
A low-time-complexity
and secure dual-field scalar
multiplication based on co-Z
protected NAF

Jizeng Weia), Xulong Liu, Hao Liu, and Wei Guob)

School of Computer Science and Technology, Tianjin University, Tianjin Key

Laboratory of Cognitive Computing and Application, Tianjin, China

a) weijizeng@tju.edu.cn

b) weiguo@tju.edu.cn

Abstract: In this paper, we incorporate the co-Z arithmetic with
Protected NAF to build a dual-field scalar multiplication method in
ECC (elliptic curve cryptography) with lower time complexity and
higher security, called co-Z Protected NAF. The Protected NAF is
the alteration of the original NFA against SPA (simple power analysis)
attack. But the employed dummy operations, double-and-add-always,
often results in two severe problems: the high time complexity and the
vulnerability of safe-error attack. So, the speed advantage of co-Z point
addition is leveraged to greatly compensate the time penalty incurred
by Protected NAF. Meanwhile, not only does the co-Z not change the
SPA immunity existed in Protected NAF, but the property of updating
point P in it improves the security to resist the safe-error attack.
Experiment results show that the co-Z Protected NAF can obtain
1.36 times speedup with respect to Protected NAF over GF(p), and is
even faster than original NAF. And it can also counteract 30.7% time
loss over GF(2m) caused by dummy operations. Furthermore, because
the co-Z Protected NAF is only the optimization on scalar multiplica-
tion, only less than 1% extra area cost is generated to achieve its
improvements in time complexity and security.
Keywords: elliptic curve cryptography (ECC), scalar multiplication,
co-Z, non-adjacent form (NAF), safe-error attack
Classification: Integrated circuits

References

[1] H. Darrel, S. Vanstone and A. J. Menezes: Guide to Elliptic Curve Cryptog-
raphy (Springer, 2004).

[2] Y. Hitchcock and P. Montague: Information Security and Privacy (2002) 214.
[3] R. R. Goundar, M. Joye and A. Miyaji: CHES (2010) 65.
[4] N. Meloni: WAIFI (2007) 189.
[5] J. Marc and S.-M. Yen: CHES (2002) 291.
[6] A. Miyamoto, N. Homma, T. Aoki and A. Satoh: IEEE Trans. Very Large

Scale Integr. (VLSI) Syst. 19 (2011) 1136. DOI:10.1109/TVLSI.2010.2049037

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

1

LETTER IEICE Electronics Express, Vol.11, No.11, 1–12

http://dx.doi.org/10.1109/TVLSI.2010.2049037


[7] A. Satoh and K. Takano: IEEE Trans. Comput. 52 (2003) 449. DOI:10.1109/
TC.2003.1190586

1 Introduction

Scalar multiplication, the fundamental operation in ECC, is usually computed
over two typical types of filed arithmetic, i.e. prime field GF(p) and binary
filed GF(2m). Thus, rather than specifically requiring some field, it would be
useful to combine them into a single datapath, referred to as dual-field
architecture, to achieve the better tradeoff in relation to speed and silicon
area. Of varied scalar multiplication algorithms, NAF (non-adjacent form) [1]
has the widespread use due to its time complexity advantage based on the
unique data representation. But its computation feature, double-and-add,
often results in irregular operations during each iteration, which makes it
easy to suffer from SPA attack. So the double-and-add-always based NAF
algorithm, named Protected NAF [2], is proposed to regularize the iteration
by the dummy operations. While it can protect NAF from SPA attack, the
dummy operations increase the running time of NAF greatly, counteracting
its natural speed advantage. Moreover, the dummy operations also provide
opportunities to another fault attack technology called safe-error attack.

In this paper, from the perspective of speed and security, we propose the
co-Z Protected NAF based scalar multiplication algorithm over the dual-field.
The co-Z point addition [3] is extended to GF(2m) and combined with
Protected NAF. The hardware implementation results show that, in this way,
the lower time complexity of co-Z compensates the speed loss of Protected
NAF caused by its dummy operations. Meanwhile, the characteristic of
updating point P in co-Z point addition as a countermeasure can make the
co-Z Protected NAF own higher security and be capable of resisting SPA and
safe-error attack.

