LETTER IEICE Electronics Express, Vol.11, No.5, 1-12

Design of a bitmap-based
QoS-aware memory
controller for a packet
memory

Seunghak Yu'?, Sungroh Yoon?, Eui-Young Chung?,

and Hyuk-Jun Lee*

' Department of IT Convergence, Korea University, 145 Anam-ro, Seongbuk-gu,
Seoul 136-701, Korea

2Department of Electrical and Computer Engineering, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

3Department of Electrical and Electronic Engineering, Yonsei University, 134
SinChon-dong, Seodaemun-gu, Seoul 120-749, Korea

4Department of Computer Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu,
Seoul 121-742, Korea

a) hyukjunl@sogang.ac.kr

Abstract: A packet memory controller in routers accesses the packet
memory according to the QoS requirements of packets. The previous
QoS-aware controller using a feedback control loop degenerates into
round robin scheduling under temporary overload and suffers from slow
response. We propose a new packet memory controller that estimates
input load accurately and rapidly and schedules different classes using
a flexible bitmap scheduler. The results show that under temporary
overload or rapidly changing input loads, it can successfully meet the
latency requirements by showing only less than 2% difference from the
requirement of the high priority class.

Keywords: high-performance memory system, memory controller,
packet memory

Classification: Electron devices, circuits, and systems

References

[1] H. Lee and E. Chung: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
16 [3] (2008) 289.

[2] K. Nesbit, N. Aggarwal, J. Laudon and J. Smith: MICRO (2006) 208.

[3] N. Rafique, W. Lim and M. Thottethodi: PACT (2007) 245.

[4] O. Mutlu and T. Moscibroda: MICRO (2007) 146.

[5] Y. Kim, M. Papamichael, O. Mutlu and M. Harchol-Balter: MICRO
(2010) 65.

[6] M. J. Flynn: Computer Architecture: Pipelined and Parallel Processor
Design (Jones and Bartlett, Boston, 1995) 365.

[7] CISCO: The Cisco QuantumFlow Processor: Cisco’s Next Generation
Network Processor (2008) http://www.cisco.com.

IEICE Electronics Express, Vol.11, No.5, 1-12

1 Introduction

Rapid deployment of high-performance core routers makes real-time internet
applications such as streaming video service, video calls, Voice over Internet
Protocol (VoIP), and online gaming more accessible. Explosive use of smart-
phones further increases these traffics. These applications typically have
various QoS requirements, e.g. latency requirement, and packets should be
classified and processed accordingly based on their requirements. A packet
memory controller in routers is responsible for writing and reading packets,
which are broken into fixed sized cells (e.g. 64 to 256 bytes), and should meet
the latency requirements of different classes during writing and reading. The
requirement is expressed as a latency distribution of cells in which the num-
ber of cells larger than the specified latency target is constrained [1], e.g. thes
probability of cells whose memory access latency is larger than 200 cycles is
1072,

The existing QoS-aware controller using a feedback control loop degener-
ates into round robin scheduling under temporary overload and suffers from
very slow response [1]. To resolve these issues, we propose a new method
based on input load estimation and bitmap scheduling. The main contribu-
tions of this paper are as follows. First, the proposed method models the
scheduler as a M/D/1 queue [6], which makes it possible to estimate the
current input load for a given class accurately and determine stability based
on the allocated memory bandwidth for that class. Thus, it can optimize
scheduling weights for different classes to meet latency requirements even in
temporary overload by giving proper scheduling weights to higher priority
classes. Second, even with a small sampling window size, it can estimate
the input loads accurately and change its scheduling weights rapidly because
it does not depend on a feedback mechanism. Third, the bitmap scheduler
provides very flexible scheduling patterns including M/D/1 with only small
area penalty.

2 Related works

QoS-aware memory controllers were proposed in various contexts including
a packet memory environment [1] and multi-processor environments [2, 3, 4,
5]. In [1], the proposed adaptive feedback mechanism dynamically adjusts
allocated bandwidths to different classes based on latency violations. In
[2, 3], a fair queueing method is employed to allocate bandwidth for different
processor threads whereas in [4, 5], priority scheduling is used to schedule
threads based on their sensitivity to inter-thread interference, latency, or
bandwidth.

