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Abstract: This paper presents a high performance sparse matrix-vector

multiplication (SpMV) accelerator on the field-programming gate array

(FPGA). By exploiting a hardware-friendly storage scheme, named as

Variable-Bit-Width Coordinate Block Quasi Compressed Sparse Row, the

redundant computation and memory accesses can be reduced greatly through

the nested block compression and variable-bit-width column-index encoding

schemes. Based on the proposed compression scheme, a deeply-pipelined

SpMV accelerator is implemented on a Xilinx Virtex XC7VX485T FPGA

platform, which can handle sparse matrices with arbitrary size and sparsity

pattern. Experimental results show that the proposed design can gain higher

performance for most of the tested matrices and improve the utilization of the

memory bandwidth up to 13×, compared with the previous works on the

Convey platforms (HC-1 and HC-2ex) and Nvidia Tesla S1070 GPU plat-

form.
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1 Introduction

Sparse matrix-vector multiplication (SpMV) is one of the most essential kernels

in scientific computing, such as sparse linear solvers, image processing, circuit

analysis, and so on. However, as one of the “seven dwarfs” [1], SpMV is notorious

for sustaining low fractions (less than 10% [2]) of the peak performance on the

general purpose processors, mostly due to the inefficient use of the memory

bandwidth. It results from the mismatches between the memory access patterns

and the compression schemes of the sparse matrix.

In recent years, FPGA has become an attractive platform to accelerate SpMV.

The increased on-chip memory capacity can lessen the requirement of the memory

bandwidth. The customizable feature of FPGAs can be used to design the

application-specific memory structures and processing elements to match the

compression schemes, which can increase the utilization of memory bandwidth.

Both factors are essential to improve the performance of SpMV due to the memory-

bound characteristic of SpMV.

There has been a substantial body of works to implement SpMV on FPGAs.

However, lots of the prior works impose many constraints, such as excessive zero-

paddings, word-level index data, and pipeline stall, which degrade the utilization of

the memory bandwidth and degrade the performance of SpMV.

In this paper, a new hardware-friendly compression scheme is proposed to

exploit the bit capacity of FPGA. Based on this scheme, a deeply-pipelined SpMV

accelerator on an Xilinx Virtex XC7VX485T FPGA platform. The main contribu-

tions can be summarized as follows, (1) A hardware-friendly compression scheme,

named as variable-bit-width coordinate block quasi compressed sparse row (VBW-

CBQCSR), is proposed to reduce the redundant computations and memory ac-

cesses by exploiting nested block compression and column indices compression.

(2) Based on the proposed compression scheme, a deeply-pipelined SpMV accel-

erator is implemented on an Xilinx Virtex XC7VX485T FPGA platform, which

exploits the parallelism across multiple rows and the deep pipeline in the computa-

tional units. (3) Compared with the previous works on the Convey platforms (HC-1

and HC-2ex) and Nvidia Tesla S1070 GPU platform, the proposed design can

obtain higher performance for most of tested matrices and improve the utilization of

the memory bandwidth up to 13�.
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The remainder of this paper is organized as follows. Section 2 presents the

background of SpMV and the related works on FPGA. Section 3 is devoted to

detailing the proposed compression scheme. Section 4 illustrates in detail the

deeply-pipelined accelerator of SpMV on FPGA. In Section 5, the performance

is evaluated and compared. Finally, the main conclusion is drawn in Section 6.

2 Background and related work

2.1 Background

Sparse matrix-vector multiplication performs the operation y ¼ Ax, where A is a

large and sparse matrix, and x and y are dense vectors. In order to achieve higher

performance, it is required that designing the proper compression scheme of the

sparse matrix to fully utilize the underlying system architecture. There have been

many compression schemes proposed in the literature, such as Coordinate (COO),

Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), ELLPACK-

ITPACK (ELLPACK), and so on.

For convenience of understanding the VBW-CBQCSR format, the basic storage

formats, COO and CSR, are presented here. Taking the sparse matrix in Fig. 1(a)

for an example, the COO format, as shown in Fig. 1(b), consists of three nnz-items

arrays, val, row and col, where nnz is the number of nonzero elements in the sparse

matrix. The val array stores the nonzero elements in the row-major order, and the

responding row and column indices are stored in the row and col respectively in the

one-to-one way. The CSR format is illustrated in Fig. 1(c), which consists of three

arrays, val, col, and row_ptr. As the COO format, the nonzero elements and

corresponding column indices are stored in the val and col in the row-major order,

respectively. The row_ptr stores the start position of each row in the val and col.

2.2 Related work

There has been a substantial body of works to implement the SpMV on FPGA,

which can be divided into two categories, the novel compression schemes and

pipelined architecture based on the conventional compression schemes.

