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Abstract: This paper proposes a recursive optimum-term select-
ing (ROS) approach to pruning the general Volterra series, by which
we can achieve a custom-tailored model to characterize nonlinearity of
wideband power amplifiers (PAs) with memory effects. The achieved
model is more suitable for the individual PA than those static mod-
els, such as the MP and GMP models, as it selects the most efficient
terms from the general Volterra series based on the theory of recursive
correlation cancellation. Simulation results show that the approach is
effective, and the pruned model developed by the proposed approach
is efficient as well as adaptable.
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1 Introduction

The Volterra series is a power series with memory [1], which is utilized to
characterize nonlinearity of wideband power amplifiers (PAs) with memory
effects. However, due to the high computational complexity, this kind of
model is just suitable to modeling PAs with weak nonlinearity. For the pur-
poses of application in the digital pre-distorter (DPD) to compensate for the
strong nonlinearity with memory, it is necessary to find a practical and ef-
fective method to prune the general Volterra series according to the needed
accuracy and the computational resources. There are several methods to
actualize the simplification in the literature [2, 3, 4]. In [2], an approach
called memory polynomial (MP) is introduced, which is a pruned Volterra
model only with the diagonal terms. The generalized memory polynomial
(GMP) model is an extension by adding cross terms between the signals and
lagging [3]. Besides these, the dynamic deviation reduction (DDR) model
in [4] is also a pruned Volterra model. These models are mostly based on
an ideal assumption that the terms with particular structures, such as near-
diagonality [5], are crucial to the nonlinearity of PAs. In fact, PAs are de-
signed and manufactured with a great difference, so the models constructed
statically only perform well on some special occasions.

Based on the general Volterra series, this paper presents a novel ap-
proach to achieve a custom-tailored model off-line according to the mea-
surement, which is more suitable for the individual PA than those common
ones. The custom-tailored model is achieved by a recursive optimum-term se-
lecting (ROS) procedure, which selects more efficient terms from the general
Volterra series. The simulation results in Section III show that the approach
is effective, and the achieved model is efficient as well as adaptable.

2 The proposed approach

In the simulation of wireless communication systems, the modulated RF sig-
nal is usually represented by its complex envelope which contains all the in-
formation when the bandwidth is much smaller than the carrier frequency [6].
Here, suppose that x(n)/y(n) is the real input/output signal of a PA, then
we can express it in terms of complex baseband representation x̃(n)/ỹ(n)
as: x(n) = Re{ejω0nx̃(n)}, y(n) = Re{ejω0nỹ(n)}, where ω0 = 2πf0 with f0

being the carrier frequency. Without loss of generality, we assume that the
kernels are symmetric. So that the truncated Volterra series with M -delay
memory and P -order nonlinearity can be written as [7]
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where h̃p(m1, ..., mp) is the pth-order Volterra complex kernel. From (1),
we can identify the linear relationship between the complex envelope ỹ(n)
and the Volterra kernels, so it is feasible to extract the parameters by using
linear system estimation theory such as least squares (LS) and its variants [6].
Given that the captured input and output data streams have N samples
respectively, then the terms in the Volterra series can be written in terms
of matrix as (2), where ()∗ denotes the complex conjugate. The terms in
the matrix Φx are all odd-order products and this means that the number of
x̃ is more than that of its complex conjugate x̃∗ by exactly one [3]. Define
a column vector Y = (ỹ1, ỹ2, ..., ỹn, ..., ỹN )T , where ỹn indicates ỹ(n), and
define another column vector B = (b̃1, b̃2, ..., b̃s, ..., b̃S)T , where b̃s represents
the sth Volterra kernel and S is the total number of the P -order Volterra
kernels, which can be calculated as

S =
(P−1)/2∑

p=0

(
M + p

p

)(
M + p + 1

p + 1

)
(3)

then we can obtain a matrix equation that is equivalent to (1)

Y = ΦxB (4)

Using the LS method, the linear matrix equation (4) can be solved into
the form of

B = Φ†
xY (5)

where Φ†
x = (ΦH

x Φx)−1ΦH
x is the Moore-Penrose pseudo-inverse of Φx, with

()H indicating the Hermitian transpose.
Reviewing (2) and (4), if the matrix Φx is expressed in the form of row

vector Φx = (φ1, φ2, ..., φs, ..., φS), where φs is a column vector composed
of the products of the complex envelope x̃ and its corresponding complex
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conjugate x̃∗, then we can recognize that the vector Y is represented by a
space which is spanned by the bases Φx and the element b̃s in the vector
B is the coefficient corresponding to the bases Φx’s. Because of the close
correlation characteristics between the over sampled data, the bases Φx are
correlated strongly. This means that the matrix equation (4) is redundant
in a sense. So it is necessary to further identify the basis φs to select more
efficient ones for approximating the vector Y. By cutting off less contributive
bases, we can dramatically simplify Φx. In other words, the Volterra series
will be pruned by abnegating those unimportant terms.