2 Co-Z protected NAF based scalar multiplication over dual-
field

2.1 Co-Z point addition over GF(p)
It is generally known that point addition (PA) and point doubling (PD) are
called iteratively in scalar multiplication. Therefore, one of the two has
important impact on the scalar multiplication speed. In 2007, [4] introduced
a new type of arithmetic that can significantly improve the addition speed of
the points sharing the same Z-coordinate on an elliptic curve. [3] extended this
idea to PA over GF(p), named conjugate co-Z addition (Algorithm 1).

Note that except point addition denoted by part (1) Algorithm 1 also
includes some extra operations tagged by part (2), namely updating P value.
The reason is that the Z-coordinates of the points are better to keep the same
during the iterations of the scalar multiplication in favor of the speed
improvement according to the co-Z criterions in [4], if there are continuous
PAs in scalar multiplication. Consequently, while completing the addition of

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

2

IEICE Electronics Express, Vol.11, No.11, 1–12

http://dx.doi.org/10.1109/TC.2003.1190586
http://dx.doi.org/10.1109/TC.2003.1190586


two points, it is necessary to update the original point P to ensure that the
result R and P share the same Z-coordinate. Because the values of W1, A1 and
Z3 are computed in the point addition, so no extra time is consumed to update
point P. This method makes the time complexity of PA with Jacobian format
is reduced from 12M þ 4S to 5M þ 2S (M: modular multiplication, S: mod-
ular square), the details of which can refer to [3].

Algorithm 1 co-Z point addition over GF(p) (ZADD)
Require: P ¼ ðX1; Y1; ZÞ and Q ¼ ðX2; Y2; ZÞ
Ensure: ðR;P Þ  ZADDðP;QÞ whereR P þQ ¼ ðX3; Y3; Z3Þ and P  ð�2X1; �

3Y1; Z3Þ ¼
ðXp; Yp; ZpÞ with Z3 ¼ �Z for some � 6¼ 0

co-Z point addition

C ¼ ðX1 �X2Þ2

W1 ¼ X1C; W2 ¼ X2C

D ¼ ðY1 � Y2Þ2; A1 ¼ Y1ðW1 �W2Þ
X3 ¼ D�W1 �W2

Y3 ¼ ðY1 � Y2ÞðW1 �X3Þ �A1

Z3 ¼ ZðX1 �X2Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

update

Xp ¼W1

Yp ¼ A1

Zp ¼ Z3

8><
>:

ð2Þ

Algorithm 2 co-Z point addition over GF(2m) (ZADD)
Require: P ¼ ðX1; Y1; ZÞ and Q ¼ ðX2; Y2; ZÞ with elliptic curve parameter a
Ensure: ðR;P Þ  ZADDðP;QÞ whereR P þQ ¼ ðX3; Y3; Z3Þ and P  ð�2X1; �

3Y1; Z3Þ ¼
ðXp; Yp; ZpÞ with Z3 ¼ �Z for some � 6¼ 0

co-Z point addition

A ¼ X1 þX2; B ¼ Y1 þ Y2

C ¼ ðX1 þX2Þ2; D ¼ ðX1 þX2Þ3

E ¼ Z2; F ¼ E2; G ¼ EF ; H ¼ B2

Z3 ¼ ZA

X3 ¼ aGDþH þ Z3BþD

Y3 ¼ ðBþ Z3ÞX3 þ ðBX2 þAY2ÞC

8>>>>>>>>>><
>>>>>>>>>>:

ð3Þ

update

Xp ¼ X1C

Yp ¼ Y1D

Zp ¼ ZA

8><
>:

ð4Þ

2.2 Co-Z point addition over GF(2m)
Due to the widespread use of GF(2m), a extension of co-Z PA from GF(p) to
GF(2m) is extremely neccessary to improve the speed of dual-field scalar
multiplication. So, in this paper we propose a co-Z PA over GF(2m) as shown
in Algorithm 2. Just as co-Z PA over GF(p), Algorithm 2 also comprises PA
and the point P updating. The computational amount of this update is
limited, only spending 2M, because the C, D and A have been used in the
PA. Finally, the proposed co-Z point addition over GF(2m) pushes the time
complexity from 15M þ 5S to 11M þ 4S.