From the perspective of the novel compression schemes, due to the limited

capacity of the on-chip Block RAM, block is one of the most used ways to

compress the sparse matrices. Given the disposal of the submatrices, the block

scheme can be divided into two groups. In the first group, such as BCSR [3] and

Row Blocked CSR [4], the submatrices are considered as dense matrices, and the

index data is reduced by only recording the indices of the nonzero blocks, instead

of each nonzero element. However, the excessive zero paddings to construct the

dense submatrices degrade the performance. In the second group, the submatrices

are taken as sparse matrices, and compressed with specific scheme to decrease the

Fig. 1. Conventional COO and CSR format
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redundant computation and memory requirement by reducing the zero paddings [5,

6]. However, the overhead of the word-level-encoded index data of each nonzero

element limits the performance improvement. As the works in [7, 8, 9], the

overhead can be reduced by replacing the indices with bitmap, and the indices

are retrieved through the decoding before the computing. However, the perform-

ance of these works is restricted by the idle cycles in the index decoding and the

zero fillings in the bitmap.

The works employing the architecture-specific optimization focus on the design

of pipelined multiply-accumulate units to reduce the computational time. Zhuo,

et al., employ a tree-based multiply accumulate unit and a reduction unit to perform

multiple operations in parallel [10]. However, the structure of the reduction unit

depends on the sparsity pattern and there are a large number of zero paddings to

meet the alignment requirement of the adder tree. The reduction is redesigned in

[4], and exclusively shared among multiple processing elements (PEs), which

results in the pipeline stalls, when more than one partial sum become available

at one clock cycle. A similar design is proposed in [5], which employs the multiple-

input-multiple-output multiply-accumulate unit and a reduction unit to process

multiple rows at one clock cycle, however the serial reduction limits the perform-

ance. Song Sun, et al. make use of the input pattern vector (IPV) and map table to

implement SpMV without pipeline stall and excessive zero-paddings [11], how-

ever, the storage of IPV and map table limits the dimension of the sparse matrix. K.

Nagar, et al. [12] implemented SpMV for large-scale sparse matrices on the

Convey HC-1 with a novel streaming multiply-accumulator and local vector cache.

Further, A hardware multithreaded implementation of SpMV on the Convey HC-

2ex, which makes use of multiple outstanding memory requests to mask the long

latencies and multiple Computation Engines to process multiple rows in parallel

[13]. However, the performance improvement of the above two implementations

mainly depend on the high bandwidth and multiple memory controllers, which are

greatly excessive of other platforms.

3 The proposed VBW-CBQCSR compression scheme

In order to fully utilize the bit capacity of FPGA to improve the performance of

SpMV, a hardware-friendly compression scheme, named as VBW-CBQCSR, is

proposed. The VBW-CBQCSR scheme consists of two parts, CBQCSR and VBW,

which are used to compress the sparse matrix and the column indices of the nonzero

elements, respectively.

As shown in Fig. 2, the CBQCSR scheme partitions the sparse matrix in the 2D

uniform way, and stores the submatrices in a two-level storage format. For the first

level storage scheme, a quasi-COO format is used to store the indices of the

nonzero submatrices. The row and column indices of the submatrices are stored in

array brow and bcol in a row-wise order. The array bval is used to store the start

position of each submatrix in the second level storage scheme.

For the second-level storage scheme, a quasi compressed sparse row (QCSR)

scheme is proposed to reduce the memory access and redundant computation. The

QCSR scheme contains three 1D arrays: val, col and EOR. The values and column
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indices of the nonzero elements are stored in row-wise order in the val array and col

array in a one-to-one manner. Instead of the row_ptr array in the conventional CSR

scheme, the EOR (end-of-row) flags are introduced to mark the termination of each

row of the nonzero submatrices. The EOR flags are stored in the EOR array. When

the value of EOR[i] is one, the corresponding val[i] and col[i] are the last items of

one row. Through the EOR flag, the parallelism across multiple rows can be

exploited to improve the performance.

The main idea of the VBW part is to make use of the variable bit width

encoding scheme to reduce the number of bits required to store the column indices.

