LE l l ER IEICE Electronics Express, Vol.11, No.11, 1-7

Frequency-based NCQ-aware
disk cache algorithm

Young-Jin Kim?®

Ajou University,

206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-749, Republic of Korea
a) youngkim @ajou.ac.kr

Abstract: In SATA hard disks, native command queuing (NCQ) and
a cache can play important roles in boosting the performance. However,
research on cache algorithms which can exploit the benefits fully from
NCQ has been seldom reported till now. In this paper, we propose a
novel cache algorithm which combines disk access time and access
frequency in a more NCQ-friendly way to enhance the I/O performance.
Real trace-driven simulations show that the proposed algorithm im-
proves the overall I/O performance by up to 39.2 and 19.1 percent over
LRU and a prior access time-aware cache algorithm, respectively.
Keywords: SATA hard disk, disk cache, native command queuing,
access time, frequency, performance

Classification: Storage technology

References

[1] Intel Corporation and Seagate Technology: joint white paper (2003) http://
www.seagate.com/docs/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf.

[2] K. Grimsrud and H. Smith: Serial ATA storage architecture and applications
(Intel Press, 2007) 21.

[3] A. Arfan, Y.-J. Kim and J. B. Kwon: IEICE Electron. Express 9 (2012) 1707.
DOI:10.1587/elex.9.1707

[4] J.-U. Kang, H. Jo and J.-S. Kim: EMSOFT (2006) 161.

[5] Y.-J.Kim, S.-J. Lee, K. Zhang and J. Kim: IEEE Trans. Consum. Electron. 53
(2007) 1469. DOI:10.1109/TCE.2007.4429239

1 Introduction

Hard disks have been used as a major storage device in most computing
systems including PC and servers for decades. Since hard disk contains some
mechanical components such as a rotating platter and a head to read (write)
data from (to) the platter, whose speeds are rather slower than those of
electronic components, it is considered a bottleneck in the aspect of the overall
performance, compared to memory and processor.

Hence, there have been a lot of research on improving the performance of
hard disk. The most important is that the Serial ATA (SATA) has been
suggested and used to boost the speed of a hard disk [1, 2]. Native command
queuing (NCQ) is one of main features of SATA and is beneficial in enhancing

http://www.seagate.com/docs/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://www.seagate.com/docs/pdf/whitepaper/D2c_tech_paper_intc-stx_sata_ncq.pdf
http://dx.doi.org/10.1587/elex.9.1707
http://dx.doi.org/10.1109/TCE.2007.4429239

IEICE Electronics Express, Vol.11, No.11, 1-7

the I/O performance by reordering the requests which should be served by a
hard disk.

Access time indicates the elapsed time in accessing a specific block on a
hard disk or a cache. In detail, access time in a SATA hard disk consists of
seek time to position the actuator, rotational latency time to wait for the data
to rotate under the head, and data transfer time. Since NCQ reschedules the
request order of requests staying in a queue, seek time and rotational latency
will be affected much. Thus, the access time depends on the request order and
fluctuates highly.

In the meanwhile, in order to improve the performance of a hard disk, we
usually employ a disk cache to it. Since a cache can serve some valuable data
prior to the disk platter, the data will be processed with a faster service time.
For the last decades, the least recently used (LRU) algorithm has been mainly
employed to manage a disk cache. Unfortunately, LRU has no idea of which
request should be serviced first or not in any other aspects except temporal
locality. Thus, LRU seems difficult to co-work with NCQ in a synergistic
manner for boosting the performance.

A previous work tried to solve this problem. In [3], ATCA is proposed to
keep the blocks with large access times longer within the cache. By combining
temporal locality and access time, this algorithm is found to achieve improved
service time. But, we observe that such combination is not proper to deal with
the high relationship between access frequency and access time of not a few
requests, which can be often found in generic workloads reflecting real user
activities. In this paper, we propose a novel disk cache algorithm to enhance
the I/O performance by exploiting such relationship effectively, compared to
ATCA.

2 Motivational observations

In order to find how access time is related with recency, we made some
observations using a practical SATA disk simulator [3] with a cache off while
running the PCFAT32 trace [4], which consists of storage accesses from real
user activities of web surfing, word processing, presentation, and playing
games, MP3 songs, and movies. The results can be seen in Fig. 1. Fig. 1(a)
shows a histogram of all logical block addresses’ (LBAs’) access times and
Fig. 1(b) shows a histogram of 10 successive LBAs’ access times.

When we compare these two histograms, Fig. 1(a) shows that the pro-
portion of small access times below 30000 us is 78.3 percent but most of them
are found to be less than 10000 us while Fig. 1(b) shows that the proportion
below 30000 us reaches 84.4 percent and access times are distributed more
evenly. We notice that requests with temporal locality have a larger propor-
tion of small access times than requests with no temporal locality. Thus, this
observation indicates that such workload patterns sometimes may not give
beneficial results for the ATCA algorithm since this algorithm tries to make
requests with large access times as well as temporal locality stay longer by
giving them high weights.

