
An efficient scheduling
algorithm for NCQ within
SSDs

Yongwoon Cho and Taeseok Kima)

Department of Computer Engineering, Kwangwoon University,

447–1, Wolgye-Dong, Nowon-Gu, Seoul, Korea

a) tskim@kw.ac.kr

Abstract: An efficient scheduling scheme for NCQ in SSDs is presented.

Our scheme estimates the I/O service time of each command by considering

the state of the buffer as well as the SSDs’ physical characteristics, and then

first services the command with the shortest I/O service time. Through the

trace-driven simulations, we show that the proposed scheme significantly

improves the I/O performance in terms of average response time.

Keywords: Solid State Drives (SSDs), NCQ (Native Command Queue-

ing), scheduling

Classification: Storage technology

References

[1] A. M. Caulfield, L. M. Grupp and S. Swanson: Proc. of the 14th ASPLOS
(2009) 217. DOI:10.1145/1508244.1508270

[2] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee and S. H. Noh: Proc. of the ACM
International Conference on Embedded Software (2009) 295. DOI:10.1145/
1629335.1629375

[3] Y. Kim and T. Kim: Electron. Lett. 47 (2011) 482. DOI:10.1049/el.2010.3593
[4] Y. J. Yu, D. I. Shin, H. Eom and H. Y. Yeom: ACM Trans. Storage 6 (2010).

DOI:10.1145/1714454.1714456
[5] G. Gasior: Intel’s X25-E Extreme Solid-state Drive, The Technical Report

(2008).
[6] S. Kim and T. Kim: Electron. Lett. 49 (2013) 1079. DOI:10.1049/el.2013.1637
[7] OpenSSD project, http://www.openssd-project.org/wiki/The_OpenSSD_Project.
[8] A. Silberschatz, P. B. Galvin and G. Gagne: Operating System Concepts (John

Wiley & Sons, 2012) 9th ed.
[9] D. D. Levine: Iometer User’s Guide, Intel Server Architecture Lab. (2003).

1 Introduction

With the fast advance in storage technology, hard disk drives are being rapidly

replaced with NAND flash memory based SSDs (Solid State Drives) in most

computing environments. Unlike hard disk drives, SSDs have little data access

overhead due to the absence of disk head, asymmetric read and write operation

speed, and limited write endurance [1]. For this reason, the existing various storage

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

1

LETTER IEICE Electronics Express, Vol.12, No.4, 1–6

http://dx.doi.org/10.1145/1508244.1508270
http://dx.doi.org/10.1145/1508244.1508270
http://dx.doi.org/10.1145/1508244.1508270
http://dx.doi.org/10.1145/1629335.1629375
http://dx.doi.org/10.1145/1629335.1629375
http://dx.doi.org/10.1145/1629335.1629375
http://dx.doi.org/10.1145/1629335.1629375
http://dx.doi.org/10.1049/el.2010.3593
http://dx.doi.org/10.1049/el.2010.3593
http://dx.doi.org/10.1049/el.2010.3593
http://dx.doi.org/10.1049/el.2010.3593
http://dx.doi.org/10.1145/1714454.1714456
http://dx.doi.org/10.1145/1714454.1714456
http://dx.doi.org/10.1145/1714454.1714456
http://dx.doi.org/10.1049/el.2013.1637
http://dx.doi.org/10.1049/el.2013.1637
http://dx.doi.org/10.1049/el.2013.1637
http://dx.doi.org/10.1049/el.2013.1637
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project

system software techniques designed for hard disk drives are being redesigned by

considering the characteristics of SSDs [2, 3]. In this paper, we focus on NCQ

(Native Command Queueing), which is one of the techniques that improve the I/O

performance of hard disk drives [4].

NCQ is an extension of the Serial ATA protocol that allows hard disk drives to

internally optimize the order of commands, and it is still widely employed in SSDs

[5]. In hard disk drives, it was efficient to service commands in NCQ by minimiz-

ing the number of disk head rotations, but it may be not efficient in SSDs if the

scheme is employed without any modification because SSDs don’t have disk head.

Based on this fact, we propose an efficient scheduling scheme for NCQ in SSDs by

considering the characteristics of SSDs: little data access overhead and asymmetric

read and write speed. In addition to this, our scheme maximizes the I/O perform-

ance by considering the state of the write buffer, which exists in most SSDs in order

to improve the I/O performance and lifetime.