However, the methods proposed for multi-processor environment in [2,
3, 4, 5] are not adequate for the packet memory because data mapping on
DRAM and data access patterns in the packet memory are different than
those in the multi-processor environment. In [4, 5], they provide high priority
to the threads with latency sensitivity. However, priority scheduling cannot
simultaneously meet latency requirements of multiple classes even under non-

IEICE Electronics Express, Vol.11, No.5, 1-12

overload cases.

The adaptive feedback mechanism in [1] uses a feedback control loop that
adaptively changes scheduling weights for different classes based on latency
violations. That is, the number of cells that violate the latency requirement
is counted per class and the scheduling weight for the associated class gets
incremented if the number of violated cells for the class is larger than the
threshold value. If multiple classes have violations simultaneously, weights
are continuously incremented and scheduling degenerates into round robin
scheduling, which happens whenever inputs are overloaded temporarily. In
addition, the method relies on a feedback mechanism which counts the num-
ber of cells violating the latency requirement per sampling window whiling
not paying attention to the input load. This makes the sampling window
relatively big to avoid sampling errors and slows down the response of the
feedback mechanism, which leads to huge violations under rapidly changing
input loads.

3 Background

3.1 Packet memory controller
Fig. 1 shows the packet memory controller in [1]. We refer it as a scalable
QoS memory controller (SQMC). A typical packet memory controller con-
sists of hash logic and reorder buffers. The hash logic takes the read or write
addresses of continuous cells as input and assigns each a new address, thus
distributing them to multiple banks and parts. The reorder buffer architec-
ture consists of bank FIFOs, bank arbiters, class schedulers, and a read /write
arbiter.

In this work, the QoS scheduler is replaced by the proposed bitmap sched-
uler (BMS). A bitmap scheduler refers to a type of scheduler that creates
a bitmap from the scheduling pattern based on the individual class weights.

‘_Reorder Buffer

| Bank FIFO [L| Bank 705 8,(_?
for Class 0 || | arbiter | || & &
32 [Z
— 1 L Bank FIFO [Bank 22|13
&:'»: forClass 1| | arbiter| |2 % = 9 S
= Read FIFOs = | J§> 2
o)
3 S IBYHRIE
Q.| L] Bank FIFO || Bank 22|
LI |i|forClass 0 || | arbiter § ; =
2 3 L
_| Bank FIFO || Bank S g
forClass 1| | arbiter| |2 %

Write FIFOs

Fig. 1. Architecture of packet memory controller [1]. This
paper proposes a new bitmap-based QoS sched-
uler.

IEICE Electronics Express, Vol.11, No.5, 1-12

One advantage of using a bitmap scheduler is that, for the same weight
configuration, a bitmap scheduler can generate different bitmap patterns to
accommodate specific user needs.

4 Proposed method

4.1 Overview

Fig. 2 shows the overall flow of the proposed bitmap scheduler. As a system
requirement, a latency requirement is given for each class in the beginning.
In off-line design time, we first model the QoS scheduler for a single logical
bank! as an M/D/1 queue and then pre-calculate the memory bandwidth
allocation needed for each class with respect to different input load values.
For instance, to meet a given requirement of high priority (class 0), 10% of
total available memory bandwidth should be allocated for the input load of
0.1 and 20% for the input load of 0.2, and so forth. Next, we determine
the scheduling weights for different classes to achieve the pre-calculated class
bandwidths. For instance, to allocate 20% and 40% of total available memory
bandwidth for high and low priority class respectively, we use a weight ratio
of 1:2 for two classes. Then, we create a bitmap using the class weights
and then optimize them to generate a two-level lookup table. This off-line
procedure and hardware implementation are explained from section 4.2.1
through 4.3. Later in runtime, the scheduler measures the input loads and
schedules different classes by indexing the bitmap table using the measured
input load values. The rest of this section explains the further details of each
step.

4.2 Offline scheduler

4.2.1 M/D/1 modeling of QoS scheduler

We can model the QoS scheduler as an M/D/1 queue due to the following
properties. First, the hash function randomizes mapping a cell to logical
banks and parts. This randomization makes incoming cells seen by a logical

Offline Online
Model —
QoS Scheduller as M/D/1 Measure
Calculate Input load for two class
Bandwidth alnd weight Lookup .
Generate and optimize | | [Pitmap at Iocl)kup table
Bitmap T Schedule
Generate with founded bitmap
two level lookup table

L |

Fig. 2. Overall flow of proposed bitmap scheduler.

LA logical bank is a group of banks where a cell is mapped to.