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

3

IEICE Electronics Express, Vol.11, No.11, 1–12



2.3 Scalar multiplication based on co-Z protected NAF
The NAF, a binary signed-digit representation of the scalar, is one of
mathematical “tricks” applied to the scalar multiplication (Q ¼ kP ). The
most distinctive feature of NAF is that for a random k the average number
of non-zero digits is only l=3 (l ¼ dlog2ðkÞe) compared with average l=2 for
normal representation [1] and l for Montgomery Ladder [5], resulting in less
number of point addition. But NAF still belongs to the well-known double-
and-addmethod that may be subject to SPA attack. A simple countermeasure
is to insert dummy operations, called double-and-add-always.

Protected NAF (Algorithm 3), referred to [2], can resist SPA attack by
dummy doubling (step 6) and addition (step 8). In this way, it completes the
regular operations whatever the secret key bit is. But we observe that
Protected NAF still has two problems by. On the one hand, dummy oper-
ations slow down the NAF. On the other hand, also is the most severe that
dummy operations protect from SPA but providing an opportunity to one
kind of attack, namely safe-error attack. In Algorithm 3, if the adversary
injects temporary faults in step 8, the final result Q0 will be faulty when kiþ1 is
0. Otherwise, the Q0 is not affected. Similarly, if faults are injected into step 6,
Q0 will be faulty when doubleTwice is 1, or Q0 is still correct. Under the safe-
error attack, ki and kiþ1 can be recovered by checking the correctness of Q0.
To the best of our knowledge, the vulnerability of safe-error attack in
Protected NAF has never been discussed in previous works.

Algorithm 3 Protected NAF based Scalar Multiplication [3]
Require: P0 (the point to multiply), k (the scalar in protected NAF format), n (Number of bits

in k)
Ensure: Q0 such that Q0 ¼ kP

1: Q0 ¼ ;
2: P1 ¼ �P0

3: for i ¼ 0 to ðn� 1Þ by 2 do
4: doubleTwice ¼ 0 if ðkikiþ1 ¼¼ 10Þ, and 1 otherwise
5: Q0 ¼ 2Q0

6: Q1 ¼ 2Q0

7: Q0 ¼ QdoubleTwice

8: Q1 ¼ Q0 þ Pki

9: Q0 ¼ Qkiþ1

10: end for
11: Return Q0

In terms of time complexity and security we attempt to fuse the proposed
dual-field co-Z point addition with Protected NAF. If directly applying co-Z
point addition to step 8, the computation time loss of Protected NAF must be
compensated partly. And more importantly, this combination also can resist
safe-error attack. As described in Algorithm 1 and 2, P value needs to be
updated after completing co-Z point addition. So, Q0 in step 8 will be updated
according the criterion of dual-field co-Z point addition, which must lead to
the error of final Q0 no matter what the value of kiþ1 is, if some faults are

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

4

IEICE Electronics Express, Vol.11, No.11, 1–12



injected in step 8. In this way, kiþ1 cannot be recovered by safe-error attack.
Thus it can be seen that co-Z point addition not only can accelerate the
processing speed but also defense the soft-error attack. But step 6 in Pro-
tected NAF is a point doubling. So, when being a dummy operation
(doubleTwice ¼ 0), it cannot be protected by co-Z point addition directly so
that soft-error attack still works well. But, if the dummy point doubling in
step 6 can be changed to point addition, the security vulnerability will be
overcome by co-Z point addition. Following this idea, the original operations
in Algorithm 3 should be reorganized as follows.

