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Abstract: In this paper, we give modified version of interleaved Mont-

gomery modular multiplication method for lattice-based cryptography.

With the proposed algorithms, we improve the multiplication complexity

and embed the conversion operation into the algorithm with almost free

cost. We implement the proposed methods for the quotient ring (Z/qZ)[x]/

(xn − 1) and (Z/pZ)[x]/(xn + 1) on the GPU (NVIDIA Quadro 600) using

the CUDA platform. NTRUEncrypt is accelerated approximately 35% on the

GPU by using the proposed method. We receive at least 19% improvement

with the proposed method for the polynomial multiplication in (Z/pZ)[x]/

(xn + 1), where n ∈ f1024, 2048, 4096g.
Keywords: interleaved Montgomery modular multiplication, lattice-based

cryptography, NTRUEncrypt, GPU implementation

Classification: Electron devices, circuits, and systems

References

[1] D. Bernstein: Multidigit multiplication for mathematicians (2001) http://cr.yp.to/
papers/m3.pdf.

[2] S. Akleylek, M. Cenk and F. Özbudak: IET Information Security 7 (2013) 165.
DOI:10.1049/iet-ifs.2010.0271

[3] J. Hoffstein and J. Silverman: Algorithmic Number Theory Symposium-III (1998)
LNCS 1423 267.

[4] C. O’Rourke and B. Sunar: IEEE Trans. Comput. 52 (2003) 440. DOI:10.1109/TC.
2003.1190585

[5] V. Lyubashevsky, C. Peikert and O. Regev: Advances in Cryptology EUROCRYPT
(2010) LNCS 6110 1.

[6] V. Lyubashevsky, D. Micciancio, C. Peikert and A. Rosen: Fast Software
Encryption (FSE) (2008) LNCS 5086 54.

[7] IEEEp1363.1: Draft Standard (2008).
[8] M.-K. Lee, J. W. Kim, J. E. Song and K. Park: IEICE Trans. Fundamentals E96-A

(2013) 206. DOI:10.1587/transfun.E96.A.206
[9] S. Akleylek and Z. Yüce Tok: IEEE 22nd Signal Processing and Communications

Applications Conference (2014) 854.

© IEICE 2014
DOI: 10.1587/elex.11.20140960
Received October 7, 2014
Accepted October 15, 2014
Publicized October 30, 2014
Copyedited November 25, 2014

1

LETTER IEICE Electronics Express, Vol.11, No.22, 1–6

http://cr.yp.to/papers/m3.pdf
http://cr.yp.to/papers/m3.pdf
http://cr.yp.to/papers/m3.pdf
http://cr.yp.to/papers/m3.pdf
http://cr.yp.to/papers/m3.pdf
http://dx.doi.org/10.1049/iet-ifs.2010.0271
http://dx.doi.org/10.1049/iet-ifs.2010.0271
http://dx.doi.org/10.1049/iet-ifs.2010.0271
http://dx.doi.org/10.1049/iet-ifs.2010.0271
http://dx.doi.org/10.1109/TC.2003.1190585
http://dx.doi.org/10.1109/TC.2003.1190585
http://dx.doi.org/10.1109/TC.2003.1190585
http://dx.doi.org/10.1109/TC.2003.1190585
http://dx.doi.org/10.1587/transfun.E96.A.206
http://dx.doi.org/10.1587/transfun.E96.A.206
http://dx.doi.org/10.1587/transfun.E96.A.206
http://dx.doi.org/10.1587/transfun.E96.A.206
http://dx.doi.org/10.1587/transfun.E96.A.206


1 Introduction

In modern public key cryptographic schemes such as ECDSA modular multi-

plication operation is the most time consuming part. There are several algorithms

to obtain efficient results for multiplication operation: Karatsuba-Ofman method,

Toom-Cook method, FFT-based techniques, Montgomery method [1]. In this paper

we focus on Montgomery modular multiplication method and its efficient adapta-

tion to lattice-based cryptographic schemes. To do this, we eliminate one multi-

plication by using the quotient ring properties. We extend the idea given in [2]. We

also improve the complexity results in [2].

