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Abstract: On many-core Network-on-Chips (NoCs), communication is

on the critical path of system performance and contended synchronization

requests may cause large performance penalty. Different from conventional

algorithm-based approaches, the paper addresses the barrier synchronization

problem from the angle of optimizing its communication performance and

proposes cooperative communication as a means to achieve efficient and

scalable all-to-all barrier synchronization on mesh-based many-core NoCs.

With the cooperative communication, routers collaborate with one another to

accomplish a fast barrier synchronization task. The cooperative communi-

cation is implemented in our router at low cost. Through comparative experi-

ments, our approach evidently exhibits high efficiency and good scalability.
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1 Introduction and related work

While Network-on-Chip (NoC) [1] provides scalable bandwidth, it increases

communication distance between communicating nodes. As a consequence, com-

munication latency is negatively impacted due to longer path and possibly more

contention. This brings a performance challenge for parallelized programs, which

rely on efficient barrier synchronization to achieve high performance. Barrier

synchronization is a classic problem that has been extensively studied in the

context of parallel machines [2]. It should be carefully designed to achieve low

latency communication and to minimize overall completion time. Towards single-

chip systems, to speed up barrier synchronization in MPSoCs, Monchiero proposed

a centralized hardware approach based on the master-slave algorithm [3]. Due to

the centralized nature and non-availability of support for efficient communication,

this proposal performs well only for less than 10 cores. In [4], Marongiu discussed

the use of a run-time lightweight barrier construct in non-cache coherent MPSoCs.

However, he fell short of exploiting efficient communication, harvesting only

limited scalability. Targeting many-core CMPs, based on G-line technology [5],

Abellan deployed a dedicated network to allow for fast and efficient signaling of

barrier arrival and departure [6]. Although a dedicated network can achieve a better

barrier synchronization performance, extra links and routing and arbitration logics

are required, since the links and routers in the original on-chip network are not fully

utilized.

Conventional approaches for addressing the barrier synchronization problem

have been algorithm oriented. There are four main classes of algorithms: master-

slave [7], all-to-all [8], tree-based [7, 9], butterfly [10]. Among them, the all-to-all

algorithm takes a distributed solution. It assumes that each node keeps a local copy

of the global barrier counter. Each barrier acquire request is broadcasted to all nodes

to increment their own local barrier counters. Each node is released locally when all

nodes reach the local barrier. Although this eliminates the barrier release overhead,

but an increased number of broadcasted barrier acquire requests incur larger barrier

acquire overhead. Therefore, the all-to-all algorithm is only suitable to small-scale

systems and its performance becomes worse in large-scale systems.

It is a trend that many cores are networked in a single chip (named, many-core

NoCs), so that communication is on the critical path of system performance and

contended synchronization requests may cause large performance penalty. Moti-

vated by this, different from the conventional algorithm-based optimizations

mentioned above, the paper addresses performance optimization of barrier syn-

chronization on mesh-based many-core NoCs from the angle of exploiting its
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efficient communication. The cooperative communication is proposed. It is orthog-

onal to the all-to-all algorithm, i.e. as a means, it is combined with the all-to-all

algorithm in order to achieve efficient and scalable all-to-all barrier synchronization

on mesh-based many-core NoCs. The proposed cooperative communication is a

kind of collective communication [11], which efficiently implements the gather

communication for barrier acquire requests. It is called ‘cooperative’ since all

routers collaborate with one another to accomplish a fast all-to-all barrier synchro-

nization task. For instance, with the proposed cooperative communication, multiple

barrier acquire packets can be merged into a single barrier acquire packet in a router

if they aim for the same barrier and arrive at the router simultaneously, thus

resulting in significant reduction of network workload, which shrinks the comple-

tion time. The complexity of implementing the cooperative communication in the

router is low. Synthetic and application experiments show that our approach can

significantly reduce synchronization completion time and increase application

speedups.

