
An improved memory
system simulator based
on DRAMSim2

Zhen Xiea), Yang Zhang, Jun Yang, and Longxing Shi
National ASIC System Engineering Research Center, Southeast University,

Nanjing, 210096, China

a) xz@seu.edu.cn

Abstract: An improved memory system simulator based on DRAM-
Sim2 is presented. The memory system simulator has been widely used
in the design space exploration of the SoC (System on Chip). DRAM-
Sim2 is one of the more common DDR2/3 memory system simulators.
A memory system consists of the memory controller and the DRAM
device. DRAMSim2 models the memory controller in a general way,
which makes it impractical to faithfully track the behavior of a specific
memory controller. In this work, we present an improved memory sys-
tem simulator based on DRAMSim2. In response to the differences
between the memory controller DRAMSim2 modeled and the practical
controller, part of DRAMSim2 is modified and improved, considering
the structure characterizations of the practical controller. Experiments
show that the improved simulator properly matches the practical
memory system.
Keywords: SoC, memory system simulator, DRAMSim2
Classification: Electron devices, circuits, and systems

References

[1] V. Cuppu and B. Jacob: ISCA (2001) 62.
[2] Y. Kim, V. Seshadri, D. Lee, J. Liu and O. Mutlu: ISCA (2012) 368. DOI:10.

1109/ISCA.2012.6237032
[3] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill and D. A. Wood: ACM SIGARCH CAN
33 [4] (2005) 92. DOI:10.1145/1105734.1105747

[4] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni and D. Newell: IEEE
Micro 27 [4] (2007) 21. DOI:10.1109/MM.2007.66

[5] S. Rixner: MICRO (2004) 355. DOI:10.1109/MICRO.2004.22
[6] H. Choi, J. Lee and W. Sung: ISPASS (2011) 66. DOI:10.1109/ISPASS.2011.

5762716
[7] P. Rosenfeld, E. Cooper-Balis and B. Jacob: IEEE CAL 10 [1] (2011) 16.

DOI:10.1109/L-CA.2011.4
[8] B. Jacob, S. Ng and D. Wang: Memory Systems—Cache, DRAM, Disk

(Morgan Kaufmann, Burlington, 2010) 497.
[9] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch and A. N. Udipi: ISPASS

(2014) 201. DOI:10.1109/ISPASS.2014.6844484© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

1

LETTER IEICE Electronics Express, Vol.11, No.14, 1–8

http://dx.doi.org/10.1109/ISCA.2012.6237032
http://dx.doi.org/10.1109/ISCA.2012.6237032
http://dx.doi.org/10.1145/1105734.1105747
http://dx.doi.org/10.1109/MM.2007.66
http://dx.doi.org/10.1109/MICRO.2004.22
http://dx.doi.org/10.1109/ISPASS.2011.5762716
http://dx.doi.org/10.1109/ISPASS.2011.5762716
http://dx.doi.org/10.1109/L-CA.2011.4
http://dx.doi.org/10.1109/ISPASS.2014.6844484


[10] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel and B. Jacob:
ACM SIGARCH CAN 33 [4] (2005) 100. DOI:10.1145/1105734.1105748

1 Introduction

A wide variety of simulators have been used for exploring the design space of
the SoC (System on Chip). The memory system simulator is a key component
for the full system simulation [1, 2]. Compared to the simplistic models of the
memory system, which attach fixed latency or throughput to memory accesses
[3, 4], the detailed memory system simulator can account for the highly
complex behavior of modern memory systems [5, 6]. Among them, one of
the more common memory system simulators is DRAMSim2 [7]. DRAMSim2
is a cycle-accurate DDR2/3 simulator, providing a detailed model for the
memory systems.

The memory system consists of two components, the memory controller
and the DRAM device. The DRAM device is standardized, and operations are
constrained by dozens of timing parameters specified by the manufacturer. A
typical memory controller schedules requests while keeping track of the
parameters of the DRAM device. Of course, memory controllers designed
by different vendors are diverse. However, DRAMSim2 models the memory
controller in a general way, which makes it impractical to faithfully track the
behavior of a specific memory controller. The inaccuracy will be described
later.

In this paper, we aim to provide an improved memory system simulator
based on DRAMSim2 for the practical memory system. The experimental
results show that compared to DRAMSim2, the improved memory system
simulator matches the practical memory system better. To the best of our
knowledge, this is the first study that has ever been attempted.

The rest of this paper is organized as follows. In Section 2, we discuss our
motivations by analyzing DRAMSim2. The design and implementation proc-
ess of the improved memory system simulator is described in Section 3, with
implementation results presented in Section 4. Finally, Section 5 concludes
this paper.

2 Motivations

DRAMSim2 is implemented in CDD as an object oriented model of a DDR2/3
memory system that includes a detailed, cycle-accurate model of a memory
controller that issues commands to a set of DRAM devices attached [7]. A
block diagram of the components of DRAMSim2 is illustrated in Fig. 1. The
DRAMSim2 core is wrapped in a single object called MemorySystem, which
consists of two components: the memory controller and the DRAM device.