Algorithm 4 co-Z Protected NAF Resistant Safe-error Attack
Require: P0 (the point to multiply), k (the scalar in protected NAF format), n (Number of bits

in k)
Ensure: Q0 such that Q0 ¼ kP

1: Q0 ¼ ;
2: P1 ¼ �P0

3: for i ¼ 0 to ðn� 1Þ by 2 do
4: doubleTwice ¼ 0 if ðkikiþ1 ¼¼ 10Þ, and 1 otherwise
5: Q0 ¼ 2Q0

6: Q1 ¼ Q0 þ Pki

7: Q1 ¼ Q0 þQðdoubleTwicejjkiþ1Þ
8: Q0 ¼ QdoubleTwice

9: end for
10: Return Q0

Firstly, when doubleTwice ¼ 0, the step 6 and 8 in Algorithm 3 are all
dummy operations. The result Q0 is only equal to 2Q0. The Protected NAF
can be equivalently transformed as follows:

Q0 ¼ 2Q0

Q1 ¼ Q0 � P0

Q1 ¼ Q0 þQ1

Q0 ¼ Q0

ð5Þ

In this way, the expressions, Q1 ¼ Q0 � P0 and Q1 ¼ Q0 þQ1, are also
dummy operations so that the result Q0 is still 2Q0. But, the dummy point
doubling in step 6 is replaced by another dummy point addition (Q1 ¼ Q0 þ
Q1). Secondly, when doubleTwice ¼ 1 and kiþ1 ¼ 1, all the operations in
Algorithm 3 are all useful. The result Q0 can be deduced as follows:

Q0 ¼ Q1

¼ 2ð2Q0Þ � P0

¼ ð2Q0 � P0Þ þ 2Q0

ð6Þ

For obtaining the similar expression structure with formulation (5),
ð2Q0 � P0Þ þ 2Q0 can be equivalently expressed as follows:

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

5

IEICE Electronics Express, Vol.11, No.11, 1–12



Q0 ¼ 2Q0

Q1 ¼ Q0 � P0

Q1 ¼ Q0 þQ1

Q0 ¼ Q1

ð7Þ

Obviously, any fault injected to formula (7) will result in the errors of the
final Q0. For the remainder case, that is doubleTwice ¼ 1 and kiþ1 ¼ 0, only
step 8 in Protected NAF (Q1 ¼ Q0 � P0) is a dummy operation, which can
directly resist safe-error attack by co-Z addition. In this case, the final Q0 is as
follows:

Q0 ¼ 2ð2Q0Þ
¼ 2Q0 þ 2Q0

ð8Þ

Being consistent with the expression structure of formula (5) and (7),
2Q0 þ 2Q0 can be redefined as follows:

Q0 ¼ 2Q0

Q1 ¼ Q0 � P0

Q1 ¼ Q0 þQ0

Q0 ¼ Q1

ð9Þ

Although Q1 ¼ Q0 þQ0 is also a equivalent point doubling with step 6 in
Algorithm 3, it is not a dummy operation in this case, meaning that any fault
in it also will lead to error in the final Q0. Taken together, the co-Z Protected
NAF as shown in Algorithm 4 is the formulation of formula (5), (7) and (9)
for all the cases. Compared with Algorithm 3, the dummy point doubling in
step 6 of Protected NAF is converted to point addition. By the update feature
of P in proposed co-Z point addition, the security loophole produced by
injecting faults into potential dummy operations, step 6 and step 8 in Algo-
rithm 3, can be resisted ultimately. Moreover, each iteration in Algorithm 4
also executes regular operations based on different scalar bits. So co-Z
Protected NAF does not alter the original SPA-resistance characteristic in
Protected NAF. In conclusion, the co-Z Protected NAF can not only com-
pensate for the computation time loss of Protected NAF due to the dummy
operations, but also resist against SPA and safe-error attack.