IEICE Electronics Express, Vol.11, No.5, 1-12

Load=0.3
— - — - Load=0.4
Load=0.5
Load=0.6 |-
— — Load=0.7
Load=0.8
Load=0.9

Probability

0 200 400 600 800 1000 1200
Latency (cycles)

Fig. 3. Distribution of latency for a class with seven dif-
ferent input loads.

bank a Poisson distribution (the ‘M’ property) [1]. Second, a cell is mapped to
multiple banks of a DRAM chip in an interleaved fashion. Since the cell size
and mapping are chosen such that a row cycle time (tRC') of DRAM is smaller
than a cell read or write time, the same bank can be accessed immediately
after a cell read or write. This mapping makes cell reads or writes not depend
on row hits or bank conflicts and guarantees the deterministic cell read and
write time (the ‘D’ property). Fig. 3 shows the complementary cumulative
distribution function (CCDF)? for the latency of cells scheduled by the QoS
scheduler (modeled as a M/D/1 queue) with respect to different input load
values. The distribution curve is unique for each load value which is the
ratio of an incoming request rate over a service rate (an allocated memory
bandwidth) and thus we can estimate the cell latency distribution when an
incoming request rate and an allocated memory bandwidth are given. In
other words, we can compute how much memory bandwidth is needed to
obtain a certain distribution curve when an incoming request rate is given.
To facilitate understanding of how these distributions can be used, we
provide the following example. In Fig. 3, the load value of 0.6 represents
the case where an input load (i.e. an incoming request rate translated into an
equivalent memory bandwidth) is equivalent to 60% of total available memory
bandwidth. The complementary cumulative latency distribution curve for the
input load of 0.6 represents the probability of cells whose latency is larger
than the given latency value in x axis. These distribution curves can represent
the latency requirements of a class because the latency requirement is given
by the percentage of cells whose latency is larger than a certain threshold
value. For instance, if a requirement for a class states that the probability
of cells whose latency is greater than 200 cycles is less than 107°, it can be
satisfied by lines with the load value less than 0.6. Based on this plot, we
know in advance how much bandwidth should be allocated for each class
to fulfill the latency requirement. If a class has the aforementioned latency

2Complementary cumulative distribution function is 1 - cumulative distribution func-
tion.

IEICE Electronics Express, Vol.11, No.5, 1-12

requirement, i.e. probability of cell latencies greater than 200 cycles being
less than 1079, allocating 100% of memory bandwidth can satisfy the latency
requirement when the input load is 0.6. However, if the input load is only
0.3, allocating only 50% of memory bandwidth will produce the same latency
distribution and satisfy the latency requirement.

4.2.2 Calculating bandwidth and weight for each class
From the latency distribution as shown in Fig. 3, the following proportional
expression holds for class i:

Lreq(i) : 100% = Lin (i) : BW (4) (1)

where Lyeq(i), Lin(i), and BW (i) represent the latency requirement® and
input load of class ¢ and the bandwidth allocated to class i, respectively.
Rearranging Eq. (1) gives

Lin(7)

BIWG) = 7% o5 x 100% (2)

Note that the sum of all bandwidths should be less than 100%, namely

n—1
> BW(i) < 100% (3)
i=0

Otherwise, we should increase the overall memory bandwidth to obtain a
stable system. For temporary overload cases, Eq. (3) may not be met.
Based on the bandwidth information, we can also determine the weight
of each class for scheduling. Given n input classes, the following inequality
should hold: '
WO 00% > BWG) ()
>imo W (i)
where W (i) represents the scheduling weight for class i. Assuming equality
produces n equations

W(i+1) BW(+1)
W) BW()
W) BW(0)

W(n—1) BW(n-—1)

for0<i<n-—2 (5)

fori=n-—1 (6)

and solving these n equations gives the weight for each class?

For the cases where there are more traffics than the scheduler can handle,
the proposed scheme assigns a high priority class the bandwidth needed to
fulfill its requirement and assigns the remaining bandwidth to the rest.

4.2.3 Bitmap generation
Fig. 4 shows the proposed algorithm for generating a bitmap. For the sake

3Latency requirement is represented as a load value.

4For instance, if class 0, 1, and 2 require at least 10%, 30%, and 40% of total mem-
ory bandwidth respectively, solving the Eq. (5) and Eq. (6) produces weight 1, 3, and 4
respectively.