IEICE Electronics Express, Vol.11, No.11, 1-7

Histogram of all LBAs' access times

mm Frequency -®-Cummulation

Histogram of 10 successive LBAs' access times

mmFrequency -m-Cummulation

120000 100% 90000 100%

90% 80000 0%

100000 0% 70000 20%

> 80000 70% 2 60000 zg:
5 60% § 50000

S 60000 50% El 50%

3 & 40000 0

g 0% g 0%

& 40000 20% i 30000 30%
20000

20000 20% 20%

10% 10000 0%

0 0% 0 0%

10000 20000 30000 40000 50000 60000 70000 80000
Access time (us)

10000 20000 30000 40000 50000 60000 70000 80000 90000
Access time {us)

(a) all LBASs’ access times (b) 10 successive LBAs’ access times

Access time proportion per frequency
60%
W < 20 accesses
50% 1 © 20~40 accesses
o 0% - % 40~60 accesses |
'E- 60~80 accesses
o 30% - -
§' = >80 accesses
& 0% |
10% 1
0% -
10000 20000 30000 40000 50000 60000 70000 80000>
Access time (us)
(c) LBA access time proportion per access frequency
Fig. 1. Comparisons of relations between recency/frequency

and access time

Fig. 1(c) shows the observed relation between LBA access frequency and
LBA access time. The graphs are shown to compare the access time propor-
tion of each access frequency group. The LBA access frequency is categorized
into 5 groups shown in Fig. 1(c): less than 20 accesses, 20~40 accesses, 40~60
accesses, 60~80 accesses, more than 80 accesses. In the case of the first group,
that is, less than 20 accesses, we notice that the interval of [0, 10000 us] shows
the highest proportion of about 55 percent and the second highest proportion
of about 14 percent can be found at the interval of (10000 us, 20000 us].

Fig. 1(c), the proportion of the access times below 30000 us amounts to
61.1 percent, 61.8 percent, and 69 percent for 40~60, 60~80, and more than
80 LBA access frequency, respectively. A noticeable thing is that the access
time tends to become large as the frequency increases, compared to the result
of temporal locality in Fig. 1. Thus, since keeping LBAs with large access
frequency to stay within the cache can make not a few LBAs with large access
times staying longer within the cache also, combining LBA access frequency
and LBA access time will be very beneficial to caching valuable blocks for the
purpose of enhancing I/O performance.

Based on our observations, we devise a novel disk cache management
algorithm which gives a higher priority to a block with larger access time or
higher access frequency within the cache. Our aim is to optimize the overall
I/0 performance by making requests with big access times or ones with high
access frequencies stay longer in the cache. We believe that such two types of

IEICE Electronics Express, Vol.11, No.11, 1-7

requests may have more chances of overlap by our proposed algorithm than
by LRU and this will be significantly beneficial to enhancing the I/O perform-

ance.

3 Proposed cache management algorithm

In order to devise a novel cache algorithm, we tackle modifying the least
frequently used (LFU) cache algorithm by merging the concept of access time
to the algorithm. To this end, a worth value is employed in a way how a
normalized value of access time will be added to the access frequency update
of the worth value. The process of achieving this normalized value of access
time is shown in Fig. 2(a).

We need to normalize the value of access time first since it may be
sometimes too big to be used together with other worth values in its current
form. Basically we will classify the access time into the partitions numbered
between 1 and a specific value such as 10. To classify the access time, we use
the following formula:

A 1%
N = Partition x ceess Zime

MaxAccessTime’

where Partition is the number of partitions and AccessTime is the access time
of each request, and MazxAccessTime is the maximum possible access time.
The MaxAccessTime can be obtained statically or dynamically.

In the earlier stage of getting the MaxAccessTime, we considered a static
policy. In this policy, we set this value to be the longest time possible for a disk
head to reach a block. After some experiments, we found that the partition
number of each request tends to be small and thus the request rarely get any
large value for N. This affected the performance of the access time-aware
caching algorithm since most of requests fell into the small partition values
and thus the algorithm could hardly differentiate between big and small
access times.

So, we decided to make the MazAccessTime vary dynamically. This
means that we will record each request’s access time, and keep track of the
biggest access time value adaptively at runtime. With this approach, we can
get more even partition values among all requests.

To further refine the mechanism, the maximum access time will be
calculated based on a weighted average of the previous maximum access time
and the current MazAccessTime values as shown in Fig. 2(a). This is to
mitigate deviation of the N value due to the increase in the access time and
thus to distribute the N value across the partitions more evenly.

In Fig. 2(b) and Fig. 2(c), we can see the examples where we run the
process of getting the dynamic maximum access time. In both figures, the
upper part shows the state before we run the process and the lower part shows
the state after we finished the dynamic maximum access time process. In
Fig. 2(c), Dynamic Max Access Time is updated since the counter reached 10,
which is CounterMaz in Fig. 2(a).