3 Hardware implementation

3.1 Overview architecture of Co-Z protected NAF coprocessor
The overview architecture of scalar multiplication coprocessor based on the
proposed dual-field co-Z Protected NAF is illustrated in Fig. 1, including
arithmetic core, Jacobian converter, operation controller, RAM and et al.
Operation controller and arithmetic core compose the core unit of proposed
coprocessor, which is a three-level hierarchical structure. Level-1, the arith-
metic core, supports dual-field modular operations. The Level-2 consists of the
co-Z PA and PD controllers, which achieve PA (Algorithm 1 and 2) and PD
over dual-field by invoking Level-1. Level-3 (co-Z Protected NAF controller),

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

6

IEICE Electronics Express, Vol.11, No.11, 1–12



corresponding to Algorithm 4, completes the scalar multiplication with SPA
and safe-error attack resistance. The basic flow of proposed coprocessor is as
follows. The co-Z Protected NAF controller reads the scalar k from the
register files and iteratively controls co-Z PA and PD controller according
to Algorithm 4, respectively. Then, using field selection signals received from
Level-3, Level-2 invokes the modular operations in arithmetic core to com-
plete point addition and doubling over dual-field. The RAM stores plain
message and temporary results. Because all the points in co-Z Protected NAF
are Jacobian format, a Jacobian converter is designed to convert the initial
points to Jacobian format from normal format and the final results must be
converted back to normal format.

3.2 Arithmetic core based on FIOS
Note that this paper mainly takes advantage of co-Z based PA to improve the
time complexity and security of Protected NAF. It just focuses on the level of
scalar multiplication. So, its hardware implementation as Level 2 and 3 in
Fig. 1 is only a simple finite-state machine (FSM), enabling the co-Z Pro-
tected NAF by invoking basic modular operations in Level 1 as long as
following the control flow in Algorithm 1, 2 and 4. In other words, we give
no more attention to the hardware design of modular operations and any
state-of-art implementation can be directly applied to our coprocessor, which
has no pros and cons effects on proposed algorithm.

So, a word-based (64-bit) high-radix Montgomery multiply-addition unit
based on FIOS (Finely Integrated Operand Scanning) [6] is adopted by this
paper to compute modular operations. Although the design in [6] only
supporting modular multiplication over GF(p), we just need to slightly
modify the input datapath to complete dual-field modular operations.
Fig. 2 illustrates the FIOS-based multiply-addition unit over GF(p) and
GF(2m). We can see that the core function zþ xyþ c to complete modular

Fig. 1. Scalar multiplication coprocessor based on co-Z
protected NAF

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

7

IEICE Electronics Express, Vol.11, No.11, 1–12



multiplication, aka PE in FIOS method, is the same. The details of algorithm
can be referred to [6]. Ca, Cb and zj are the carries and intermediate results
generated by each iteration, respectively. In each loop, xi, yi and nj are the 64-
bit inputs and modulus in modular multiplication. tj presents the constant
value in FIOS. As described in [4], PE is made up of a FSM controlling
iterative schedule, two 64-bit adders and one 64-bit multiplier. These two 64-
bit adders can be further reused to implement modular addition and sub-
traction as long as setting the input x and y to “0”. Note that the red part in
Fig. 2, including one XOR gate and one multiplexer, is only active when
computing over GF(2m), which is the only difference between FIOS-based
multiply-addition unit over dual-field. This part is responsible for the step 9 in
the FIOS over GF(2m), because the size of modulus over GF(2m) often goes
beyond GF(p) 2-bit that results in one time extra computation in the last
iteration of each inner loop. Except this difference, whether over GF(p) or
GF(2m), the operation flow of PE is invariable. So, we rather just need the
dual-field adder and multiplier. The architecture of dual-field adder can be
constructed by some simple XOR and AND logics. Because multiplication can
be completed by summing up the partial products, we can implement multi-
plication over GF(2m) through separating the results of XOR operations in
the process of summing partial products. Then, the result of multiplication
over GF(p) can be computed by adding the carries. In this way, a multiplier
designed by Satoh [7] is introduced as shown in Fig. 2, utilizing the half/full
adders to implement addition and multiplication simultaneously over dual-
field.