2 Cooperative communication for scalable all-to-all barrier synchro-

nization

2.1 Mesh-based many-core NoC

Due to its regularity, simplicity and modularity, the mesh network has been a

popular topological option for NoC designs. We consider a regular mesh archi-

tecture for our many-core NoC. Fig. 1a shows a 3 � 3 example. Each processing

core, P, is connected to a router, R. Routers are interconnected with bidirectional

links. The mesh network we used is packet-switched, performs dimension-order

XY routing, provides best-effort service and also guarantees in-order packet

delivery. Besides, moving one hop in the network takes one cycle.

2.2 Cooperative communication

The idea of cooperative communication is to transfer barrier acquire packets to all

nodes as fast as possible by (1) distributing barrier acquire packets to all nodes

firstly along the east and west directions and secondly along the south and north

directions as well as (2) merging multiple barrier acquire packets that aim for the

same barrier into a single barrier acquire packet.

We exemplify this cooperative action. Fig. 2 shows a 3 � 3 mesh where all

nodes aim for the same barrier. At cycle t (see Fig. 2a), all nodes send a barrier

acquire request encapsulated by a barrier acquire packet to other nodes. At this

time, the local barrier counter of each node is set to be ‘1’ by itself. At cycle t þ 1

(see Fig. 2b), an intermediate node may receive multiple barrier acquire packets. It

firstly replicates and distributes them into different outports depending on their

incoming ports. Then, for those barrier acquire packets to the same outport, if they

target the same barrier, they are merged into a single barrier acquire packet. For

instance, at cycle t, the three barrier acquire packets (marked with “A,1”, “C,1” and

“E,1”) from node A, C and E go into the west, east and south port of router B

respectively. At cycle t þ 1, router B receives these three packets. According to our

replication algorithm in Section 2.3, in router B, packet “A,1” is replicated to
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Fig. 1. A 3 � 3 mesh architecture with routers enhanced by Cooper-
ative Communicators (CCs)

Fig. 2. Cooperative barrier communication
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generate three packets: one is forwarded to node B to increment the local barrier

counter and the other two are forwarded to the east and south outports respectively.

Packet “C,1” is also replicated to generate three packets: one to increment the

counter in node B and the other two to the west and south outports. Packet “E,1”

only generates one packet to increment node B’s barrier counter. Thus, as shown in

Fig. 2b, the local barrier counter in node B is updated as 4. Since packet “A,1” and

“C,1” both have a copy to the south outport, the two copies are merged into one

packet (marked with “AC,2”) containing 2 barrier acquire requests. Further on, at

cycle t þ 2, more packets are merged and node E is first released since all barrier

requests reach node E’s local barrier. Then, node B, D, F and H are released at

cycle t þ 3. At last, the barrier synchronization is completed after node A, C, G and

I are released at cycle t þ 4 (not drawn in the figure). In total, this process takes 5

cycles, transmitting 56 (¼ 24 þ 18 þ 10 þ 4) packets. If unicast transmission is

employed instead, it takes 16 cycles transmitting 144 packets (calculated in the

experiment). Such cooperative action not only avoids serialization of packet

transmission over shared links but also reduces workload.

2.3 Cooperative Communicator (CC)

To realize the cooperative communication, the router is enhanced with a Cooper-

ative Communicator (CC). As shown in Fig. 1c, the CC consists of six functional

units: an Acquire Replicator (AR) and five Acquire Mergers (AMs).

As depicted in Fig. 1c, the AR is responsible for replicating and distributing

incoming barrier acquire packets to different outports. There are 5 copiers, one for

each inport. To avoid redundant packet replication, the AR replicates a barrier

acquire packet depending on the incoming direction of the barrier acquire packet.

To facilitate the explanation, we use notations: aðid; rn; inÞ represents a barrier

acquire packet with a barrier id, rn count of barrier acquire requests, and its

incoming port in, which can be L (Local), N (North), S (South), E (East), and W

(West); notation rðid; rn; in; outÞ represents a replicated barrier acquire packet with

barrier id and rn count of barrier acquire requests from inport in to outport out. The

acquire replicating algorithm acts according to the following formulas. (a)–(e)

correspond to the 5 copiers in Fig. 1c respectively. Depending on the incoming

port, the algorithm replicates the barrier acquire packet to different ports. Take (a)

as an example. When a router receives a barrier acquire packet from the local port,

it shall replicate four barrier acquire packets to four directions: E, S, W and N, one

for each.

