
st digit. Since X is a CSD representation, xn−3 = 0. Then, the leftmost
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digit of (xn−3xn−4 · · ·x2)× x0 is zero and (n− 2)-nd digit in Fig. 2 (a)
is also zero.

Case 2: x1 �= 0 and xn−2 �= 0. The subproduct (xn−3xn−4 · · ·x2) × x1 is
placed between (n − 1)-st digit and 4th digit. The subproduct
(xn−3xn−4 · · ·x2)×xn−2 is placed between (2n−4)-th digit and (n+1)-
st digit. Since X is a CSD representation, x2 = 0 and xn−3 = 0. Then,
the leftmost digit of (xn−3xn−4 · · ·x2) × x1 and the rightmost digit
of (xn−3xn−4 · · ·x2) × xn−2 are zero. Therefore, (n − 2)-nd digit and
(n + 1)-st digit in Fig. 2 (b) are zero.

Case 3: x0 �= 0 and xn−1 �= 0. The subproduct (xn−3xn−4 · · ·x2) × x0 is
placed between (n − 2)-nd digit and third digit. The subproduct
(xn−3xn−4 · · ·x2)×xn−1 is placed between (2n−3)-rd digit and (n+2)-
nd digit. In this case, it is easy to verify that there are no consecutive
nonzero digits from Fig. 2 (c).

Case 4: x1 �= 0 and xn−1 �= 0. The subproduct (xn−3xn−4 · · ·x2) × x1 is
placed between (n − 1)-st digit and 4th digit. The subproduct
(xn−3xn−4 · · ·x2)×xn−1 is placed between (2n−3)-rd digit and (n+2)-
nd digit. Since x1 �= 0, x2 = 0 and the rightmost digit of (xn−3xn−4 · · ·
x2) × xn−1 is zero. Therefore, (n + 2)-nd digit in Fig. 2 (d) is zero.

In all cases, the CSD representation of Z can be obtained from B, C and D

with shift operation and inversion of the sign operation.

3.1 Some fixed digits in partial products
Next we analyze each digit in the partial products generated by the proposed
generator.

Definition 1 In an array of partial products, a digit is called an inactive
digit if the digit is always zero, that is, the digit does not change according
to the input. A digit which is not an inactive digit is called an active digit.

If some inactive digits are specified, we can reduce adders in multi-operand
adder used to obtain a square of the input.

In Fig. 1, shaded rectangles represent some inactive digits. Moreover,
there exist other inactive digits in green rectangle. We can specify such digits
by the recursive structure of the partial product generator. The following
theorem shows the number of active digits in the partial products obtained
by the proposed generator.

Theorem 1 For an n-digit CSD input, there are n(n + 3)/4 active digits in
outputs from the proposed partial product generator.

Proof: Prove by induction on n. When n = 4, a digit z1 is inactive digit
and the number of active digit is 7. For a digit n which is a multiple of 4,
the number of active digit is denoted by ad(n). Next we assume that the
statement holds for some n. ad(n + 4) is a sum of the following terms:
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Fig. 2. One CSD representations on Z = B + C + D.

• ad(n) digits for (xn+1xn · · ·x2)2,

• 2 digits for (xn+3xn+2)2,

• 2 digits for (x1x0)2,

• 2(n + 1) + 1 = 2n + 3 digits for Z.

Therefore, ad(n + 4) = ad(n) + 2n + 7. By solving this recurrence with
ad(4) = 7, we obtain ad(n) = n(n + 3)/4. �

Most conventional squaring circuits output n(n + 1)/2 active digits [7].
In contrast, a number of active digits of our method is almost half and our
method can reduce the additions in the multi-operand SD adder to obtain a
square of the input.

4 Addition of two CSD numbers

In this section, we show that an addition of two CSD numbers is accomplished
simpler than the conventional addition of SD numbers. This adder inputs
two CSD numbers and outputs one SD number (may not CSD).

Lemma 1 Let X = (xn−1xn−2 · · ·x0), Y = (yn−1yn−2 · · · y0) be n-digit CSD
numbers. Then, i-th digit of Z = (znzn−1 · · · z0) = X + Y is obtained by
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zi = xi ⊕ yi + (xi−1 × yi−1), where (xi−1 × yi−1) = xi−1 if xi−1 = yi−1,
otherwise 0.

Proof: Since no two consecutive digits are nonzeros in the CSD representa-
tion, if (xi−1 × yi−1) gets nonzero, then xi and yi should be zero. If xi or yi

is nonzero, (xi−1 ×yi−1) should be zero. Therefore, a carry propagation does
not occur. �

5 Evaluation of proposed circuit

In this section, we evaluate the proposed squaring circuit. In this paper, we
implement a 32-digit length circuit by using VHDL to describe the proposed
algorithm. A block diagram is shown in Fig. 3. The partial product generator
is discussed in Section 3 and the CSD adder is discussed in Section 4. Since
the partial product generator outputs 8 CSD numbers, the CSD adder con-
sists of 4 CSD adders operated in parallel and outputs 4 SD numbers. The
multi-operand SD adder forms a 4 inputs redundant binary addition tree
structure [8]. In the multi-operand SD adder, we use SD adders proposed in
[9].

If someone wants to obtain an output as CSD, some efficient SD to CSD
recoding circuits [6] are used for a requirement.

Fig. 3. A block diagram of proposed circuit.

One competitor is a squaring circuit using arithmetic operator “*” in
VHDL, that is, a circuit given by dataout <= datain * datain;.

Another competitor is an implementation of the squaring circuit proposed
in [3]. This squaring circuit is based on Vedic multiplier. Firstly, an n-bit
input is partitioned into upper n/2-bit and lower n/2-bit. Secondly, square
of upper n/2-bit, square of lower n/2-bit and products of upper n/2-bit and
lower n/2-bit are calculated in parallel. To obtain squares of upper n/2-bit
and lower n/2-bit, they use their algorithm recursively. Thirdly, square of
the n-bit input is obtained by adding these terms with appropriate bit shift.

Since these competitors input a binary number and output a binary num-
ber, we cannot compare those circuits with proposed circuit directly. How-
ever, we need some references to show the efficiency of our method. All of
them are synthesized with Synopsys design compiler with 0.18µm CMOS
library. Results are shown in Table II.
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Table II. Comparison of area and delay time.

Operator Vedic Proposed with Proposed with
[3] SD output CSD output

Area(# cell) 1327 2042 2473 3639
Area(µm2) 47668.40 53093.85 61648.89 90159.85
Delay(ns) 17.24 16.11 7.16 9.51

In Table II, last column is a modified proposed circuit which connects a
32-digit SD to CSD recoder [6] following Fig. 3. The difference between last
two columns is derived from the recoder.

Although our circuits represent one digit by two bits, the total area of
our proposed circuit with CSD output is 70% larger than the vedic squaring
circuit. The delay time of our circuit is 40% faster than the vedic squaring
circuit.

6 Conclusion

In this paper, we have proposed a new squaring circuit based on the Canoni-
cal SD number representation. By using a CSD representation as an input of
the partial product generator, n/4 partial products with CSD number rep-
resentation are generated, which are half with respect to the conventional
squaring algorithm. We consider not only the number of partial products
but also a number of active digit in the partial products. Our circuit out-
puts partial products with less active digits, which leads us to a low-power
implementation.
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