Post-quantum cryptographic schemes have received much more attention after

introducing polynomial time quantum algorithms to solve the hard problems for

some parameters (e.g. integer factorization problem, discrete logarithm problem)

which most of the public key algorithms depends on. Lattice-based cryptographic

schemes are the most studied ones since the operations can be considered over the

quotient ring enabling very efficient modular reduction. NTRU cryptosystem is the

first proposed scheme as an alternative to RSA and elliptic curve based systems in

the lattice-based cryptography [3]. In NTRU the main operation is polynomial

multiplication in ðZ=qZÞ½x�=ðxn � 1Þ. This multiplication can also be considered as

cyclic convolution of two polynomials.

1.1 Our contribution

We give modified versions of interleaved Montgomery modular multiplication

algorithms for NTRUEncrypt (the quotient ring ðZ=qZÞ½x�=ðxn � 1Þ) and the

quotient ring ðZ=pZÞ½x�=ðxn þ 1Þ. With the proposed methods we improve the

multiplication complexity. We implement the modified algorithms on the GPU by

using CUDA platform. We also compare the proposed algorithms with the previous

ones. In original Montgomery modular multiplication algorithm computes the

product in Montgomery form i.e. one needs one more multiplication to obtain

the real result. In the proposed method we make this operation in a clear way and

we eliminate the final subtraction as in [2]. The proposed algorithms can also be

considered as a generalized version of [4]. By using the proposed methods,

polynomial multiplication over the quotient ring is accelerated at least 19% on

the GPU.

2 Proposed methods

In this section we explain the proposed methods for ðZ=qZÞ½x�=ðxn � 1Þ and

ðZ=pZÞ½x�=ðxn þ 1Þ, where q is a power of 2 and p is an odd prime. Let Rq ¼
ðZ=qZÞ½x�=ðxn � 1Þ, Rp ¼ ðZ=pZÞ½x�=ðxn þ 1Þ, Zq ¼ ðZ=qZÞ and Zp ¼ ðZ=pZÞ.

In Montgomery modular multiplication method one needs to transform the

elements to the required form. For studied quotient ring case that is for given aðxÞ,
bðxÞ 2 Rq, first compute aðxÞ � bðxÞ in the form enabling very efficient computation

and then transform the result to final computation [2].

In NTRU, polynomial arithmetic is performed in Rq i.e., xn ¼ 1. In Montgom-

ery modular multiplication algorithm one needs M0ðxÞ � �MðxÞ�1 ðmod xwÞ, where
w is the word length of the target platform. In Lemma 1 we give the computation of
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M0ðxÞ for the NTRU case. Note that this also helps us to eliminate the precompu-

tation phase.

Lemma 1. Let MðxÞ ¼ xn � 1 and M0ðxÞ � �MðxÞ�1 ðmod xwÞ, where w � n.

Then, M0ðxÞ ¼ 1.

In Algorithm 1 we give modified interleaved Montgomery modular multi-

plication algorithm for NTRU. After using the observation in Lemma 1, we

decrease the required number of multiplications by one with omitting the multi-

plication M0ðxÞ (see Step 4). Then, we replace the multiplication with MðxÞ ¼
xn � 1 by shifting n times and one subtraction (see Step 5). Recall that shifting

operation is almost free. We convert the multiplication with MðxÞ to shifting and

subtraction operations which improves the complexity of the algorithm. Since we

are working on the Montgomery form, we need to convert the elements to the

desired form. Conversion of the result is done by shifting operation (see Step 8 and

9). In Algorithm 1, the required number of multiplications is reduced to 1 (see

Step 3) and the required number of additions is 3 (see Step 3 and 5).

