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Abstract: A memristor is regarded as a promising device for modeling

synapses in the realization of artificial neural systems for its nanoscale size,

analog storage properties, low energy and non-volatility. In this letter, an

adaptive T-Model neural network based on CMOS/memristor hybrid design

is proposed to perform the analog-to-digital conversion without oscillations.

The circuit is composed of CMOS neurons and memristor synapses. The

A/D converter (ADC) is trained by the least mean square (LMS) algorithm.

The conductance of the memristors can be adjusted to convert input voltages

with different ranges, which makes the ADC flexible. Using memristors as

synapses in neuromorphic circuits can potentially offer high density.
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1 Introduction

Scientists from HP labs discovered a nanoscale device called the memristor in 2008

[1]. The memristor resistance changes with the electrical charge passing through it,

which means that the memristor can store information based on the past history of

its activation. The recent specification for metal-oxide memristor includes sub-10-

nm size, excellent endurance, pico-Joule and sub-ns switching [2]. Memristors

could provide the compact synapses required to a neural network circuit [3]. Hybrid

CMOS-nano architectures provide high density for developing fault and defect

tolerant neuromorphic networks [4]. Using CMOS/memristor hybrid architecture

and a two-part spike, Afifi et al. demonstrated Spike-Timing-Dependent-Plasticity

(STDP) learning implementation [5]. Zhu et al. proposed an approach for imple-

menting Hamming network based on hybrid CMOS/memristor circuit design [6],

in which pattern recognition and classification were demonstrated.

Neural network approach for an analog-to-digital converter (ADC) is signifi-

cant for high resolution and flexibility compared to the conventional design. The

ADC neural network in [7, 8] is composed of inter-connected resistors with large

area, which would become an impediment to the implementation with very large

scale integration (VLSI) technology. Moreover, once the input voltage range is

changed, the ADC will not work. A 4-bit ADC based on Hopfield neural network is

implemented with a CMOS/memristor hybrid circuit [9]. However, all neurons in

the ADC must be reset periodically to 0 to avoid getting stuck in local minima,

which increases the complexity of signal conversion.

In this letter, an adaptive 4-bit T-model neural network ADC based on CMOS/

memristor hybrid design is proposed. The ADC is capable of finding the global

optimum solution without local minima. It can be compact due to high density of

analog weights implemented with memristive devices. As to the different input

voltage ranges, the corresponding connection weights are different. The ADC can

be trained with least mean square (LMS) algorithms, which makes the A/D con-

verter flexible.

2 Memristor model

The memristor is composed of undoped region and doped region with oxygen

vacancies. Ron and Roff are the lowest and highest resistances of the memristor

respectively. We adopt a piecewise linear memristor model [10]. The model func-

tion is as follows:

M ¼
M � ð�r��t�VmÞ

ðtpos�Vth,posÞ Vm � Vth,pos

M þ ð�r��t�VmÞ
ðtneg�Vth,negÞ Vm � Vth,neg

8<
: ð1Þ

where �r is Roff � Ron, �t is the minimum time step interval, Vm is the voltage

applied to the device, Vth,pos is the positive voltage threshold of the device, Vth,neg is
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the negative voltage threshold of the device, tneg is the time required to increase the

memristance from Ron to Roff , and tpos is the time required to decrease the

memristance from Roff to Ron.

Synapses in brains behave similarly to memristive devices, prompting the

method to take advantage of memristors in neuromorphic hardware [11]. Storing

and updating the connection weights of synapse based on synaptic plasticity rules is

one of the most troublesome operations in biologically-inspired neural networks.

Memristors make it possible to update the connection weights efficiently. In this

letter, we use the memristive conductance corresponding to the synapse weight.

3 Adaptive A/D converter

In this section, we propose a T-Model neural network ADC. The circuit schematic

diagram is shown in Fig. 1. The ADC is based on CMOS/memristor hybrid design

and consists of 4 amplifier neurons, 6 memristor connections, 4 bias memristors, 4

input resistors and a training block. Neurons are realized in CMOS layer and

synapses are realized by memristor crossbar. Voltage Vs is the numerical value to be

converted. Voltage Vr feeds different constant bias Ii into the corresponding neuron

through memristor Tir. A connection between neurons is determined by a memristor

conductance Tij which connects the output of neuron j to the input of neuron i. The

outputs (V4V3V2V1) represent the binary value of the input voltage Vs. Vi (i ¼ 1;

2; 3; 4) is read out as the 0 or 1 values of the amplifier output voltages.

A variety of learning algorithms can be used to train the T-Model neural

network ADC. We adopt the LMS algorithm [8]. The algorithm minimizes the

error function:

E ¼ 1

2

X
fpg
ðyp � tpÞ2 p ¼ 1; � � � ; N ð2Þ

where tp is teacher signal, and yp is actual output signal. Each neuron input

includes three different set of signals: other neuron outputs yj (j > i), the corre-

sponding analog input and reference bias. After the process of neuron i, the output

is as follows:

Fig. 1. Schematic of a 4-bit T-Model neural network ADC.
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yi ¼ f
X
j>i

Tijyj þ TisVs þ TirVr

 !
ð3Þ

The changes of weight can be formulated as:

�Tij ¼ �� @E

@Tij
¼ �� @E

@yi
� @yi
@Tij

ð4Þ

where β is a learning rate. The connection weights Tij are realized by memristors

with conductance values Gij. Gij should be adjusted according to Eq. (4). The

output yi and teacher signal ti are either 1 or 0. When tj is 1, ti is 1 and yi is 0, Gij

will increase. When tj is 1, ti is 0 and yi is 1, Gij will decrease. In other cases, Gij

will remain unchanged. As a result, the change of memristors’ conductance Gij is as

follows:

�G ¼
� when tj ¼ 1; ti ¼ 1; yi ¼ 0

�� when tj ¼ 1; ti ¼ 0; yi ¼ 1

0 others

8<
: ð5Þ

When training the memristor, we will apply a voltage Vtrain which is higher than

the threshold voltage. The time step interval of Vtrain is:

�t ¼
tpos�Vth,pos

�r���Vtrain
when tj ¼ 1; ti ¼ 1; yi ¼ 0

tneg�Vth,neg

�r���Vtrain
when tj ¼ 1; ti ¼ 0; yi ¼ 1

0 others

8><
>: ð6Þ

The training algorithm for the ADC is shown in Algorithm 1.

Algorithm 1: Training Algorithm for the memristive ADC

1. � Learning rate

2. fðÞ is modelled as a digital comparator

3. Tij  small randomly generated value

4. xp  randomly generated learning input signal

5. for each input xp do

6. while error function E > Ethreshold do

7. �Tij  �ðti � yiÞtj
8. if �Tij ¼ � then

9. apply Vtrain for �t under the memristor Tij
10. end if

11. if �Tij ¼ �� then

12. apply �Vtrain for �t under the memristor Tij
13. end if

14. E ¼ 1
2

P
fpg
ðyp � tpÞ2

15. end while

16. end for

4 Experiments and analysis

The simulation is done in MATLAB simulink. The parameters of the memristor

model are as follows: Ron ¼ 0:1MΩ, Roff ¼ 20MΩ, Vth,pos ¼ 1:25V, Vth,neg ¼
�1:20V, tpos ¼ 5ms, tneg ¼ 1ms.
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We set the converted input voltage range ½0; 15�V, Table I gives the ideal input-

output characteristics for the ADC. The learning rate � ¼ 0:01, the number of

randomly generated learning input is 500 and Ethreshold ¼ 1:0 � 10�4. The mem-

ristive synapse initial weights are generated randomly. Then they are adjusted as

shown in Fig. 2(a) and can reach a constant ultimately according to Algorithm 1.

The input voltage and the corresponding digital code are shown in Fig. 2(b).

For the converted input voltage range ½0; 3ÞV, we set the learning rate � ¼ 0:01,

the number of randomly generated learning input is 300, the error threshold

Ethreshold ¼ 1:0 � 10�4. The memristive synapse weights are adjusted according to

the LMS algorithm as shown in Fig. 3(a). Fig. 3(b) shows the input voltage and the

corresponding digital code.

Table II compares the proposed ADC with those in [7], [8] and [9]. As to

different input voltage ranges, the corresponding connection weights are different.

The proposed ADC can be trained to convert input voltages with different ranges

according to Algorithm 1. The size of a memristor is very small and with an area of

less than 10 � 10 nm2. A hybrid circuit consisting of conventional CMOS circuits

and memristive crossbar integrated on top of CMOS layer provides high density for

developing networks. The Hopfield networks have local minima and the outputs do

not correspond to the analog input [7]. The T-model neural network can be

guaranteed of finding the global optimum solution. The neurons don’t need to

reset periodically to 0 to avoid getting stuck in local minima.

Table I. The teacher signal when input voltage range is ½0; 15�V
X t4 t3 t2 t1 X t4 t3 t2 t1

0 � x < 1 0 0 0 0 8 � x < 9 1 0 0 0

1 � x < 2 0 0 0 1 9 � x < 10 1 0 0 1

2 � x < 3 0 0 1 0 10 � x < 11 1 0 1 0

3 � x < 4 0 0 1 1 11 � x < 12 1 0 1 1

4 � x < 5 0 1 0 0 12 � x < 13 1 1 0 0

5 � x < 6 0 1 0 1 13 � x < 14 1 1 0 1

6 � x < 7 0 1 1 0 14 � x < 15 1 1 1 0

7 � x < 8 0 1 1 1 15 � x < 16 1 1 1 1

(a) (b)

Fig. 2. The A/D converter training. (a) Relationship between mem-
ristive weights and the learning iteration number; (b) simulation
results for ½0; 15�V
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5 Conclusion

In this letter, we demonstrate a 4-bit ADC which is implemented with a T-model

neural network. The ADC is based on CMOS/memristor hybrid design and

consists of conventional CMOS circuits and memristive crossbar integrated on

top of CMOS layer. It could be very compact potentially. The memristor synapse in

the ADC can be adjusted along with the input voltage range, which makes the

proposed ADC flexible. The simulation results in MATLAB show that the outputs

correspond to the correct behavior of the ADC and have no problem of oscillations.
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(a) (b)

Fig. 3. The A/D converter training. (a) Relationship between mem-
ristive weights and the learning iteration number; (b) simulation
results for ½0; 3ÞV

Table II. Comparison of the proposed ADC with previous works

Ref [7] Ref [8] Ref [9] This letter

Synapse 12 resistors 6 resistors 12 memristors 6 memristors
Global optimal No Yes No Yes
Flexibility No No Yes Yes
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