
LETTER IEICE Electronics Express, Vol.11, No.4, 1–8

A parallel arithmetic array
for accelerating compute-
intensive applications

Dong Wang1a), Peng Cao2, and Yang Xiao1

1 Institute of Information Science, Beijing Jiaotong University
2 National ASIC System Engineering Technology Research Center, Southeast

University

a) wangdong@bjtu.edu.cn

Abstract: A parallel arithmetic array processor for accelerating
compute-intensive applications in low-power embedded systems is pro-
posed in this study. The proposed flexible hardware architecture en-
ables the fast execution of both control-dominated and compute-centric
streaming computation tasks on the same array. Consequently, mul-
tiple levels of parallelism can be efficiently exploited. A test chip
integrated with two 16×16 array processor cores was implemented
in 65 nm CMOS technology. Multi-format video decoding algorithms
were mapped on the chip as benchmarks. The proposed architecture
achieved a notable 2.8× advantage on performance over an industrial
coarse-grained array processor and a 66% performance boost over a
state-of-the-art many-core processor. Meanwhile, the energy-efficiency
was improved by 15.3× and 1.78×, respectively.
Keywords: arithmetic array, reconfigurable computing, multi-format
video decoding
Classification: Electron devices, circuits, and systems

References

[1] H. Singh, M. H. Lee, G. Lu, F. J. Krdahi, N. Bagherzadeh and E. M.
Filho: IEEE Trans. Comput. 49 [5] (2000) 465.

[2] J. Bae and J. Cho: IEICE Electron. Express 5 [8] (2008) 705.
[3] M. Ganesan, S. Singh, F. May and J. Becker: Proc. 17th Field Pro-

grammable Logic and Applications (2007) 467.
[4] F. Pescador, C. Sanz, M. J. Garrido, E. Juarez and D. Samper: IEEE

Trans. Consum. Electron. 54 [2] (2008) 145.
[5] H. Xu, J. Tanabe, H. Usui, S. Hosoda, T. Sano, K. Yamamoto, T.

Kodaka, N. Nonogaki, N. Ozaki and T. Miyamori: IEEE Symp. VLSI
Circuits (2012) 150.

[6] Y. Ren, D. Wang and L. Liu: Proc. Asia-Pacific Signal and Information
Processing Association Conf. (2011) 1.

[7] D. Wang, P. Ren and L. Liu: IEICE Electron. Express 10 [4] (2013) 1.
[8] D. Wang and M. D. Ercegovac: IEEE Trans. Comput. 61 [9] (2012) 1243.
[9] Y. Park, C. Yu, K. Lee, H. Kim, Y. Park, C. Kim, Y. Choi, J. Oh, C.

Oh, G. Moon, S. Kim, H. Jang, J. Lee, C. Kim and S. Park: ISSCC Dig.
Tech. Papers (2013) 160.

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

1



IEICE Electronics Express, Vol.11, No.4, 1–8

[10] Audio Video Coding Standard (AVS): GB/T-200090.2 (2006)
http://www.avs.org.cn.

[11] C. Yin, S. Yin, L. Liu and S. Wei: IEICE Trans. Electron. E92-C [10]
(2009) 1284.

1 Introduction

The rapid evolution of portable, wireless devices today is pushing the bound-
aries of embedded microprocessor design and manufacturing technologies. Al-
though silicon technologies would allow future designs to consume less power
while delivering greater computational capacity and density, the traditional
von-Neumann programmable architecture has already reached a performance
and power limit known as the power-wall. Various new architectures are
currently being studied in both academic and industrial fields. The recon-
figurable array processor is a very promising architecture that can provide
high energy efficiency of 10 MOPS/mW to 100 MOPS/mW [1] and notable
software programmability.

A reconfigurable array processor consists of an array of homogeneous or
heterogeneous processing elements (PEs). Unlike in traditional von-
Neumann-like architectures (e.g., DSP processors) with limited number of
arithmetic logic units (ALUs), the massive computational resources in ar-
ray processor can exploit massive parallelism to accelerate the execution
of the software program by dynamically adapting the hardware structure
to meet application requirements. Moreover, reconfigurable processor can
also reduce the control overhead for instruction decoding, sequencing and
communication (e.g., data replication) between the computational blocks,
thereby conserving the extra energy consumption. Therefore, array proces-
sors are particularly suited for boosting compute-intensive applications, such
as video encoding/decoding, information security and big data processing in
cloud environments. Take the widely studied multi-format video decoding [2]
as an example. The compute-intensive tasks, including inverse transforma-
tion (IT), motion compensation (MC), intra-prediction (IP) and loop filter-
ing (LF) may account for 60% to 80% of the total workload of the system
(Fig. 1). Previous studies [3, 4, 5] have demonstrated that these tasks are
mostly block-based word-level calculations that can potentially be processed
in parallel. The design challenge lies in selecting the optimal hardware archi-
tecture that could efficiently exploit such parallelism. To address this issue, a
flexible arithmetic array structure that executes both control-flow dominated
and compute-centric streaming tasks on the same array is proposed in this
study. This structure can achieve a significant speedup of target applications
by utilizing multiple levels of parallelism.

