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Abstract: This paper presents versatile formulas that characterize
wireless power transfer schemes in arbitrary coupling topologies. Max-
imum available coupling efficiency is formulated in two-port immittance
matrix domain invariant to source and load conditions. Key perform-
ance index k-Q product is extended to general cases even where reso-
nance or filtering model is inapplicable. Typical capacitive- and induc-
tive-coupling schemes are shown with their k-Q product instances.
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1 Introduction

Capacitive- or inductive-coupling structures for wireless power transfer are
usually characterized by assuming a simple circuit model that consists of a few
discrete capacitors or inductors. They conclude that power transfer efficiency
is primarily dominated by coupling coefficient k multiplied by Q factor or so-
called resonant k-Q product. It may be straightforward to define k-Q product
if its equivalent circuit is represented by single-mode resonators. Practical
coupler systems however exhibit labyrinthine structures involving multiple
capacitors, mutual inductors, and distributed-constant effects. Recent prog-
ress found out about existence of electric coupling components even between
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pure coils made of just wound metal wire [1]. They considerably affect overall
coupling in its efficiency. It is also often discussed that the efficiency compli-
catedly depends on source and load impedance conditions, and a clear pilotage
is anticipated for lucid design of effective power transfer systems [2, 3]. This
paper gives an extended definition of k-Q product as an elegant index by
which we can predict the maximum efficiency of arbitrary two-port power
transfer schemes.

2 Maximum available coupling efficiency

Consider a system having two RF ports which are internally coupled via
electric and/or magnetic field between them. We do not assume any partic-
ular circuit topology but regard the system as a black box in general. The only
what we need is its RF two-port parameters, i.e. S, Y, or Z matrix at the
point frequency assigned for power transfer. Those parameters are observable
by measurement without engineering its internal structure. Another way to
get the port parameters is electromagnetic field simulation in case that the
physical structure inside is known in detail. Anyway, there is no need to even
imply its equivalent circuit model in the following theory.

We start formulation from a sophisticated criterion called maximum
transducer power gain

GTmax ¼ jS21j
jS12j ðK �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p
Þ ð1Þ

which often appears in microwave amplifier design process. It is in-situ
invariant against source or load impedance. Forward power gain jS21j2 can
never exceed but achieves GTmax only when ports #1 and #2 are simulta-
neously conjugate-matched to its source and load respectively [4]. Associa-
tively K is known as Rollett’s stability factor

K ¼ 1� jS11j2 � jS22j2 þ jS11S22 � S12S21j2
2jS12S21j : ð2Þ

What we do here beside usual amplifiers is forcing S21 ¼ S12 since the coupler
consists of only reciprocal components. We then introduce positive parameter
, defined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

K � 1

r
or K ¼ 1þ 2

�2
: ð3Þ

This may look somewhat heuristic, but we will soon find how , plays an
essential roll in formulation. Employing ,, we can rewrite Eq. (1) as

�mac ¼ K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � 1

p
¼ 1� 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p : ð4Þ

The left-hand side is denoted as �mac because it means no longer gain as the
system involves no active device. This is what we call maximum available
coupling efficiency in this paper. Since , appears only once on the right-hand
side, we can notice at a single glance that �mac is uniquely determined as a
monotonously increasing scalar function of ,. See Table I for easy look-up. It
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is also worth notifying that the right-hand side agrees with peak efficiency
formula derived for coupled series LCR resonators in Ref. [2] if we just
algebraically replace �2 by k2QSQD. This implies that , carries out the same
mission as conventional k-Q product and suggests its meta concept.

3 Immittance-domain expression

To mathematically show how , works indeed for coupling systems, formulat-
ing the two-port network in the immittance domain is a persuasive way for
circuit engineers as shown in Fig. 1(a). Any two-port coupling structure
except for trivial topologies can be fully characterized by its impedance matrix
Z ¼ Rþ jX. Each component of the matrix can be decomposed into its real
and imaginary parts e.g. z11 ¼ r11 þ jx11. Thanks to the network reciprocity
again, we read z12 ¼ z21 throughout the formulation below. With a help of
matrix conversion