IEICE Electronics Express, Vol.11, No.5, 1-12

n = max (W (0), W (1))
d = min(W(0), W(1))
Step 1: q=n/d]

r=n mod d

pn = n’s priority

pq = d’s priority

re=d, sr=q+1

Step 2 init bmaplq + 1+ 7 + 4 + 4]|
no
Step 3: Pn > Pd
yes
s bmap(0] ... [¢ — 1] = n’s class # bmap[0] = d’s class #
tep 4: bmaplg] = d’s class # bmap(1] ... [¢] = n’s class #
1
Step 5: | bmaplg+ 1] ... [+ 1+ 7] = n’s class #
1

Step 6: |bmaplg+1+r+1] .. [g+14+r+4] =rc
bmaplg+1+r+5] .. [g+1+r+8 =1Ir

end

Fig. 4. Algorithm for generating the bitmap (n: numer-
ator, d: denominator, ¢: quotient, r: remainder,
pp: priority of numerator, py: priority of denomi-
nator, rc: repetition count, Ir: length of repetition
part, bmap: bitmap).

of explanation, assume that there are only two input classes, namely class 0
(high priority) and class 1 (low priority). The inputs to this algorithm are the
weight and priority of these two classes; the output is an (optimized) bitmap
for scheduling classes 0 and 1. The bitmap generation can be explained with
an example shown in Fig. 5B. If the weight 7 and 3 are assigned for class
0 and 1, we want to generate a bitmap consisting of seven Os and three 1s
to allocate the correct bandwidth, i.e. 0 and 1 meaning scheduling class 0
and 1 respectively. To make the scheduler M/D/1, i.e. constant service rate,
we would like to interleave the bit pattern as much as possible. Thus, the
result bitmap becomes 0010010010. From the bit pattern, we can see that
the bit pattern 001 is repeated three times and one additional 0 is at the
end. The goal of the bitmap generation algorithm determines and stores
only a repeated pattern, a repetition count, and a remainder portion from
given weights instead of storing a un-optimized bitmap. The algorithm is
described in Fig. 4 and each step is explained below.

e Step 1: We form a fraction in which the numerator, n, is set to the
larger weight and the denominator, d, is set to the smaller weight. The
integer division and modulo operation compute a quotient, g, and a
remainder, r. In above example, the quotient determines the number
of leading 0Os in the repeated pattern. Adding 1 to leading Os completes
a repeated bit pattern whose length is ¢ + 1. d becomes the repetition

IEICE Electronics Express, Vol.11, No.5, 1-12

count. r is a number of Os appended to the repeated bit pattern.

e Step 2: We allocate an array to store the bitmap. This array needs
q+1-+7 bits to store one repeated pattern and a remainder. In addition,
the array needs four bits to store a repetition count, d, and another four
bits to store the length of a repetition part, g + 1°.

e Step 3 and 4: If the numerator is the higher-priority class, then we set
the leading ¢ bits of the array to the class number of the numerator and
set the (¢ + 1)thbit to the class number of the denominator. In above
example, bmap[0] and bmap[1] are set to 0 (class 0) because ¢ is two
and bmap|[2] is set to 1 (class 1). bmap|0] through bmap[2] become a
repetition part. If the denominator is the higher-priority class, we then
perform the opposite. The repetition part is always started with a high
priority class number to give more priority to a high priority class in
scheduling.

e Step 5: We complete the bitmap by inserting the class number of the
numerator by as many times as the remainder value, r. In above ex-

ample, bmap[3] is set to 0 because r is one.

e Step 6: Finally, fill two four bits allocated for a repetition count and a
repetition part length. In the example, they are 3 and 3 respectively,
which indicate the repetition part is repeated three times and the length
of a repetition part is three.

When storing the bitmap in a lookup table, we store only a repetition
part, a remainder, a repetition counter, and a repetition part length for a
given pair of weights for two classes. The offline scheduler pre-compute the
bitmaps for possible combinations of weights for two classes. These bitmaps
are the output of a scheduler and stored in the second level lookup table in
Fig. 5 A.

4.3 Hardware implementation: two-level lookup table
To get pre-computed scheduling bitmaps for given loads and latency require-
ments for two classes, we use a two-level lookup table shown in Fig. 5 A. The
first level lookup is used to calculate the bandwidth® for a given input load,
L’ (i), which is the number of cells arrived over a sampling period for class
i. The second level lookup is used to look up the bitmap pattern for a given
bandwidth (or weight) combination.