Here, we present an approach named recursive optimum-term selecting
(ROS), which is based on the theory of correlation cancellation. Firstly, the
inner products of the output vector Y and each basis vector φs are calculated
to obtain a projection vector: Py = (P̃1, P̃2, ..., P̃s, ...P̃S), which represents
the extent of correlation in complex. Secondly, the optimum term is selected
for the most efficient term group Ψx according to the maximum absolute
value criterion with respect to the vector Py. At the same time, the other
terms are updated by canceling correlation between them and the optimum
term. Subsequently, the selected term is masked in Φx and the procedure
repeats with the updated Φx. The recursive procedure continues until enough
terms are selected. It should be noted that the number of terms in Ψx is
decided by the needed accuracy and the computational resources. At last,
we can achieve a group of terms in Ψx, which can characterize the PA as
a behavioral model. Referring to the description above, suppose that the
number of expected terms is K, then the proposed ROS approach can be
written as the following algorithm

Algorithm: Recursive Optimum-terms Selecting (ROS)
1: Φx ← x̃(n)
2: while k ←0 to K do
3: for s←1 to S do
4: Py ←< Y, φs >

5: end for
6: Ψx ← select the optimum term from Φx according
to the maximum absolute value criterion with respect to
the vector Py

7: Φx ← update the other terms by canceling correlation
and mask it in Φx

8: k ← k + 1
9: end while

Fig. 1 demonstrates the ROS process for the truncated Volterra model
with one-delay memory and fifth-order nonlinearity as an example. The
algorithm is revised by adopting the first-order terms directly to simplify
the algorithm. Hence, we will only consider the third- and fifth-order terms,
which leads to eighteen coefficients. The figure (a) shows the projections
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Fig. 1. The ROS process on a Volterra model (M=1,
P=5)

of the output vector Y on the initial bases Φx, where the horizontal axis
represents the index of the terms in Φx, and the vertical axis represents the
absolute value of the projections. According to the criterion mentioned in the
algorithm, the first term should be selected for the most efficient term group
Ψx and masked in Φx, then the other terms would be updated by subtracting
the correlation component between them and the first term. After calculating
the inner products of the output vector Y and the updated Φx, we would
obtain the figure (b). According to the same criterion, the sixteenth term
would be selected. In this way, the second and the fifteenth terms would
be selected, so the first, the sixteenth, the second and the fifteenth terms, in
company with the first-order terms form a custom-tailored behavioral model,
which is just the expected result of the proposed approach.

As shown in Table I, the MP/GMP and custom-tailored models are all
the subsets of the Volterra model, where the marker 1© denotes the terms in
the MP model, the marker 2© denotes the terms in the GMP model, and the
marker � denotes the selected terms by ROS approach. The third- and fifth-
order terms in the custom-tailored model differ from those in the MP/GMP
model if they have the same number. This means that the developed model is
different from the compared models with the same computational complexity,
but it characterizes PA more accurately according to the simulation results
in the following section.
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Table I. The Volterra model terms (M=1, P=5)

Index The Volterra Model Terms Marker

1 x̃(n− 0)x̃(n− 0)x̃∗(n− 0) 1© 2© �

2 x̃(n− 0)x̃(n− 0)x̃∗(n− 1) �

3 x̃(n− 0)x̃(n− 1)x̃∗(n− 0) 2©
4 x̃(n− 0)x̃(n− 1)x̃∗(n− 1) 2©
5 x̃(n− 1)x̃(n− 1)x̃∗(n− 0)

6 x̃(n− 1)x̃(n− 1)x̃∗(n− 1) 1© 2©
7 x̃(n− 0)x̃(n− 0)x̃(n− 0)x̃∗(n− 0)x̃∗(n− 0) 1© 2©
8 x̃(n− 0)x̃(n− 0)x̃(n− 0)x̃∗(n− 0)x̃∗(n− 1)

9 x̃(n− 0)x̃(n− 0)x̃(n− 0)x̃∗(n− 1)x̃∗(n− 1)

10 x̃(n− 0)x̃(n− 0)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 0) 2©
11 x̃(n− 0)x̃(n− 0)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 1)

12 x̃(n− 0)x̃(n− 0)x̃(n− 1)x̃∗(n− 1)x̃∗(n− 1)

13 x̃(n− 0)x̃(n− 1)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 0)

14 x̃(n− 0)x̃(n− 1)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 1)

15 x̃(n− 0)x̃(n− 1)x̃(n− 1)x̃∗(n− 1)x̃∗(n− 1) 2© �

16 x̃(n− 1)x̃(n− 1)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 0) �

17 x̃(n− 1)x̃(n− 1)x̃(n− 1)x̃∗(n− 0)x̃∗(n− 1)