Taking the sparse matrix in Fig. 3(a) as an example, the column indices of the

nonzero elements are listed in the row-wise order in Fig. 3(b), where the asterisk �
marks the invalid data and is not stored. Next, the column indices are encoded row-

by-row using the delta encoding scheme (Fig. 3(c)), which only stores increment

relative to the previous column index to reduce the bits required. Instead of storing

the bit-width of each nonzero element, the bit-width is stored column by column to

reduce the memory space. The bit-width of each column is calculated by the

Equation (1) shown in Fig. 3(d), where bj represents the bit width of the j-th

column, and �j represents the maximum value of the delta-encoded index data in

the j-th column. Finally, the delta indices are encoded according to the bit-width

required for each column and compressed into the bit streams by the unit of the

memory bandwidth mem_len. Assuming that the mem_len is 16 and the block size is

1024, the bits required for the column indices is 16 bits, as shown in Fig. 3(e),

compared with the original col array which requires 70 bits.

bj ¼
dlog2 �je �j ≠ 2i

ðlog2 �jÞ þ 1 �j ¼ 2i

(
ði ¼ 0; � � � ; nÞ ð1Þ

Fig. 3. Block-wise variable-bit-width compression scheme

Fig. 2. Structure of CBQCSR format
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4 SpMV accelerator based on the VBW-CBQCSR scheme

4.1 Overall architecture of the SpMV accelerator

Based on the proposed VBW-CBQCSR scheme, a deeply-pipelined SpMV accel-

erator is implemented on a self-designed FPGA platform with one Xilinx Virtex-7

FPGA and three external DRAM Memory modules, as shown in Fig. 4. The sparse

matrix and vector x are all stored in the external DRAM Memory modules. The

processing elements (PE[1],…, PE[n]) access the data through the Customized

Memory Interface and execute the SpMVon different block rows in parallel. When

the computation of one block row is finished, the results of the vector y are written

back to the external DRAM Memory modules.

Each PE contains four main components, Column Index Decoder, Frontend

MulAdder, Reduction and Backend Adder. The Column Index Decoder module

retrieves k column indices in parallel, which are used to access the data of the

vector x. The k pairs of x[i] and val[i] are multiplied and accumulated by the

Frontend MulAdder module without the limitation of the same row, as the approach

in [5]. The partial sums with pre EOR½k� ¼ 0 are fed into the Reduction module,

where pre_EOR[k] stands for the EOR flag of the last k-th partial sum. The

Reduction module accumulates the partial sums of the same row as the approach

in [5]. Others can be directly fed into the Backend Adder module. The Backend

Adder module adopts a multi-bank architecture to accumulate the partial sums of

the block being processed with the partial sums out of the same rows in the

previous blocks in parallel. After the computation of one block row is finished, the

results of the vector y are written back to the external DRAM Memory modules.

4.2 Structure of the Column-Index Decoder

As shown in Fig. 5(a), the Column-Index Decoder module mainly consists of the

CIS RAM and k index decoders (Dec[1],…, Dec[k]), where the CIS RAM is used to

store the compressed index streams and the k index decoders are used to perform

the on-the-fly decoding of the column indices in parallel.

The proceeding of index decoding is shown in Fig. 5(b). Initially, the com-

pressed index streams of address 0 and 1 are written into two registers, cstr0 and

cstr1. The bit width b, required for the nonzero column index, is read from the bw

Fig. 4. Overall structure of SpMV accelerator
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RAM. When b is less than the number of remaining bits (rb) in the compressed

stream cs0, the sel signal is true and the cstr0 is shifted left by b bits. The most

significant l bits are extracted from the shifted cstr0 by the shifted mask data to gain

the delta result. Otherwise, the cstr0 is shifted by rb bits, and the most significant l

bits are selected by the shifted mask data. Then the cstr1 is shifted left by (l-rb) bits,

and the shifted result is combined with the one gained from the cstr0 to obtain the

delta result. Finally, the column index col is gained by the addition with the

previous column index col[i-1]. When the sel is true, the shifted cs0 is fed back into

the cstr0 and the cs1 remains unchanged. Otherwise the shifted cs1 is fed back into

the cstr0 and the compressed index stream in the next address is read into the cstr1.

4.3 Structure of the backend adder module

When the k nonzero inputs are not from the same row, there will be more than one

partial sum generated at one clock cycle. Due to blocking, these partial sums need

to be accumulated with the partial sums out of the previous nonzero submatrices of

the same row, which are stored in the Block RAM (BRAM) on chip. Due to only up

to two read/write ports with one BRAM, there may exist port conflicts to deal with

the accumulations at one clock cycle.

In order to deal with the port conflicts, a k-bank linearly-addressed memory

structure is adopted in the accelerator. For the sake of simplicity, Bank0 is chosen

as an example to illustrate the structure shown in Fig. 6. Bank0 consists of a

buffer buf, an pipelined adder, y RAM and some multiplexers. The partial sums

(S1; . . . ; Sk), of which the least significant log2 k bits are all zeros, are fed into the

Bank0. The partial sum with the lowest row index is fed to the pipelined adder with

the previous partial sum read from the y RAM according to the row address r. The

result is written back into the y RAM in the same address r. The left partial sums, if

exist, are written into buf. When there are no new inputs, the elements in buf are

proceeded in the same way according to the row index. The processing of the left

banks is the same.