ðaÞ aðidL; rnL; LÞ )

rðidL; rnL; L; EÞ
rðidL; rnL; L; SÞ
rðidL; rnL; L;WÞ
rðidL; rnL; L; NÞ

8>>>><
>>>>:

ðbÞ aðidE; rnE; EÞ )

rðidE; rnE; E; LÞ
rðidE; rnE; E; SÞ
rðidE; rnE; E;WÞ
rðidE; rnE; E; NÞ

8>>>><
>>>>:
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ðcÞ aðidW; rnW;WÞ )

rðidW; rnW;W; LÞ
rðidW; rnW;W; EÞ
rðidW; rnW;W; SÞ
rðidW; rnW;W;NÞ

8>>><
>>>:

ðdÞ aðidS; rnS; SÞ )
rðidS; rnS; S; LÞ
rðidS; rnS; S; NÞ

�

ðeÞ aðidN; rnN; NÞ )
rðidN; rnN; N; LÞ
rðidN; rnN; N; SÞ

�

For each outport, there is an AM. As shown in Fig. 1c, the AM is responsible

for checking replicated barrier acquire packets from the AR and those barrier

acquire packets that has been stored in the output buffer and then merging the

barrier acquire packets aiming for the same barrier counter into one barrier acquire

packet. Take the AM at the local outport as an example. Its function contains three

steps. (1) The Classifier groups barrier acquire packets from the AR into several

groups according to their barrier id. As there are 4 inputs, up to 4 barrier acquire

packets may target the same barrier. Incoming barrier acquire packets may be

classified into up to 4 groups, since they may aim for 4 different barriers, one group

for one barrier. (2) A Merger merges a group of barrier acquire packets into one

barrier acquire packet. It extracts all values in “ReqNum” field 1 of these packets,

adds them together, and puts the sum into the “ReqNum” field of the merged barrier

acquire packet. (3) If in the output buffer there is a stored barrier acquire packet that

has the same barrier id with the merged barrier acquire packet from the Merger, the

Buffer Maintainer adds the “ReqNum” of the merged barrier acquire packet into

that of the stored barrier acquire packet; if not, the Buffer Maintainer puts the

merged barrier acquire packet into the tail of the output buffer. To facilitate the

explanation, notation mðid; rn; outÞ represents a merged barrier acquire packet with

barrier id and rn count of barrier acquire requests to outport out. The acquire

merging algorithm for the AM at local outport is sketched as follows. (a)–(d)

correspond to group 1–4 in Fig. 1c respectively. Take (b) as an example. Barrier

acquire packets, which have different id with the barrier acquire packet from the

east inport to the local outport and have the same id with the barrier acquire packet

from the south inport to the local outport, are merged into one barrier acquire

packet, which is then forwarded to the local outport of the router. The sum of their

rn forms the rn in the merged packet.

ðaÞ

rðidE; rnE; E; LÞ
rðidS; rnS; S; LÞ
rðidW; rnW;W; LÞ
rðidN; rnN; N; LÞ

9>>>>=
>>>>;
��������!i2fE;S;W;Ng

idi¼idE
mðidE;

X
rni; LÞ

ðbÞ
rðidS; rnS; S; LÞ
rðidW; rnW;W; LÞ
rðidN; rnN; N; LÞ

9>=
>;��������!i2fS;W;Ng

idi≠idE;idi¼idS
mðidS;

X
rni; LÞ

1The barrier acquire packet has a “ReqNum” field that denotes how many barrier acquire requests are included in
this packet. Initially, when a barrier acquire packet is issued by a node, its “ReqNum” is equal to 1. This field is
updated upon merging.
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ðcÞ rðidW; rnW;W; LÞ
rðidN; rnN; N; LÞ

�
��������!i2fW;Ng;idi≠idE
idi≠idS;idi¼idW

mðidW;
X

rni; LÞ

ðdÞ rðidN; rnN; NÞ ��������!idN≠idE

idN≠idS;idN≠idW
mðidN; rnN; LÞ

2.4 Hardware implementation

Fig. 3 gives the barrier acquire format. As it shows, the number of the used bits of

the barrier acquire packet is 46, while the number of the total bits of the general

packet is 84.