As mentioned, DRAMSim2 models the memory controller in a general
way. Requests from the driver (any module that issues requests, such as CPU
and GPU) are buffered into a transaction queue. These transactions are

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

2

IEICE Electronics Express, Vol.11, No.14, 1–8

http://dx.doi.org/10.1145/1105734.1105748


converted into DRAM commands and placed into a command queue and then
be issued to the DRAM device. The memory controller maintains the state of
every memory bank and uses this information to decide which request should
be issued to the DRAM device. Reads and writes are processed by the DRAM
device and responses are returned at a later time [7].

The DRAM device is described by DRAM parameters, i.e. the timing
constraints of a specific DRAM device, such as row access strobe time (t_RAS)
and column access strobe time (t_CAS). These parameters can be found on
the data sheet provided by the manufacturer. The memory controller should
keep track of dozens of these parameters and issue the commands under the
constraints.

The memory controller described by DRAMSim2 can be configured
by some parameters that are independent of the DRAM device. These
controller parameters include the address mapping scheme, the row buffer
policy, the structure and scheduling policy of the command queue. However
these parameters are not enough to describe a memory controller accurately
(discussed in detail below). Therefore the memory controller DRAMSim2
modeled cannot match a specific memory controller properly.

For example, two commercial memory controllers we have and the
memory controller of DRAMSim2 are configured with the same parameters.
Statistics including the average bandwidth and detailed latency states are
used to compare the three memory controllers. In Table I and Fig. 4, simu-
lation-based results show that the two practical memory controllers with the
same configurations are different with each other, and apparently the con-
troller DRAMsim2 modeled matches neither of the two controllers. The
comparison method is described later.

Therefore, in this paper an improved memory system simulator for the
practical memory system is proposed, and the goal is to accurately model the

Fig. 1. Block diagram of the components of DRAMSim2.

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

3

IEICE Electronics Express, Vol.11, No.14, 1–8



behavior of the practical memory controller. The design and implement
process is described in the next section.

3 Design and implementation process

After researching the practical memory controllers in detail, we find that
structures of the both two practical memory controllers are similar. An
abstracted block diagram of the practical memory controller is illustrated in
Fig. 2. Indeed, the block diagram is similar to that of DRAMSim2, a memory
controller can be abstracted as a composition of the transaction unit, the
command unit (including the command scheduler and the command execu-
tion) and the read return unit [8]. However, there are some problems in the
way that DRAMSim2 models these units.

First, in practice the interface protocol between the driver and the
memory controller (e.g. Advanced High-performance Bus (AHB), Advanced
eXtensible Interface (AXI)) is different from the intermediate interface pro-
tocol of the memory controller (e.g. Packet Memory Interface (PMI) and Host
Memory Interface (HMI) custom-defined by Synopsys and used in its memory
controllers). Besides, since commonly the running frequency of the memory
controller is different from that of the driver, the transaction unit should
implement the interface translation and synchronization. In DRAMSim2,
requests from the driver are buffered into the transaction queue, and at the
same clock cycle directly converted into DRAM commands and placed into
the command queue. DRAMSim2 ignores the latency introduced by the
interface translation and synchronization.

Fig. 2. Abstracted block diagram of the practical memory
controller.

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

4

IEICE Electronics Express, Vol.11, No.14, 1–8



Second, correspondingly the read return unit also should implement the
interface translation and synchronization. DRAMSim2 also ignores the la-
tency introduced, since responses are returned immediately when read return
data are available in the read return queue.

Third, the command scheduler of the practical memory controller is
pipelined, and the latency is inevitable. The latency is also ignored in
DRAMSim2. Besides, DRAMSim2 is free to issue requests from the command
queue out of order as long as it doesn’t schedule writes ahead of dependent
reads or violate timing constraints. This function may not be supported by
some practical memory controllers, which means DRAMSim2 is not suitable
for these memory controllers.

Finally, in practical memory system there is a PHY (physical layer)
module connecting the memory controller and the DRAM device. DRAM-
Sim2 ignores the latency introduced by the PHY.

In response to these differences, and considering the structure character-
izations of the practical memory controller pipeline, we present an improved
memory system simulator based on DRAMSim2. The DRAM device model
and part of the command unit in DRAMSim2 are reserved, since they can
issue requests from the command queue and return responses correctly under
the timing constraints of the DRAM device. The remaining part of DRAM-
Sim2 is modified and improved.

In order to realize general-utility, the modification provides configurabil-
ity. The pipeline structure is modeled and three configurable parameters are
designed to describe the latencies introduced by the transaction unit, the
command unit and the read return unit. These parameters capture the
frontend latency, which describe the pipeline stages of the memory controller,
allowing us to reflect the controller design complexity. Andreas Hansson et al.
use a static timing parameter to capture the frontend latency [9]. Obviously,
our model is more accurate.