S ¼ ðZ� z0IÞðZþ z0IÞ�1

or its constituent form

s11 s21

s21 s22

� �
¼ 1

�

ðz11 � z0Þðz22 þ z0Þ � z221 2z21z0

2z21z0 ðz11 þ z0Þðz22 � z0Þ � z221

� �
� ¼ ðz11 þ z0Þðz22 þ z0Þ � z221

we can translate Rollett’s stability factor from S - into Z -parameter domain as

K ¼ 2r11r22 � r221 þ x221

jz21j2
ð5Þ

where z0 denotes the reference impedance used in S parameter measurement
but does not remain in the impedance-domain stability factor. Substituting
Eq. (5) into Eq. (3), we obtain a simple and elegant formula

� ¼ jz21jffiffiffiffiffiffiffijRjp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r221 þ x2

21

r11r22 � r221

s
: ð6Þ

This is the impedance-domain expression of ,. The result reveals that ,

monotonously increases with mutual reactance x21 in square, and decreases
with diagonal resistance product r11r22. This gives us a general insight on how
to improve �mac since it is simply monotonous to , as was shown in Eq. (4).
On the contrary, diagonal reactance x11 or x22 does not contribute to improv-
ing or degrading �mac. This stems from the physics in which any reactance
element can be neutralized by putting its conjugate reactor in series to the
input or output port without affecting additional power profit or loss. Note
again that z0 does not appear in the above result. This is also physically self-
evident because the maximum available coupling efficiency of any network is
something that must keep constant against any external environment change.

Table I. Factor , to achieve typical goals of �mac

�2 0 8 15 80 360 9800 1
�mac [%] 0 50 60 80 90 98 100
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Replacing rij and xij by conductance gij and susceptance bij with notation
Y ¼ Gþ jB, duality theorem leads us to alternative expression

� ¼ jy21jffiffiffiffiffiffiffijGjp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g221 þ b221

g11g22 � g221

s
ð7Þ

in the admittance domain. The formula in terms of Y-parameters is conven-
ient to characterize coupling topologies mainly having parallel connections of
circuit elements.

4 Capacitive coupling

To open up a clearer vista on the physical meaning of factor ,, we apply
Eq. (7) to electric coupling phenomena in capacitive power transfer schemes.
Consider a :-shape topology consisting of three passive elements: y1 ¼ g1þ
jb1, y2 ¼ g2 þ jb2, and y3 ¼ g3 þ jb3 as shown in Fig. 1(b). It is regarded as a
two-port network having admittance matrix

Y ¼ y1
1 0

0 0

" #
þ y2

0 0

0 1

" #
þ y3

1 �1

�1 1

" #

¼ g1 þ g3 þ jðb1 þ b3Þ �g3 � jb3

�g3 � jb3 g2 þ g3 þ jðb2 þ b3Þ

" #
: ð8Þ

By decomposition of each component into its real and imaginary components
for usual dyadic yij parameters, we substituted

g11 ¼ g1 þ g3; g22 ¼ g2 þ g3; g21 ¼ �g3; b21 ¼ �b3: ð9Þ

Fig. 1. Two-port reciprocal passive network.
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Note that diagonal susceptance b11 or b22 does not contribute to improving or
degrading , for the same physical reason as described right after Eq. (9) into
Eq. (7), which results in

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g23 þ b23
g1g2 þ g2g3 þ g3g1

s
: ð10Þ

If each of the passive elements is represented not directly by its conductance
and susceptance but normalized coefficients k1 ¼ g3=g1, k2 ¼ g3=g2, and
Q ¼ b3=g3, Eq. (10) is rewritten as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2ð1þQ2Þ
1þ k1 þ k2

s
: ð11Þ

This is the k-Q product expression in the admittance domain extended for
arbitrary :-shape coupling topologies. Especially in well-designed coupling
regimes, we can suppose g3 � g1; g2; b3 which lets Q2 � 1 and the above
formula approximately falls into �2 � k1k2Q

2.
The general expression Eq. (7) is also applicable to pragmatic configura-

tions such as a wireless power transfer scheme featuring two pairs of parallel
facing planar electrodes, which is equivalent to the two-port network shown in
Fig. 2(a). The two pairs have common coupling capacitance C3 along with
stray capacity C1 and C2 hanging on input and output ports. As a linear
combination of these terms, we get overall admittance matrix

Y ¼ 1

r1
þ j!C1

� �
1 0

0 0

" #
þ 1

r2
þ j!C2

� �
0 0

0 1

" #
þ 1

2

1

r3
þ j!C3

� �
1 �1

�1 1

" #
:

Resistors r1, r2, and r3 represent parasitic loss assumed in parallel to C1, C2,
and C3, respectively (hidden from circuit schematics to avoid confusion). To
estimate k-Q product for this scheme, we do not have to renew the formula-
tion but just substitute the above components into Eq. (7). We thus get

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2
2r3

� 1þ !2C2
3r

2
3

r1 þ r2 þ 2r3

s
: ð12Þ

The same result also stems from Eq. (11) by defining k1 ¼ r1=2r3, k2 ¼ r2=2r3,
and Q ¼ !C3r3. Beside their parasitic loss, neither C1 nor C2 itself affects ,
because they can be cancelled by adding external lossless inductors. If both C1

and C2 come to lossless (r1 ¼ r2 ¼ 1), , goes to infinite resulting in K and
�mac reaching unity. This is true even if C3 has finite loss (r3 6¼1). In this case,
power transfer efficiency jS21j2 possibly approaches one hundred percent since
we can increase source and load impedance as high as necessary at least
theoretically. If C3 comes to lossless (r3 ¼ 1) on the contrary, Eq. (12)
converges into

lim
r3!1� ¼ 1

2
!C3

ffiffiffiffiffiffiffiffiffi
r1r2

p

as shown in Fig. 2(a). This is quite analogous to k-Q product for inductive
coupling that will appear next section.
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5 Inductive coupling

In the same way as described in the previous section, we consider a T-shape
topology. It consists of three passive elements: z1 ¼ r1 þ jx1, z2 ¼ r2 þ jx2,
and z3 ¼ r3 þ jx3 as shown in Fig. 1(c). Two-port impedance matrix Z of the
network is formulated as

Z ¼ z1
1 0

0 0

" #
þ z2

0 0

0 1

" #
þ z3

1 1

1 1

" #
: ð13Þ

Expressing each component in terms the dyadic z parameters, we substitute

r11 ¼ r1 þ r3; r22 ¼ r2 þ r3; r21 ¼ r3; x21 ¼ x3: ð14Þ
Diagonal reactance neither x11 nor x22 contributes to improving or degrading
, for the same reason as mentioned in Eq. (9). Then we put Eq. (14) back into
Eq. (6), which results in k-Q product

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

K � 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r221 þ x2

21

r11r22 � r221

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23 þ x2

3

r1r2 þ r2r3 þ r3r1

s
ð15Þ

extended for any two-port scheme equivalent to the T-shape topology.
The most frequently referred example that falls into T-shape is mutual

coupling of lossy coils shown in Fig. 2(b) represented by impedance matrix

Z ¼ r1 þ j!L1 j!M

j!M r2 þ j!L2

" #

assuming r1 and r2 for inductor loss in series, and mutual inductanceM free of
loss r3. We can decompose the matrix into three terms

fr1 þ j!ðL1 �MÞg 1 0

0 0

" #
þ fr2 þ j!ðL2 �MÞg 0 0

0 1

" #
þ j!M

1 1

1 1

" #

which has the same fashion as Eq. (13). We can therefore apply Eq. (15) and
yield

lim
r3!0

� ¼ !Mffiffiffiffiffiffiffiffiffi
r1r2

p

Fig. 2. Typical lumped-constant schemes.
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which exactly agrees with a familiar expression of k-Q product. The formula
finds , not containing L1 or L2 directly, which means that �mac does not suffer
from increasing or decreasing the self inductance by appending lossless
inductors or capacitors at either port. This is theoretically true no matter
whether they are in resonance or not. Remembering the role of , in �mac by
Eq. (4), we get physical insight from the above formula. Especially if either r1
or r2 vanishes, �mac approaches unity even in a very loose (long distance
between coils) coupling structure.

6 Conclusion

Indeed wireless power transfer schemes feature electric and magnetic coupling
or more complicated factor, we have bird-eye-viewed them as just an RF two-
port network. Introduced , plays an essential roll and should be called
extended k-Q product. The formulas presented in this paper enable us to cal-
culate , of any topology of circuits. This can be done even without extracting
the circuit’s internal topology or affecting their electromagnetic properties if
we just have measured or simulated two-port parameters S, Y, or Z. We no
longer need the concept of resonance to estimate the k-Q product. It will
contribute to development of high-efficiency wireless power transfer systems
as a useful design criterion.
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