Algorithm 1 Interleaved Montgomery Modular Multiplication Algorithm for

NTRU

Input: AðxÞ ¼Pn�1
i¼0 aix

iw, BðxÞ ¼Pn�1
i¼0 bix

iw, MðxÞ ¼ xn � 1, with

ai, bi 2 Zq, where q is a prime power, degðAðxÞÞ < degðMðxÞÞ,
degðBðxÞÞ < degðMðxÞÞ, gcdðrðxÞ, MðxÞÞ ¼ 1, rðxÞ ¼ xw and nw ¼ d nwe.

Output: CðxÞ ¼ AðxÞ � BðxÞ ðmodMðxÞÞ
1: CðxÞ  0

2: for i ¼ 0 to nw � 1 do

3: CðxÞ  CðxÞ þ AðxÞ � biðxÞ
4: qðxÞ  CðxÞ ðmod rðxÞÞ
5: CðxÞ  ðCðxÞ þ qðxÞ � xn � qðxÞÞ=rðxÞ
6: end for

7: TðxÞ  ðrðxÞÞnw
8: CðxÞ  ðCðXÞ � TðXÞÞ ðmodMðxÞÞ
9: Return CðXÞ

The ring variant of learning with errors problem (R-LWE) have been mostly

used in new generation public key cryptosystems [5] and hash functions [6]. Ideal

lattices with special properties are needed to construct R-LWE based schemes.

These lattices can be considered as the ideals in Rp ¼ ðZ=pZÞ½x�=ðxn þ 1Þ. The
parameters are n ¼ 2k and p � 1 ðmod 2nÞ, where k is positive integer and p is

prime. In Lemma 2 we give the computation of M0ðxÞ for Rp case. By using this,

one multiplication in interleaved Montgomery method turns out to the subtraction

operation.

Lemma 2. Let MðxÞ ¼ xn þ 1 and M0ðxÞ � �MðxÞ�1 ðmod xwÞ, where w � n.

Then, M0ðxÞ ¼ �1.
Now we have M0ðxÞ ¼ �1. In Step 4 we replace the multiplication by M0ðxÞ

with multiplication by (−1). Note that this can be also considered as an addition
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modulo p. Since in R-LWE based schemes coefficients of the elements are chosen

from the set f�1; 0; 1g, this multiplication by (−1) does not effect the efficiency of

the algorithm. In Step 5 instead of multiplication with MðxÞ ¼ xn þ 1 we use

shifting the corresponding polynomial n times and then add it. With this observa-

tion we decrease the number of multiplication in the algorithm. In Step 8 and 9 we

convert the elements to the desired form. Note that these are not the real multi-

plications, they are just shifting operations. The multiplication and addition com-

plexity of Algorithm 2 is only 1 (see Step 3) and 3 (see Step 3 and 5), respectively.

Algorithm 2 Interleaved Montgomery Modular Multiplication Algorithm in Rp

Input: AðxÞ ¼Pn�1
i¼0 aix

iw, BðxÞ ¼Pn�1
i¼0 bix

iw, MðxÞ ¼ xn þ 1, with

ai, bi 2 Zq, where q is a prime power, degðAðxÞÞ < degðMðxÞÞ,
degðBðxÞÞ < degðMðxÞÞ, gcdðrðxÞ, MðxÞÞ ¼ 1, rðxÞ ¼ xw and nw ¼ d nwe.

Output: CðxÞ ¼ AðxÞ � BðxÞ ðmodMðxÞÞ
1: CðxÞ  0

2: for i ¼ 0 to nw � 1 do

3: CðxÞ  CðxÞ þ AðxÞ � biðxÞ
4: qðxÞ  �CðxÞ ðmod rðxÞÞ
5: CðxÞ  ðCðxÞ þ qðxÞ � xn þ qðxÞÞ=rðxÞ
6: end for

7: TðxÞ  ðrðxÞÞnw
8: CðxÞ  ðCðXÞ � TðXÞÞ ðmodMðxÞÞ
9: Return CðXÞ

3 Experimental results

In this section we give the implementation details both for Algorithm 1 and

Algorithm 2 on the GPU using CUDA platform. We use NVIDIA Quadro 600

GPU having 96 CUDA cores. To show the effectiveness of the proposed meth-

ods, we compare them with the interleaved Montgomery modular multiplication

method.