2 PAAP architecture

The hardware architecture of the proposed parallel arithmetic array proces-
sor (PAAP) is illustrated in Fig. 2. PAAP consists of three major functional

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

2



IEICE Electronics Express, Vol.11, No.4, 1–8

Fig. 1. A generic flow for multi-format video decoding.

parts, namely, computation arrays, configuration/control logic, and buffering
memories. An array of 2M×2N arithmetic units (AUs) are organized in four
M × N sub-arrays (SAs) at the center. Target applications are partitioned
into multiple computation tasks and then mapped onto the SAs for parallel
execution. Four 1024 × 256-bit multi-mode buffer memory blocks are asso-
ciated with the SAs on the two sides. Each block can work independently
either as a multi-port RAM or as a FIFO to support versatile memory access
patterns. The operations of the computation and storage components are
driven by the context (i.e., the configuration bit streams) fetched from the
configuration interface.

In traditional reconfigurable array processors [1, 3], the streaming com-
putations, which are characterized by predictable loop-based control flows
with large iteration counts, large data sets, regular memory access patterns
and high locality, are executed by a coarse-grained array. The irregular codes
that contain a large amount of conditions and branches are mapped onto a
RISC (Reduced Instruction Set Computer) or VLIW (Very long Instruction
Word) processor. These types of architecture often result in frequent task
switching and data transmitting between the two functional parts, thereby
introducing extra workload and power consumption to the system.

In the proposed architecture, the AUs in each SA can be concatenated by
a reduced-complexity intra-SA interconnection network to form one or several
non-pipelined datapaths (Fig. 2). In each datapath, the output of one opera-

Fig. 2. Architecture of the proposed PAAP.

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

3



IEICE Electronics Express, Vol.11, No.4, 1–8

tion is immediately fed to the input of the next operation in the chain. In this
way, nested if-then-else statements can be executed in one clock cycle with
high instruction-level parallelism (ILP). Through dynamic reconfiguration,
AUs can also be pipelined to form a typical 2D array structure support-
ing streaming computation on the same SA. Massive data-level parallelism
(DLP) can thus be utilized. When the SA is switched from control-flow
dominated computation tasks to compute-centric stream processing tasks,
the intermediate results can remain in the same buffer memory, thereby re-
ducing the communication overhead and power consumption significantly. In
general, N is usually selected to be between 2 and 6 to guarantee low la-
tency on the non-pipelined data-path, whereas M can have a greater value
(between 4 to 16) to enable higher data throughput.

On the top level, four SAs are designed to implement task-level paral-
lelism (TLP). Sequential computation tasks, such as successively executing
functions or loops that have data dependencies, are implemented as pipelined
tasks by associating a buffer memory configured as a ping-pong FIFO between
two SAs. Non-dependent parallel computation tasks are then mapped either
on a shared SA or multiple SAs depending on the utilization of the memory
and AU resources.

2.1 AU structure
Fig. 3 shows the internal structure of the AU. The fast arithmetic logic
unit (FALU) performs the most fundamental operations (on 16-bit or 8-bit
data), such as logic, comparison, barrel shift, and addition, which are covered
by a typical RISC instruction set. Redundant arithmetic optimizations [6]
are performed on the input operands and output results such that carry-
propagate adders with long latencies are avoided in the middle of any non-
pipelined datapath. The maximum number of FALUs that can be chained
up is determined by the critical path delay. In the final implemented PAAP
instance, this number is four.

The complex ALU (CALU) implements complicated operations required
in domain-specific applications. As listed in Fig. 3, such operations include
fixed-point multiplication (for video encoding/decoding and computer vi-

Fig. 3. The proposed AU architecture.