Fig. 2. Dual-field montgomery multiply-addition unit based
on FIOS

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

8

IEICE Electronics Express, Vol.11, No.11, 1–12



4 Experimental results evaluation and comparison

4.1 Analysis of time complexity and security
So far, a wide range of algorithms are applied to scalar multiplication for
different speed, area and power requirements, for example, Left-to-Right/
Right-to-Left (unsigned binary), NAF, Montgomery Power Ladder and so on.
But the bottom implementations, namely basic modular operations, may be
multifarious, making these algorithms hard to be compared directly in term of
advantage and disadvantage. For fair comparison, in this paper, we firstly
suppose that the related modular operations adopt the same method. In this
way, the time complexity, gauged by the number of modular multiplication,
can be directly utilized to qualitatively analyze the efficiency of different
scalar multiplications. Then, the practical hardware results are compared to
quantitatively verify the accuracy of previous analysis.

The number of point addition (PA) and point doubling (PD) depend on
the scalar multiplication algorithm and the length of scalar k. In Jacobian
coordinate, the complexity of PA and PD is 12M þ 4S and 4M þ 6S over
GF(p) as well as 15M þ 5S and 5M þ 5S over GF(2m), respectively. By the
co-Z arithmetic the complexity of PA over GF(p) and GF(2m) is reduced to
7M þ 2S and 11M þ 4S. The comparison of different scalar multiplications is
shown in Table I. Note that for briefness the time complexity is unified to the
number of modular multiplication according to S � 0:8M referred to [4].

Referred to [5], the average number of PA and PD in the original
Montgomery Power Ladder are all N. Therefore, its time complexity is the
highest one in Table I. But Montgomery Power Ladder can resist both SPA
and safe-error attack. As discussed in [1], because the unsigned binary
computes PA only when the bit in scalar k is not zero, the average number
of PA is N

2 , while it is further cut to N
3 in the original NAF. The time

Table I. Comparison of different scalar multiplication

Algorithm
Number Number Time Complexity2 Attack
of PA of PD GF(p) GF(2m) Resistance

Unprotected 1
2N

1 N
(10MD8S)N3 (12.5MD7.5S)N

None
unsigned binary :16.4M·N :18.5M·N

Original Montgomery
N N

(16MD10S)N (20MD10S)N SPA
Power Ladder :24M·N :28M·N Safe error

Unprotected NAF 1
3N N

(8MD713S)N (10MD623S)N None
:13.87M·N :15.3M·N

Protected NAF 5
9N

10
9 N

(1119MD889S)N (1389MD813S)N SPA
:18.22M·N :22.22M·N

co-Z 35
36N

25
36N

(72336MD619S)N (1416MD71336S)N SPA
Protected NAF :12.53M·N :20M·N Safe error

1N stands for the length of scalar k.
2Time Complexity F Time Complexity of PD � number of PD D Time Complexity
of PA � number of PA.

3M: modular multiplication; S: modular square; S � 0:8M

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

9

IEICE Electronics Express, Vol.11, No.11, 1–12



complexity of NAF is reduced by 15.4% and 17.3% over GF(p) and GF(2m)
with respect to unsigned binary as shown in Table I. According to reference
[3], the length of scalar k presented by Protected NAF ranges from dN2 e to
2dNþ13 e þ ðN þ 1Þmod 3. Upon the SPA-resistant feature of Protected NAF,
each iteration in the scalar multiplication has regular operations. In this way,
the average number of PA is equal to the average length of k, i.e. 5N

9 and the
average number of PD becomes 10N

9 since each iteration has two times point
doubling [2]. Although the Protected NAF can fix the loophole in NAF for the
vulnerability of SPA attack, it sacrifices more time complexity (31.4% and
45.2% loss over GF(p) and GF(2m)) than unprotected NAF.