The CC design is synthesized in Synopsys® Design Compiler with TSMC®

65 nm process. Table I lists the logic synthesis results excluding the wire cost. For

comparison, the router synthesis result is also given in the table. Since the barrier

acquire packet only has 46 used bits and the CC is pure combinational logic, the

CC only consumes 4.67k NAND gates and can run at 1.79GHz (0.56 ns). The

original router (Crossbar and Output Buffers) runs at 1.61GHz (0.62 ns). When

integrated into our router, since the CC in parallel with the Crossbar, it does not

degrade the router’s frequency.

3 Experiments and results

3.1 Experimental setup

The purpose of experiments is to investigate the performance gain of our proposal

(all-to-all algorithm with cooperative communication, denoted by A2A+CC) in

both efficiency and scalability. We compare our approach with the four algorithm-

based mechanisms with unicast communication, namely, all-to-all algorithm with

unicast (A2A+Un), master-slave algorithm with unicast (MS+Un), tree-based

algorithm with unicast (Tree+Un), and butterfly algorithm with unicast (Butter-

fly+Un). We constructed a RT-level mesh-based many-core simulation platform as

described in Section 2.1. Synthetic experiments and application benchmarks are

performed on the platform with a variety of mesh (M � N) sizes up to 256 nodes

(M ¼ N ¼ 16).

Fig. 3. Barrier acquire packet format

Table I. Logic synthesis results of the router with the CC

Area Frequency

CC 13444.32 µm2 (4.67k NAND gates) 1.79GHz (0.56 ns)

Crossbar 36288.22 µm2 (12.60k NAND gates)
1.61GHz (0.62 ns)

Output Buffers 40670.59 µm2 (13.12k NAND gates)

Note: The area of a NAND gate is 2.88 µm2.
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3.2 Synthetic experiments

Case 1: The network size is varied and there is no other background traffic.

In this set of experiments, we discuss the pure performance of barrier synchro-

nization on mesh-based many-core NoCs. All nodes participate in the barrier

synchronization and there is no other background traffic. Node i sends a barrier

acquire request after Di cycles delay2 when an experiment starts, and an experiment

finishes when the release reaches all nodes. The completion time is measured from

the starting till then. Fig. 4a–c plots the completion time versus the network size.

Fig. 4a is with MaxD ¼ 0, meaning that all nodes send barrier acquire requests at

the same time. This setting is helpful to probe into the intrinsic performance of

different barrier synchronization algorithms. From Fig. 4a–c, We can see that:

Fig. 4. (a)–(c): Completion time versus network size; (d)–(f ):
Completion time versus packet injection rate of non-barrier-
sync. packets; (g): Speedup results of 1D DIT FFT; (h):
Speedup results of Vector Normalization

2In experiments, we set a maximal delay:MaxD. For node i, its delay Di is a random integer between 0 andMaxD.
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• For all network sizes, our approach (A2A+CC) achieves minimal completion

time. Due to specialized cooperative communication, there is no contention in

the network. Consequently, the completion time can be theoretically deter-

mined as M þ N þ maxfDi � Djg, which matches the simulation results.

• A2A+Un shows better performance than MS+Un, Tree+Un, and Butter-

fly+Un for networks of small sizes, but it does not scale well due to quadrati-

cally increased number of packets ðMNÞ2. With the help of our cooperative

communication, the all-to-all algorithm (see A2A+CC) becomes efficient and

scalable and its completion time increases very slowly as the network size is

scaled up.

• The completion time of Tree+Un also increases slowly due to its alleviated

network contention. But from 8 cores upward, Tree+Un is 3 to 5 times worse

than A2A+CC due to increased non-contentional delay since the barrier

synchronization event has to move up and down the entire logical tree.