18 x̃(n− 1)x̃(n− 1)x̃(n− 1)x̃∗(n− 1)x̃∗(n− 1) 1© 2©

3 Approach evaluation

As illustrated in Fig. 2, we setup a test bench composed of a series of instru-
ments and a solid PA with about 37 dB gain, which behaved almost flat in
the frequency domain from 5 to 5.5 GHz. The baseband I/Q source data was
produced in MATLAB and saved into a two bin file, which represented the
I/Q signals. Then they were downloaded into the wideband arbitrary wave-
form generator (AWG), which operated at the sampling rate of 1.25 GSa/s.
The baseband I/Q signals were generated by the AWG and transmitted into
the vector signal generator (VSG) through dual differential channels, where
the baseband I/Q signal was modulated at the carrier centered at frequency
5 GHz and led to the RF signal. In succession, the RF signal was amplified
by the PA and went into an attenuator which weakened the amplified signal
by 30 dB. The oscillograph sampled and digitalized the analog RF signal.
At last, the digital signal was saved as a bin file and uploaded into PC via
Ethernet.

In this study, we consider modeling PAs in high-speed wireless digital
communication systems with implementing 16QAM modulated signals. Af-
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Fig. 2. Experimental test bench sketch map

Table II. Coefficients number with different memory delay

Memory Delay 1 2 3 4
MP 6 9 12 15

GMP 14 21 28 35
Volterra 20 81 244 605

ter obtaining the digitalized RF signal on PC, we down-mix and filter it to
acquire the complex envelope in MATLAB, then align it with the baseband
I/Q source data for model extraction. Using the ROS algorithm in Section
II, we develop a custom-tailored model for the PA and solve coefficients of
the inverse behavioral model. Then we can evaluate effectiveness as well as
adaptability of the custom-tailored model by simulation with DPD architec-
ture, which is an open-loop chain model introduced in [8].

3.1 Effectiveness evaluation
For the convenience of simulation, the general Volterra series is truncated to
a model with four-delay memory and five-order nonlinearity. As shown in Ta-
ble II, the number of coefficients in the Volterra model exponentially increases
as memory length increases at one step, but the number of coefficients in the
MP/GMP model increases slowly. For a fair comparison, we equalize the
number of the total coefficients among MP, GMP, and our custom-tailored
model. Applying the test bench mentioned above, and setting the exciting
signal as a 80M-bandwidth 16QAM-modulation signal with −3 dBm power,
we acquire around 20,000 data points which represent the input and output
signals of the PA. After the development of the custom-tailored model, we
extract coefficients and generate the post-distortion signal, which is equal to
the predistortion according to the literature [1], then calculate the degree of
difference between the input signal and the post-distortion signal in terms of
NMSE, which is defined in [9].

As shown in Fig. 3, the custom-tailored model achieves lower NMSEs than
the MP and GMP models on most occasions. There is an exception that the
NMSE of the GMP model is lower than the Volterra and ROS(GMP) models
when memory delay is one. This is caused by the next memory delay terms
in the GMP model, which might contain more information about the output
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Fig. 3. Effectiveness comparison in terms of NMSE

Table III. Comparsion between the custom-tailored model
and the MP model

Input Power NMSE(MP) NMSE(ROS) NMSE Difference
0 dBm −16.38 −17.20 −0.82
−3 dBm −20.96 −22.58 −1.62
−6 dBm −25.49 −27.12 −1.63

Table IV. Comparsion between the custom-tailored model
and the GMP model

Input Power NMSE(GMP) NMSE(ROS) NMSE Difference
0 dBm −16.98 −18.02 −1.04
−3 dBm −21.98 −23.25 −1.27
−6 dBm −26.51 −27.68 −1.17

signal when memory length is not long enough. It is evident that the custom-
tailored model behaves more excellently than the two models as memory
length increases. When memory delay is four, the NMSE of the developed
model is lower than that of the MP/GMP model by 1.6 dB/1.2 dB. So the
custom-tailored model developed by proposed approach is more efficient than
the two common models.

3.2 Adaptability evaluation
In order to evaluate the adaptability of the custom-tailored model, we adopt
three input power levels in turn, which makes the PA to work in different
regions. We simulate the predistortion signal with the data captured in the
case of 0 dBm/−6 dBm input power by using the same term model developed
for the −3 dBm-input-power case, and calculate the NMSEs for comparision.
On this occasion, we also adopt a four-delay memory and five-order nonlin-
earity model. As shown in Table III and Table IV, we can conclude that
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the custom-tailored model developed for the −3 dBm-input-power case also
performs well in the case of 0 dBm/−6 dBm input power, as it reduces the
NMSEs from 0.82 dB to 1.63 dB compared with the MP model, and reduces
the NMSEs from 1.04 dB to 1.17 dB compared with the GMP model. There-
fore, the model developed by the proposed approach shows good performance
at different input power levels.

4 Conclusion

This paper proposes an approach named ROS to pruning the general Volterra
series. By using this method, we can develop a custom-tailored model to
characterize the nonlinearity of PAs with memory effects, and also apply it
to DPD for the linearization of PAs. It is shown that the proposed approach
is effective and the developed model is efficient as well as adaptable. Owing
to the recursive procedure, it is convenient to make trade-off between the
needed accuracy and the computational complexity.
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