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

4



IEICE Electronics Express, Vol.11, No.4, 1–8

sion), triangular functions (for information encryption), CORDIC (for
software-defined radio) and complex number division/square-root (for multip-
le-input multiple-output antenna detection). The circuit designs of these op-
erators were previously optimized for area and power consumption [6, 7, 8].
With these dedicated functions, PAAP can efficiently support a wider range
of compute-intensive applications compared with previous designs [1, 3]. In
the final design, 16×16 constant-correction truncated (CCT) multipliers [6]
are implemented as CALUs in Col.2 AUs. Compared with using convention
multipliers, using CCT multipliers reduce the SA area by 8%.

2.2 Reduced-complexity interconnection
In traditional coarse-grained array processor designs [1], 2D mesh-based in-
terconnection networks are usually used to connect the PEs in a single large
array. Although capable of enabling sophisticated and flexible routing strate-
gies, 2D mesh interconnections may consume a large portion (usually from
20% to 40%) of the array area. The use of a column-to-column mesh inter-
connection structure in the PAAP architecture is thus proposed in this work.
As shown in Fig. 2, each AU can be directly connected to two AUs within
the same column and to three AUs in the adjacent columns with very short
delays. These interconnections can be used to build the non-pipelined datap-
ath that contains FALUs (Fig. 3). Multi-step mesh routes are only allowed to
be used in pipelined datapaths. The width of each link is 32-bit, supporting
16-bit and 8-bit operands. Col.1 AUs are connected to Col.N AUs to sup-
port iterative operations. To guarantee architecture flexibility and efficiency,
a 256-bit crossbar-based inter-SA connection network is designed to support
high-throughput data exchanges between SAs and buffer memories. When
a 16×16 PAAP is finally implemented, the results show that the proposed
scheme reduces the interconnection area by a factor of 3.6 compared with
using 2D full mesh interconnection scheme.

2.3 Multi-mode buffer memory structure
As shown in Fig. 2, each buffer memory block comprises two 512×256-bit two-
port RAM banks. When configured in the double buffering mode (Fig. 4-a),
different blocks of external data can be simultaneously written into Bank-
1 through port WR1 and read from Bank-2 through RD2 to overlap the
computation with data transfers. By dynamically switching the multiplexer
circuit, the intermediate results are written back (usually by the same SA)
into a reserved memory space of Bank-2. Consequently, each parallel com-
putation task owns a dedicated 256-bit memory bus that can support a high
data throughput with low memory access conflict rates. When configured in
ping-pong FIFO mode (Fig. 4-b), the data of sequential computation tasks
are alternatively written into or read from Bank-1 and Bank-2 by two SAs
through the inter-SA connection networks. The proposed multi-mode buffer
memory structure guarantees an efficient utilization of memory bandwidth
and supports the flexible mapping of the target algorithm.

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

5



IEICE Electronics Express, Vol.11, No.4, 1–8

Fig. 4. Multi-mode buffering memory structure.

2.4 Algorithm mapping
Fig. 5 depicts the algorithm mapping schemes for H.264 decoding on the
proposed architecture. Eight SAs (two PAAPs) are used to exploit multi-
ple levels of parallelism to accelerate both compute-intensive (Fig. 5-a) and
bit-level sequential tasks (Fig. 5-c). The efficient dataflow (Fig. 5-b) guar-
antees a very high data throughput and minimizes the energy consumption
caused by frequent data replication or external memory access. Y i and Ui/V i

(i = 1, 2, 3, 4) refer to the four 8×8 luminance and chrominance sub-MBs in a
16×16 macro-block (MB), respectively. In general, one MB can be decoded in
every 800 cycles, thereby achieving a decoding performance of 30 fps (frame
per second) given the target working frequency of 200 MHz with 8160 MBs
to be processed in one high-definition frame (i.e., 200×106/(8160×30)). Al-
gorithm partitioning (into parallel tasks) is performed by manually inserting
directives in the source code, whereas task mapping, scheduling and memory
allocation are automatically performed by a compiler tool [11] we developed.

Fig. 5. Mapping H.264 decoding algorithm on the pro-
posed architecture.

3 System integration and architecture

To fully test and verify the performance and energy efficiency of the pro-
posed architecture, two 16×16 PAAPs are integrated into an embedded SoC
(System-on-a-Chip) as shown in Fig. 6-a. Multi-format high-definition (HD)
video decoding (H.264/MPEG-2/AVS [10]) is selected as the benchmark ap-
plication because of its heavy computation-load. The two PAAPs are con-

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

6



IEICE Electronics Express, Vol.11, No.4, 1–8

nected to the system bus through two 64-bit data and configuration busses.
The 2D-DMA (Direct Memory Access) can provide fast 2D block-based data
fetching and storing. The extra configuration controller is designed to recode
the fetched contexts (because the PAAP configuration interface is 128-bit
wide) and to synchronize the computation task mapped on the two PAAPs.
The host ARM processor is only used for peripheral device control, video
stream fetching and storing. A total of 54 encoded video streams (20 for
H.264, 18 for MPEG-2 and 16 for AVS) are tested to obtain the accurate
performance data as shown in Fig. 6-b.