• Among algorithm-based schemes, Butterfly+Un shows the best performance

and scalability. Still, our A2A+CC is outstanding. For the experiments, our

A2A+CC reduces the completion time of Butterfly+Un by 47% on average.

Case 2: The network size is fixed and there exists other background traffic.

In this set of experiments, we discuss the performance of barrier synchroniza-

tion when there are other packets traversing in the on-chip network. We consider

three network sizes: 4 � 4, 8 � 8 and 16 � 16. When an experiment starts, all nodes

generate non-barrier-synchronization packets periodically to destination nodes,

which are selected randomly. When the network load becomes stable3, all nodes

send barrier acquire requests and an experiment finishes when the release reaches

all nodes. The completion time is measured from the starting till then. Fig. 4d–f

plots the completion time versus the packet injection rate of non-barrier-synchro-

nization packets under the network size of 4 � 4, 8 � 8 and 16 � 16, respectively.

We can see that:

• When the network load is not heavy (e.g. in Fig. 4e, the packet injection rate

of non-barrier-synchronization packets is from 0.0 to 0.4), the effect of other

network traffic on the performance of barrier synchronization is trivial, since

the network is able to deliver all generated packets timely. The performance of

A2A+CC is better than that of the four algorithm-based schemes when the

packet injection rate is from 0.0 to 0.4.

• As the network is overloaded (e.g. in Fig. 4e, the packet injection rate of non-

barrier-synchronization packets is from 0.5 to 0.9), a number of packets are

blocked in the network, resulting in heavy network contention. Under these

circumstances, A2A+CC still has the fewest cycles. However, which solution

is better becomes insignificant, since the huge network delay dominates.

3.3 Application benchmarks

In this set of experiments, two real applications, namely, 1024-point 1D DIT FFT

and 256-element Vector Normalization (VN), are realized. Computational tasks are

uniformly mapped onto all nodes. Depending on the mesh size (M � N), each node

3In the experiments, the network load is considered to be stable after the warmup phase when each node has
generated 1000 packets.
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assumes J=MN tasks, where J is the total number of tasks. For the FFT, J is 1024

there are 9 (log21024 � 1) times of barrier synchronization. For the VN, J is 256

and there are 2 times of barrier synchronization. We investigate the application

speedup with respect to the number of cores from 1 up to 256.

Fig. 4g and Fig. 4h show the speedup (�m)4 results, which exhibit the same

performance trend as Fig. 4a–c and clearly show the performance gain with

A2A+CC. Note that, due to overwhelming contention, A2A+Un’s speedup for

16 � 16 decreases. For the 16 � 16 case, compared with A2A+Un, MS+Un,
Tree+Un, and Butterfly+Un, the respective performance improvement for the

FFT is 68.13%, 30.67%, 15.58%, and 6.33%, and for the VN is 12.21%, 5.54%,

3.21%, and 2.92%. As expected, the speedup improvement for FFT is higher than

that for VN. The reason is that the barrier synchronization related communication

task of FFT takes a larger portion of time, and thus the optimization in commu-

nication enhances performance more significantly. Since the FFT and the VN have

computation tasks besides synchronization tasks, the improvement is less than that

from synthetic experiments.

4 Conclusion and future work

On-chip network in many-core NoCs brings not only challenge but also oppor-

tunity to realize efficient and scalable synchronization for parallel programs running

on different cores. In this paper, we have exploited this potential in a regular mesh-

based many-core NoCs. We addressed the barrier synchronization problem by

optimizing its communication performance, since communication is on the critical

path of system performance on mesh-based many-core architectures and contended

synchronization requests may cause large performance penalty. The main idea is to

propose the cooperative communication and combine it with the all-to-all algorithm

so as to achieve high efficiency and scalability of all-to-all barrier synchronization

on mesh-based many-core NoCs. The cooperative communication is implemented

in the router at low cost. Comparative experiments prove that, with the proposed

cooperative communication, the all-to-all algorithm is pushed from the worst to the

best solution on mesh-based many-core NoCs.

In the future, we plan to link our approach on other irregular and regular NoC

topologies.
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