Since there is little data access overhead in SSDs, it is not easy to improve the

IOPS or I/O bandwidth, but it is possible to optimize the average response time.

Our scheme reduces the average response time by estimating the I/O service times

of all commands in NCQ and then first servicing the command with the shortest I/

O service time. Through the trace-driven simulations, we show that the proposed

scheme improves the I/O performance in terms of the average response time

without any loss of IOPS and I/O bandwidth.

2 NCQ scheduling scheme considering the SSD’s internals

To understand the proposed NCQ scheduling scheme, it is necessary to first

carefully observe the internal architecture of SSDs with SATA interface. Fig. 1

illustrates the procedure that handles a command in SSDs [6, 7]. The command

arriving from the host consists of logical address, size, and type, and it is queued in

NCQ. Once servicing a previous command is completed, another command at the

head of NCQ is dispatched. If data belonging to the dispatched command resides in

buffer, it can be served from the buffer; otherwise it is finally serviced from NAND

flash memories via the FTL (Flash Translation Layer).

Fig. 1. The procedure of an I/O command handling in SATA SSDs.

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

2

IEICE Electronics Express, Vol.12, No.4, 1–6

The proposed scheme estimates the I/O service time of each command in NCQ,

and then first services the command with the shortest I/O service time. It is

analogous to the idea of the Shortest Job First scheme, which minimizes the

average response time by first servicing the process with the shortest CPU burst

time [8]. The I/O service time in hard disks is typically modeled as the sum of seek

time, rotational delay, and data transfer time. However, SSDs have no seek time and

rotational delay, so the I/O service time in SSDs depends only on the data transfer

time. In turn, the data transfer time is proportional to the size of command. Since

the write operation is much slower than the read operation in SSDs, the type should

also be considered for estimating the I/O service time. Finally, we consider if data

belonging to the command resides in the buffer or not. This is because if data

belonging to a command resides in buffer, it can be served from the buffer;

otherwise, it is required to read or write NAND flash memory, and thus it makes

a significant effect on I/O service time.

In order to consider the size, type, and buffer state all together for NCQ

scheduling, we evaluate the I/O service time of each command as follows. First,

since the I/O service time is proportional to the size of command, we can model the

I/O service time of the ith command, TioðiÞ as (1) if we consider only the size.

TioðiÞ ¼ NðiÞ � Tpage ð1Þ
In (1), NðiÞ is the number of pages to be read or written for the ith command and

Tpage is the time taken for reading or writing a page. As the read and write operation

speeds are different, if the type is also considered, (1) can be classified as (2)

according to the type.

TioðiÞ ¼ NðiÞ � Tread; for read ð2Þ
TioðiÞ ¼ NðiÞ � Twrite; for write

In (2), Tread is the time taken for reading a page from NAND flash memory and

Twrite is the time for writing a page to NAND flash memory, respectively.

If data belonging to a command resides in the buffer, it can be serviced from the

buffer instead of NAND flash memory. Generally, SDRAM is used for buffer, and

the access time to SDRAM can be neglected because it is much smaller than the

access time to NAND flash memory. In conclusion, we can model the I/O service

time as the time taken for servicing only the pages missing in buffer. If we

additionally consider the buffer state, (3) can be derived. In (3), NmissðiÞ is the

number of pages missed in buffer for the ith command.

TioðiÞ ¼ NmissðiÞ � Tread; for read ð3Þ
TioðiÞ ¼ NmissðiÞ � Twrite; for write

For write commands, we need to describe the above expression more exactly. In

case of page hit, it is sufficient to update the pages in buffer without any flush

operation, but the missed pages should be newly written to buffer. If there is no

empty buffer, as many pages as NmissðiÞ should be first replaced from buffer in order

to provide empty space for the missed pages. It is an ordinary situation because

there is usually no empty buffer due to the frequent I/O operations. For buffer

replacement, we employ a widely used LRU (Least Recently Used) strategy that

first replaces the least recently used buffer [8].

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

3

IEICE Electronics Express, Vol.12, No.4, 1–6

Since the proposed scheme gives higher priority to the commands with short I/

O service time in order to reduce average response time, the commands with long

I/O service time may experience starvation. To alleviate this problem, we supple-

mented our model with a simple aging scheme. In other words, whenever a

command in NCQ is overtaken by other newly-arrived commands, its I/O service

time can be revised as in (4).