The proposed co-Z Protected NAF has the same presentation of scalar k
with Protected NAF. In each iteration of Algorithm 4, the step 7 is completed
by PA or PD with a probability of 75% or 25% according to the value of
kikiþ1, respectively. So the average number of PA in co-Z Protected NAF is
ð1þ 3

4Þ � 5
9 N ¼ 35

36 N in which “1” stands for the step 6 in Algorithm 4. And
the average number of PD is ð1þ 1

4Þ � 5
9 N ¼ 25

36 N, where “1” corresponds to
the step 1 in co-Z Protected NAF. As shown in Table I, because of the
introduction of dual-field co-Z PA, the time complexity of co-Z Protected
NAF is lower than Protected NAF. Over the GF(p), the number of modular
multiplication in co-Z Protected NAF only occupies 68.8% of Protected NAF
and even is smaller than original NAF. In the GF(2m), although the higher
time complexity existing in the co-Z Protected NAF, it still compensates
approximate 32% time loss caused by Protected NAF. Furthermore, there is
also inevitable NAF conversion overhead in NAF-based algorithms. For co-Z
Protected NAF, it consists of two parts: from scalar to NAF representation
and then to Protected NAF format. Referred to the details of [2], both
consume 2N cycles and 3N cycles (N is the length of scalar k). And this
conversion is computed only once during one time scalar multiplication,
resulting in total 5N cycles consumption. For the FIOS-based multiply-
addition unit the time of once modular multiplication is about 81 and 41
cycles in average over GF(p) and GF(2m) when the size of scalar k in the range
of 256-bit. So the conversion overhead only occupies about 0.49% ( 5N

12:53�81�N )
and 0.61% ( 5N

20�41�N ). It is too small to offset the time complexity improvement
brought by co-Z Protected NAF.

Besides, with the help of updating point P value in co-Z PA and reorder-
ing the control flow of Protected NAF, co-Z Protected NAF can resist not
only SPA attack but also safe-error attack. Although, in the Table I, the
Montgomery Power Ladder also can resist these two attacks, it has the higher
time complexity. So the co-Z Protected NAF, by virtue of the properties in co-
Z, reach the better tradeoff between time complexity and security.

4.2 Results comparison of the practical hardware implemen-
tation

In order to compare more practically and effectively, we implement all the
scalar multiplication algorithms in Table I and show the comparison results
over the dual-field and three kinds of scalar k size based on 0.13 um CMOS

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

10

IEICE Electronics Express, Vol.11, No.11, 1–12



technology (synthesized by Synopsys Design Compiler) in Table II. Further-
more, the FIOS-based modular operation unit adopted in this paper is applied
in all the designs so as to remove the disturbance of different bottom
implementations. So the computation time and area in Table II are all
evaluated by ourselves for the fair comparison.

Firstly, although the time complexity over GF(2m) based on Jacobian
coordinate, in Table I, is higher than GF(p), the actual running time is less.
The reason is that there is no carry chain over GF(2m), shortening the critical
timing path and increasing operating frequency to compensate the time
complexity penalty. As shown in Table II, the operating frequency is
303.56MHZ over GF(p) and goes up to 418.41MHZ over GF(2m).

Secondly, the practical time of scalar multiplication in Table II shows the
same trend with the time complexity in Table I. The time of co-Z Protected
NAF over GF(p) comes with 74% of Protected NAF and even is slightly less
than the original NAF. For GF(2m) it makes up to about 30% time penalty
from Protected NAF and is only 0.12ms more than the original NAF. These
evaluation results is consistent with Table I, which effectively verify the co-Z
Protected NAF advantage on computation time achieve by co-Z PA with
higher performance. In addition, the time of co-Z Protected NAF has included
NAF conversion that only consumes about 5.3 µm and 3.4 µm in average over
GF(p) and GF(2m). It is trivial enough to be omitted against the time
improvement, which is still in accord with the previous analysis.