Another parameter is added to capture the static backend latency [9]. The
backend latency describes the PHY design, thus allowing us to study the
impact of the interconnection between the memory controller and the DRAM
device. All of these parameters can be configured by the user according to the
design of practical memory controllers.

4 Implementation results

To validate our memory system simulator, we compare it to DRAMSim2 and
two practical memory systems (MS1 and MS2). DRAMSim2 and most other
memory system simulators keep track of the bandwidth and latency of the
requests [9, 10]. The simulator outputs detailed bandwidth and latency, which
enables us to compare the effects of memory systems on these key performance
metrics. The overall verification process is shown in Fig. 3.

DRAMSim2 and the improved simulator can be compiled in standalone
mode, simulating requests recorded in a trace. Two sample traces (K6 and
MASE) provided with DRAMSim2 are used to stimulate the memory system.

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

5

IEICE Electronics Express, Vol.11, No.14, 1–8



Since the trace cannot be loaded directly by the practical memory controller,
the trace is processed automatically by a request generator in Verilog to issue
requests under the corresponding interface protocol. The request generator
and the practical memory controller IP (Intellectual Property) are included
along with the DRAM Verilog model (DRAM manufacturers such as Micron
supply Verilog timing models for their DRAM devices, which can be used to
simulate the transaction to the DRAM device) and executed by the VCS
simulator.

In our experiments, the driver runs at 1GHz, DDR2-800 is used and the
running frequency of the memory system is 400MHz. The DRAM parameters
and the controller parameters except those new added parameters, e.g. the
address mapping scheme (rank-bank-row-col), the row buffer policy (open
page), the structure and scheduling policy of the command queue (per rank
and round robin), are configured as the same.

Limited by the RTL simulation speed of the practical memory system,
we run the simulation for 1ms (1 million clock cycles of the driver), the
average bandwidth and latency are shown in Table I. When the memory
access rate meets the requirement of driver requests, the bandwidth is decided
by the number of transactions recorded in the trace. Therefore, the band-
widths of the memory systems are the same. However, the average latency of
DRAMSim2 is different from the practical memory systems as mentioned

Fig. 3. An overview of the verification process.

Table I. Average bandwidth and latency of the memory
systems.

DRAMSim2 Practical Improved Practical Improved

Trace
configured memory simulator memory simulator

for system #1 configured system #2 configured
MS1 & MS2 (MS1) for MS1 (MS2) for MS2

Average K6 175MB/s

Bandwidth MASE 64MB/s

Average K6 35.33 ns 110.75 ns 107 ns 80.51 ns 80 ns

Latency MASE 44.35 ns 128.42 ns 127 ns 97.60 ns 100 ns

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

6

IEICE Electronics Express, Vol.11, No.14, 1–8



before, and the latency distribution is also different as shown in Fig. 4. The
improved memory system simulator matches the practical memory system
properly, as the error of the average latency simulated is less than 3.4% and
the latency distribution corresponds with that of the practical memory
system.

Furthermore, 500 consecutive transactions are tracked and the latency
of each transaction is recorded as illustrated in Fig. 5. The error of each
the latency between the simulator and the practical memory system is
shown in Fig. 6. The improved simulator properly matches the practical
memory system. Some mismatches happen when a refresh is in progress.
Requests that are issued while a refresh is in progress have to wait much
longer than other requests. Since the memory controller of the simulator
cannot issue a refresh at the same time with the practical memory controller,
the mismatch is inevitable. As the refresh period is long (7800 ns), the
mismatch is acceptable.

Fig. 5. Recorded latencies of 500 consecutive transactions.

Fig. 4. Latency distribution of the memory systems.

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

7

IEICE Electronics Express, Vol.11, No.14, 1–8



5 Conclusion

In this paper, an improved memory system simulator based on DRAMSim2 is
presented. A memory system consists of the memory controller and the
DRAM device. DRAMSim2 models the memory controller in a general way,
which makes it impractical to faithfully track the behavior of a specific
memory controller. To address this problem, we present an improved memory
system simulator based on DRAMSim2 considering the structure character-
izations of the practical memory controller pipeline. The pipeline structure is
modeled and some configurable parameters are designed to describe the
frontend latency and the backend latency, allowing us to reflect the controller
design complexity.

The improved memory system simulator is compared to DRAMSim2 and
two practical memory systems to validate the accuracy. The results show that
the improved simulator is much more accurate than DRAMSim2, matching
the practical memory system properly. Overall, we think that the improved
memory system simulator is more helpful for designers to explore the design
space of the SoC and make the optimized design decisions.

Acknowledgments

This work was supported by the National Natural Science Foundation of
China (61204023), the National High Technology Research and Development
Program of China (863 Program) (2012AA012703) and the Natural Science
Foundation of Jiangsu Province (BK2011334).

Fig. 6. The error of each the transaction latency between
the simulator and the practical memory system.

© IEICE 2014
DOI: 10.1587/elex.11.20140466
Received May 14, 2014
Accepted June 26, 2014
Publicized July 11, 2014
Copyedited July 25, 2014

8

IEICE Electronics Express, Vol.11, No.14, 1–8