TioðiÞ ¼ �mi � NmissðiÞ � Tread; for read ð4Þ
TioðiÞ ¼ �mi � NmissðiÞ � Twrite; for write

In (4), α is a weight value for aging, and is between 0 and 1. mi is the number of

commands that overtake the ith command while it is waiting in NCQ. Since α is

less than 1, whenever a command in NCQ is overtaken by the newly arrived other

commands, the I/O service time decreases, and thus the starvation will not occur. In

conclusion, when α is close to 0, the proposed scheme will behave like FCFS (First

Come First Served); when α is close to 1, it will be close to (3).

3 Performance evaluations

To demonstrate the effectiveness of the proposed scheme, we implemented a

simulator that emulates the I/O handling in SSDs with SATA interface. Table I

lists SSD parameters used in our experiments. We assume that the SSD has several

flash packages that consist of chips [1]. As each chip can operate independently, I/

O operations are performed in parallel with a clustered unit consisting of several

pages from different chips.

In order to extensively analyze the effect of each consideration: the I/O size,

the I/O type, and the buffer state, we compared several intermediary algorithms. S

considers only the I/O size, SB considers both the I/O size and buffer state, TS

considers both the I/O type and I/O size, and TSB considers them all, which is the

proposed algorithm. For evaluating our scheme in different environments, we

gathered various workloads from IOmeter [9], which are listed in Table II.

Table I. SSD parameters configured.

SSD capacity 64GB

Packages/SSD 8

Chips/package 8

Planes/chip 2

Blocks/plane 2048

Pages/block 64

Page size 4KB

Page read latency 0.02ms

Page write latency 0.2ms

Block erase latency 1.5ms

Queue depth 128

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

4

IEICE Electronics Express, Vol.12, No.4, 1–6

Fig. 2 shows the average response time of several algorithms for different

workloads. In this experiment, α is 0.9, and buffer size is 32MB. As expected, in all

workloads used, the average response time is significantly reduced when I/O size

and buffer state are considered together. If the I/O type is additionally considered,

the average response time of read commands decreases more, but that of write

commands increases. Compared to FCFS, our scheme that considers them all

reduces the average response time of read commands up to 64%, 75%, and 29%

with workload A, B, and C, respectively.

Fig. 3 shows the average response time as a function of buffer size when

workload A is used. Irrespective of buffer size, our scheme shows better perform-

ance than FCFS. In particular, when the buffer size is 32MB, the average response

time of read commands in FCFS is 86ms; it is reduced to 62ms when I/O size is

considered; it is 46ms when both I/O size and buffer state are considered together;

Table II. Characteristics of the workloads used.

Workload A Workload B Workload C

Number of threads 12 12 12

File size 512KB–1GB 512KB–1GB 512KB–1GB

Record size 4KB–512KB 4KB–512KB 4KB–512KB

Avg. inter-arrival time 1.78 1.76 1.08

Read/write ratio 2:1 1:1 2:1

Access pattern random random sequential

(a) Avg. read response time (b) Avg. write response time

Fig. 2. Response time with different workloads.

(a) Avg. read response time (b) Avg. write response time

Fig. 3. Response time as a function of buffer size.

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

5

IEICE Electronics Express, Vol.12, No.4, 1–6

and it becomes 39ms when all considerations are exploited. In this experiment, the

IOPSs of FCFS and TSB are 636 and 638, and the I/O bandwidths of FCFS and

TSB are 65,811KB/s and 65,966KB/s, respectively.

4 Conclusions

In this paper, we presented a novel scheme for NCQ scheduling. Our scheme first

estimates the I/O service time of each command by considering the I/O size, I/O

type, and buffer state, and then first services the command with the shortest I/O

service time. Through extensive experiments, we demonstrated that our NCQ

scheduling is very effective in terms of average response time.

Acknowledgments

This work was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science

and Technology (2012-0001924). This research has been also conducted by the

Research Grant of Kwangwoon University in 2013.

© IEICE 2015
DOI: 10.1587/elex.12.20150066
Received January 20, 2015
Accepted January 21, 2015
Publicized February 3, 2015
Copyedited February 25, 2015

6

IEICE Electronics Express, Vol.12, No.4, 1–6