Fig. 6. (a) Hardware architecture of the test SoC chip,
and (b) Testing environment.

4 Implementation results and comparisons

The proposed architecture (Fig. 6-a) is coded in Verilog HDL and imple-
mented in a 9.28 mm ×9.28 mm die using TSMC 65 nm CMOS process. The
typical working frequency is 200 MHz at 1.2V. The equivalent gate count of
one PAAP is 5.5 M, which accounts for 36% of total chip area. The perfor-
mance and power consumption (measured on Agilent 93 K platform) of the
fabricated SoC for HD H.264 decoding (because this format is the most com-
plex one) are compared with those of four state-of-the-art designs (Table I).
The reference designs include a coarse-grained array processor [3], a indus-
trial DSP processor [4], a many-core processor (with two 32-core clusters) [5]
and a dedicated hardwired multi-format video codec [9] (ASIC design). All
these processors are domain-specific architectures developed to accelerate
multi-format video encoding/decoding. The performance and power data
are normalized to make a fair comparison.

Compared to the DSP processor, the proposed architecture possesses mul-
tiple processing units and very wide (256-bit) data paths. Therefore, perfor-
mance growth can be achieved by efficiently exploiting TLP and DLP instead
of scaling up the clock frequency, which has great impact on system power
dissipation. As shown in Table I, the proposed architecture gains an 18×
improvement on performance and consumes 85% less power than the DSP
processor. When compared to the array processor of [3] and the many-core

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

7



IEICE Electronics Express, Vol.11, No.4, 1–8

processor, the proposed special AU structure and multi-mode buffering mem-
ory can further increase the ILP of control-flow dominated computation tasks
and the data throughput with low memory access overhead as discussed in
Section 2.4. Consequently, a 1.8× and a 66% performance boosts are achieved
by the proposed architecture, respectively. With regard to the energy effi-
ciency, the proposed architecture outperforms the one with the best result
by a factor of 1.78. The proposed architecture even has a close performance
with the custom designed circuit [9] (only 17% slower). Although the energy
efficiency is 1.8× lower, the proposed architecture has the advantage that it
could always be reprogrammed to satisfy future application demands, such
as the upcoming high efficiency video coding (HEVC) standard.

Table I. Performance and energy efficiency comparison
with reference designs for HD H.264 decoding.

[3] [4] [5] [9] Proposed

Technology (nm) 90 130 40 32 65
Area (mm2) 75 529 210 N/A 48.9

Frequency (MHz) 450 600 333 166 200
Performance (fps) 24 25 30 30 30

Power (mW) 3420 1900 500 < 100 280
Normalized Performance

435 67.5 735 1474 1224
(MBs/s/MHz)

Energy Efficiency
57 21.3 490 > 2448 874

(MBs/s/mW)

5 Conclusion

An arithmetic array processor for accelerating compute-intensive applications
is proposed in this study. With flexible array structure, reduced-complexity
interconnection, and multi-mode buffer design, the proposed architecture can
efficiently exploit TLP, DLP and ILP to speed up the execution of both
control-flow dominated and compute-centric streaming tasks. Two 16×16
PAAPs are integrated into an SoC to implement multi-format video decoding
algorithms (H.264/MPEG-2/AVS) as benchmarks. Measurements of perfor-
mance and power data on the fabricated chip show that the proposed design
achieves 1.8× faster speed and consumes 14.3× less energy than a typical in-
dustrial coarse-grained array processor. The proposed architecture also has
a 1.66× advantage on performance and a 1.78× advantage on energy effi-
ciency over a state-of-the-art many-core processor. By selecting the proper
CALU functions, the proposed array processor can be used to enhance the
performances of low-power embedded systems for various compute-intensive
applications.

Acknowledgments

This work was supported by the National Natural Science Foundation of
China Grant No. 61106022.

c© IEICE 2014
DOI: 10.1587/elex.11.20130981
Received December 12, 2013
Accepted January 06, 2014
Publicized January 31, 2014
Copyedited February 25, 2014

8