In Fig. 1 polynomial multiplication algorithms are compared in view of the

number of parallel multiplications per second on Rq ¼ ðZ=qZÞ½x�=ðxn � 1Þ by using
the parameter sets given in [7]. To perform the polynomial multiplication the

required random data is generated on the GPU with CUDA platform. Since

transferring data between CPU and GPU needs more time, we prefer this choice.

According to the implementation results, polynomial multiplication in Rq is

accelerated almost 29% by using Algorithm 1. Our design for ees401ep1 parameter

set achieves the throughput of 12156 polynomial multiplications per second while

it’s 9391 in the original one. Note that degree of the polynomial has an important

affect on the performance of parallel multiplication.

Table I summarizes our experimental findings for NTRUEncrypt from n ¼ 401

up to n ¼ 853. In Table I eesnep1 means that n 2 f401; 449; 653; 853g and

q ¼ 2048. The timings for encryption operation are given for 1000 trials and the

input of NTRUEncrypt is randomly generated. The data is generated on the CPU

and then it’s transferred to the GPU. While implementing NTRUEncrypt, we use a
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set of parameters for different security level recommended in [7]. We implement

fast convolution and its sliding window version as described in [8]. We also

compare the proposed method with the original Montgomery modular multiplica-

tion method. According to the experimental results by using modified interleaved

Montgomery multiplication method NTRUEncrypt is accelerated almost 35%.

However, the proposed method is not the best choice for NTRUEncrypt. Fast

convolution with sliding window method gives better performance since multi-

plication is performed by only additions and the required number of additions is

drastically reduced when we compare this with the fast convolution method.

Moreover, fast convolution method and its sliding window version have a nice

structure for parallelization.

In Table II the number of multiplications over the polynomial ring

Rp ¼ ðZ=pZÞ½x�=ðxn þ 1Þ for selected methods is given. We choose p ¼ 49201153

satisfying p � 1 ðmod 2nÞ. We implement parallelized schoolbook method, CUDA

Fast Fourier Transform (cuFFT) based multiplication (one can also call this

Number Theoretic Transform) [9] and interleaved Montgomery modular multi-

plication method. We generate the random data on the GPU. Since cuFFT is

optimized version of FFT on the GPU for the parallel processing, cuFFT-based

multiplication gives the best throughput. According to the experimental results,

Algorithm 2 gives better performance than the original one. We also note that the

Fig. 1. The number of parallel multiplications per second

Table I. Experimental results for NTRUEncrypt on the GPU using
CUDA platform (second/parameter set)

Parameter Set ees401ep1 ees449ep1 ees653ep1 ees853ep1

Fast Convolution with Sliding
Window Method [8]

0.179 0.233 0.350 0.749

Fast Convolution Method [8] 0.265 0.384 0.621 1.678

Proposed Method (Algorithm 1) 0.829 1.401 1.986 3.037

Original Method 1.142 1.768 2.502 3.755
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number of parallel multiplication decreases when one compares with Table I. The

reason is that taking modulo with p ¼ 49201153 results a delay. The comparison

results show that by using Algorithm 2 multiplying two elements in Rp is

accelerated at least 19% compared to interleaved Montgomery modular multi-

plication.

4 Conclusion

In this paper, we give the required updates for interleaved Montgomery modular

multiplication method to be used in lattice-based cryptographic schemes. The major

improvement is to reduce the required number of multiplications. Algorithm 1 and

Algorithm 2 give better performance than the original one. We give an acceleration

of interleaved Montgomery modular multiplication at least 19% on the GPU for

lattice-based cryptography.
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Table II. Experimental results for selected polynomial multiplication
methods over the polynomial ring Rp on the GPU using
CUDA platform (second/n)

n ¼ 1024 n ¼ 2048 n ¼ 4096
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