We quantize L, (i) into ¢ levels by comparing with pre-specified ¢ —
1 thresholds. For the binary class case, we need (¢ — 1) x 2 registers to
store threshold values in the first level lookup table’. By comparing L, (i)

*Four bits for a repetition count and the length of a repetition part are empirically
determined from experiments to optimize the cost and performance.

5The bandwidth is translated into an index to the second lookup table by the first
lookup table.

"We vary the number of quantized levels from 5 to 30 and choose 15 levels for all
experiments since it gives reasonable performance and a relatively small area cost.

IEICE Electronics Express, Vol.11, No.5, 1-12

A. Structure of two level bitmap lookup table second level (bitmap)

First level (index)
Lin'(0) — |_)
Lin'(1) —
indexing
B. Example of making and shortening bitmap olol110

repetition part

quotient +1 part to be removed remainder

1 | o | o | O O 1 1
bitmap O 0 1 0 0 1 O O 1 O — i repetition counter

wo=7,wmn=3 " ! 010|111

numerator = 7, denominator (repetition counter) = 3
quotient = 2, remainder = 1, length of repetition part=2+1=3 length of repetition part

Fig. 5. (a) Structure of a bitmap lookup table with two
classes (0 and 1). (b) Example of optimizing a
bitmap. Assume that W(0) = 7 and W(l) =
3. The repeated pattern, 001001, is removed
from the original bitmap, 0010010010. The fi-
nal bitmap, 0010, is stored into the second-level
lookup table with the repetition count and the
length of the repetition part.

with these registers in parallel and encoding the highest matching bit, we
generate the index for the second level lookup table and access the table.
The second-level lookup table contains a bitmap consisting of a repetition
part, a remainder, a repetition counter, and a repetition part length, which
is used by a QoS scheduler.

5 Experimental results

5.1 Simulation environments

An event driven simulator is developed to evaluate our proposed scheduler
under various stressful scenarios. In all tests, we set the latency requirements
for high and low priority classes to the distributions indicated by load of 0.7
and 0.8 in Fig. 3 respectively to create stressful scenarios. For SQMC, these
requirements are translated into probability at 200 cycles in CCDF, which
are 4.766 x 107> for HP class and 8.216 x 10~* for LP class respectively.

In the next section, we present the results of tests that show the per-
formance of our proposed method (BMS). The first test shows how BMS
performs when the total effective load is periodically larger than total avail-
able bandwidth although its average value is smaller than the total available
bandwidth. The second test rapidly switches the ratio between high and low
priority traffic load although its total effective load is less than total available
bandwidth.

IEICE Electronics Express, Vol.11, No.5, 1-12

- - -HP,BR=1.05
—HP, BR=1.1

- - -LP,BR=1.05
! —LP, BR=1.1

Probability

] 5450 1 dOO 1 500 2000 0 560 1 600 1 5‘00 2000
Latency(cycles) Latency(cycles)

Fig. 6. CCDF of cell latency for SQMC (left) and BMS
(right) when total effective load is periodically
larger than total available bandwidth. (HP = high
priority, LP = low priority, BR = overload ratio
during burst periods, LR = latency requirement
in load value)

5.2 Evaluation QoS scheduler
5.2.1 Total effective load is periodically larger than 100% of
total available bandwidth

In this test, the total average effective input load, > % x 100%, is set
to 99% of the level that a scheduler can handle. However, it increases peri-
odically to larger than 100%. The input ratio between high and low priority
is set to 9:1 and total input load increases by 5% (BR = 1.05) and 10%
(BR = 1.1) during burst periods in two tests. Fig. 6 shows that both classes
in SQMC increase the weight during overload periods and scheduling degen-
erates into round-robin, which violates the latency requirement for the HP
class by a huge margin (1.7884 x 10~% at BR = 1.05 and 0.0014 at BR = 1.1).
Meanwhile, BMS adds more bandwidth to high priority by increasing weight
and guarantees the latency of the higher priority class (1.8545 x 107> at
BR = 1.05 and 4.2138 x 107 at BR = 1.1) when the scheduler cannot meet

the requirement of all classes.

5.2.2 Input ratios for two classes are periodically changing
while the total effective input load is close to 100%

In this experiment, we alternate the ratio between the input loads of class 0

and 1 while the total effective load is little less than 100% and compare the

performance of BMS against SQMC. During the phase 0 and 1, the input

ratio between class 0 and 1 is 9:1 and 2:8 respectively. The input rate change

interval® is 1 MCycles and the dequeue rate change interval® is 1 KCycles.