IEICE Electronics Express, Vol.11, No.11, 1-7

Counter=Counter+1

N=
AccessTime*PARTITION/DynamicMaxAccessTime

N>PARTITION? N=PARTITION

Counter>

CounterMax? CaniE=0

DynamicMaxAccessTime = DynamicMaxAccessTime *A+
MaxAccessTime*B

MaxAccessTime< a o
MaxAccessTime=AccessTime

AccessTime?
no
(a) Algorithm
_ Counter=5 Counter=10
2Iock—%|£) 200 DynamicAccessTime=1000 i::z:j?m e=2200 DYnamicAccessTime=1500
ccess Time=. MaxAccessTime=2000 . MaxAccessTime=2000

—2200%10*/1500=
N=200%10*/1000=2 N=2200%10*/1500=14.7

N=10
Counter=6 Counter=0
DynamicAccessTime=1000 DynamicAccessTime=1500%0.2+2000*0.8=1900
MaxAccessTime=2000 MaxAccessTime=2200

(b) Example 1 (c) Example 2

Fig. 2. Algorithm and examples of normalizing the access
time

worth value = worth
value+1+N

worth value = 1

Fig. 3. Flow of the FCA algorithm

Fig. 3 shows the Frequency-based Access time-aware Cache (FAC) algo-
rithm. It utilizes the value of a normalized access time, IV, which comes from
the previous stage of the algorithm shown in Fig. 2(a), to update the worth
value of each block hit at the cache. This algorithm will make the data with
bigger access times or frequent accesses stay longer in the cache, and make the
data with smaller access times or infrequent accesses exit the cache soon.

4 Experiments

To evaluate LRU, LFU, ATCA, and FAC, we used a practical SATA disk
simulator [3], which simulates a realistic SATA disk model on real traces,

IEICE Electronics Express, Vol.11, No.11, 1-7

B LRU WATCA ' LFU mFAC

X 1E+09

Total service time (ms)

100000 200000 300000 400000 500000

Cache size (blocks)

(a) For SMALLDISKMON

B RU WATCA " LFU mFAC

w

oLk LN L w

X1E+09
N

Total service time (ms)
=

o

100000 200000 300000 400000 500000

Cache size (blocks)

(b) For PCFAT32

Fig. 4. Total service times of LRU, ATCA, LFU, and FAC

consisting of a host controller and a disk controller. The host controller
mimics the operating system of a host system and manages the requests
transferred to the disk controller. The disk controller assumes all disk I/O
operations including a cache, an NCQ, and a disk mechanic.

Two traces which gathered real generic user activities on a PC and a
laptop were used for simulations: SMALLDISKMON trace [5] and PCFAT32
trace [4]. Their random requests reach 79.5 percent and 69.7 percent, respec-
tively. And we employed the total service time as a metric. Total service time
is the total time when all requests are served completely after they entered the
queue.

Fig. 4(a) and 4(b) show the results of LRU, ATCA, LFU, and FAC for
SMALLDISKMON and PCFAT32 traces. We notice that FAC shows the
best performance among all evaluated cache algorithms in the aspect of the
total service time. In detail, FAC achieved on average 35.1 percent and up to
39.2 percent improvement over LRU with the cache size varying for the
SMALLDISKMON trace.

FAC also outperformed ATCA by 9 percent on average and up to 19.1
percent for the same trace although in case of the cache size of 10000 blocks,
the total service time is increased by 14.5 percent once. We believe that such
performance enhancement comes from that FAC fulfills effectively maintain-
ing valuable requests and making them stay longer within the cache by giving
large weights to the requests with high access frequency or large access time,
which makes FAC more NCQ-friendly than ATCA. We also conjecture that a
high proportion of random requests in the trace facilitates such a phenomenon

more.

IEICE Electronics Express, Vol.11, No.11, 1-7

A similar result is shown for the PCFAT32 trace. With this trace, FAC is
found to have on average 25.4 percent and up to 30.7 percent improvement
over LRU. Compared to ATCA, FAC achieved on average 10.7 percent and
up to 14.5 percent performance enhancement. NCQ gives random requests
more chances to improve the I/O performance and since the FAC algorithm
serves random requests more effectively than ATCA, its operation is more
beneficial to enhance the performance of NCQ than ATCA and LRU.

5 Conclusion

In order to enhance the performance of SATA hard disk, we proposed a new
NCQ-aware cache algorithm called FAC, which combines access time and
access frequency to keep valuable cache blocks staying longer in the cache. For
evaluation, we employed a trace-based SATA hard disk simulator with
realistic models of a cache, an NCQ, and a disk mechanic at the level of a
disk controller. Trace-driven simulations showed that our proposed algorithm
achieves up to 39.2 and 19.1 percent performance improvement over LRU and
ATCA, respectively, in the aspect of the total service time.