Table II. Speed and area comparison of hardware imple-
mentation

Algorithm
Max Freq. (MHZ)

N (bits)1
SM2 Time (ms)4

Area (gates)4
GF(p) GF(2m) GF(p) GF(2m)

Unprotected 160 0.87 0.28
Unsigned 192 1.02 0.32 69.4K
binary 256 1.85 0.65

Original 160 1.13 0.41
Montgomery 192 1.37 0.47 74.1K
Power Ladder 256 2.40 0.96

Original3
160 0.76 0.24

NAF
303.56 418.41 192 0.91 0.29 70.8K

256 1.63 0.58

Protected3
160 0.92 0.31

NAF
192 1.10 0.34 72.6K
256 2.10 0.77

co-Z3 160 0.71 0.28
Protected 192 0.85 0.34 73.3K

NAF 256 1.50 0.69
1N stands for the length of scalar k.
2SM stands for scalar multiplication.
3The computation time and area for all NAF-based algorithms include NAF
conversion.

4All the values are estimated by the authors.

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

11

IEICE Electronics Express, Vol.11, No.11, 1–12



Finally, because the algorithms discussed in this paper are all on the level
of scalar multiplication, the differences between them only affect the schedul-
ing order and iterative number of modular operations. And the hardware
design of bottom modular operations are all based on FIOS-based multiply-
addition unit. So there are no significant gaps in the area cost as shown in
Table II. The area cost of proposed co-Z Protected NAF coprocessor is about
73.3K gates (including memory area), which only increases by about 1% area
with respect to the Protected NAF, resulting from the extra memory space to
store some immediate results. Furthermore, the NAF conversion can also use
the FIOS-based multiply-addition unit, not inducing extra area cost.

In conclusion, by practical hardware design and synthesis, the values in
Table II eventually turn out that, based on the properties of co-Z arithmetic,
co-Z Protected NAF can effectively offset the loss of time and security loop-
hole in the Protected NAF and does not introduce extra cost area. Compared
with other state-of-art algorithms, co-Z Protected NAF can reach the better
tradeoff between computation time, security and area cost.

5 Conclusion

In this paper, we propose the co-Z Protected NAF based dual-field scalar
multiplication algorithm and coprocessor with low time complexity and high
security. The co-Z arithmetic drops the time complexity of PA over GF(p)
from 12M þ 4S to 5M þ 2S as well as the reduction in PA over GF(2m) from
15M þ 5S to 11M þ 4S. Upon this advantage, co-Z Protected NAF is de-
signed to compensate the time loss of Protected NAF due to using dummy
operations to resist SPA attack. Experimental results show that the time
complexity of co-Z Protected NAF over GF(p) is indeed lower than original
NAF. Even over GF(2m), it still counteract about 30% time penalty against
Protected NAF at the expense of less than 1% area cost. Moreover, through
reordering the control flow of Protected NAF, another feature of co-Z point
addition, i.e. updating the value of point P, is leveraged to patch the security
loophole of Protected NAF, when encountering the safe-error attack. In short,
the proposed co-Z Protected NAF not only can accelerate the scalar multi-
plication with minimal area cost but also strengthen the security to resist SPA
and safe-error attacks.

Acknowledgments

This work is supported in part by both of the Natural Science Foundation of
Tianjin (No. 11JCZDJC15800) and the Open Project Program of State Key
Laboratory of Computer Architecture, the Institute of Computing Technol-
ogy, Chinese Academy of Sciences.

© IEICE 2014
DOI: 10.1587/elex.11.20140361
Received April 16, 2014
Accepted May 1, 2014
Publicized May 19, 2014
Copyedited June 10, 2014

12

IEICE Electronics Express, Vol.11, No.11, 1–12