8The input rate change interval is a parameter controlling how fast the input loads for
different classes change.

9The dequeue rate change interval is a parameter that controls how fast the scheduler
changes the schedule weight of each class, i.e. sampling window.

10

IEICE Electronics Express, Vol.11, No.5, 1-12

Probability

0 2(30 460 6(30 0 260 460 6(30
Latency(cycles) Latency(cycles)

Fig. 7. CCDF of cell latency for SQMC (left) and BMS
(right) when input ratio between high and low pri-
ority traffic is periodically changing.

Table I. Comparing probability at 200 cycles in CCDF for
SQMC and BMS.
Pri | Lat. Req. | SQMC (Ain%) | BMS (A in %)
HP | 4.76 x 1075 | 10.1 x 1075 (112%) | 4.86 x 107° (2%)
LP | 821 x 107% | 1.79 x 107° (—=97%) | 9.63 x 10~* (17.2%)

As shown in Fig. 7, SQMC shows that the high priority performance is
severely degraded. This is because the ratio is changing rapidly and SQMC
overreacts to errors from rapid input rate change. The weights for two classes
continuously increase in SQMC and degenerate performance of high priority.
The exact performance of the two methods for the second test are compared
in Table I. The numbers inside parentheses are the percentage difference be-
tween the achieved probability and latency requirement in the second column.
BMS shows much little difference from the latency requirement compared
with SQMC.

6 Cost Analysis

If we quantize L;y,(7) into g levels, the first- and second-level lookup tables
require O(c(q — 1)) and O(¢°) entries, where ¢ is the number of classes.
Typically, the maximum number of classes supported in the memory con-
troller of routers is 2 ~ 3 [7]!. For the binary class case with 15 quantized
ranges, 225 entries are sufficient for the second-level lookup table. If we as-

0Class of Services supported in the routers/switches can be larger, e.g. 2 ~ 7 classes.
However, the larger number of classes is only supported in the queue scheduler. The rest
of the datapath is only supporting a small number of classes such as 2 ~ 3 due to hardware
complexity. The memory controller also supports only 2 ~ 3 classes and provides some
speedup over the queue scheduler so that the controller does not become a bottleneck of
the performance.

1

IEICE Electronics Express, Vol.11, No.5, 1-12

sume that the maximum length of a bitmap supports the weight ratio up
tot N : 1, since the maximum length of the bitmap is less than the sum
of the maximum quotient and the maximum remainder plus one, the num-
ber of bits required is N + 1+ (N — 1) = 2N. In other words, when the
weight ratio is N : 1, we need allocate O(2N) bits to the bitmap. In our
design, we allocated 20 bits to the bitmap, considering up to 10 : 1 ratio.
Thus, for two classes, we use 2 x 14 (thresholds) x 16 bits for the first-level
lookup and 225 x (20 (quotient and remainder) + 4 (repetition counter) +
4 (repetition part length)) bits for the second level lookup, which is 6.7K bits.
For three classes, 169.4K bits are needed. Considering that tens of megabits
of memory is used in the packet processor of a core router [7], this memory
size and the cost of the comparators and a priority encoder are relatively
small.

To prove the feasibility of the concept and confirm the cost and perfor-
mance analysis, we design, verify, and synthesize the proposed QoS (class)
scheduler. The design is implemented in Verilog and compiled via Synop-
sis design compiler for a Samsung 65nm process. The target clock cycle
time is set to 2ns (500 MHz) to make synthesis challenging and area penalty
conservative. The total number of flops reported is 6,812 which is in line
with our estimation for two-class QoS scheduler!!. Total combinational and
non-combinational area are 8225.6 um? and 11264.0 um? respectively.

7 Conclusion

This paper proposes a novel packet memory scheduler that models the mem-
ory controller as an M/D/1 queue and creates a bitmap for scheduling. By
adaptively varying the weight of each class, the proposed scheduler can pro-
cess latency-sensitive high-priority packets, according to our experimental
results. We expect that the proposed method would be able to guarantee
the quality of service in modern internet environments in which routers are
temporarily overloaded and input traffics abruptly changes.

Acknowledgments

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No.2011-0023798
and 2012-008475).

"' The number of flops can be much smaller if we use a hard-macro memory block for the
look-up table. We use flops because the hard-macro memory block is not available in the
library.

12