Fig. 5. Structure of the Column-Index Decoder

Fig. 6. Structure of the accBlock module
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5 Experimental result

5.1 Synthesis results

For the performance evaluation and comparison, the SpMV accelerator is imple-

mented on an Xilinx Virtex-7 XC7VX485T FPGA platform. The design is describ-

ed in RTL with Verilog HDL and synthesized with ISE 14.2. Our design is

determined by several parameters, i.e., the block size b, the number of PE n, the

number of the frontend multipliers k, and the pipeline depth of the floating point

adder h. In our experiment, b ¼ 1024, n ¼ 3, k ¼ 8, and h ¼ 8. The synthesis

results reported by the Xilinx ISE are given in Table I. The maximum frequency of

about 150MHz can be achieved.

5.2 Benchmark matrices

The experiments are conducted on sparse matrices out of the University of Florida

Sparse Matrix Collection [14]. As listed in Table II, these matrices are from

different applications with different characteristics.

5.3 Comparison of the column index overhead

Table III shows the space saving (in percentage) of the index data in the VBW-

CBQCSR scheme, compared to the conventional CSR scheme. It can be seen that

the space saving ranges from 67.9% to 84.2%, with an average 74.5%, which

mainly results from the nested block scheme and the block-wise variable-bit-width

delta encoding scheme.

Table I. Synthesis results of the proposed SpMV accelerator

Resource LUT Register DSP48E BRAMs Freq (MHz)

Occupy 182157 248952 144 594
151.66

Ratio 60% 41% 5% 58%

Table II. Characteristics of the benchmark matrices

No. Matrix Application Domain Dimension non-zeros

1 dw8192 Electromagnetic 8,192 41,746

2 epb1 Thermal 14,734 95,053

3 raefsky1 Fluid Dynamics 3,242 293,409

4 psmigr_2 Economics 3,140 540,022

5 torso2 2D models of a torso 115,967 1,033,473

6 mac_econ_ fwd500 Macroeconomic 206,500 1,273,389

7 cop20k_A Accelerator cavity 121,192 1,362,087

8 cant FEM cantilever 62,451 2,034,917

9 mc2depi Markov 525,825 2,100,225

10 pdb1HYS 1HYS Protein Bank 36,417 2,190,591

11 consph FEM spheres 83,334 3,046,907
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5.4 Performance comparison

As shown in Fig. 7, the proposed accelerator can obtain higher performance for

most of the test matrices, compared with the implementations on the Convey HC-

2ex platform with four Virtex-6 LX760 FPGAs [13], HC-1 [12] and Tesla S1070

[7]. With the number of the nonzero block in one block row and the density of one

increasing, the performance improvement can be higher. The performance drop for

some matrices mainly results from the frequent accesses to the off-chip memory for

vector x due to block.

Because of the memory-bound characteristic of SpMV, it is unfair that the pure

comparison of the performance alone on different platforms with vastly different

memory bandwidth (80GB/s on Convey platforms, 102GB/s on Tesla S1070, and

38.4GB/s on our platform). A much fairer metric is the utilization of the memory

bandwidth, which captures the overall efficiency of the accelerator. The ratio

utilization is calculated as R ¼ Perf
PB � 100%, where Perf represents the computation

performance measured in GFlops, and PB refers to the peak memory bandwidth.

As shown in Fig. 8, the utilization of the memory bandwidth can be improved

for the tested matrices, ranging from 2.4% to 15.6%. This mainly results from the

block-based nested compression scheme and variable-bit-width column-index

compression scheme, which can significantly reduce the memory access require-

ment and redundant computation. Furthermore, the proposed accelerator can

process multiple elements from different rows in parallel, which can reduce the

excessive zero-padding and increase the parallelism further.

Table III. Space saving achieved in VBW-CBQCSR format

No. Matrix saving (%) No. Matrix saving (%)

1 dw8192 73.2 7 cop20k_A 73.9

2 epb1 72.7 8 cant 76.7

3 raefsky1 77.2 9 mc2depi 70.5

4 psmigr_2 71.9 10 pdb1HYS 84.2

5 torso2 78.5 11 consph 81.2

6 mac_econ_fwd500 67.9

Fig. 7. Performance comparison on different platforms
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6 Conclusion

This paper presents a deeply-pipelined SpMV accelerator on FPGA using a

hardware-friendly compression scheme. By employing nested block compression

and variable-bit-width column index compression, the compression scheme can

greatly reduce the redundant computation and memory accesses. Based on this

scheme, a SpMV accelerator is implemented on an Xilinx Virtex XC7VX485T

FPGA platform, which can handle sparse matrices with arbitrary size and sparsity

pattern. The accelerator can exploit the parallelism across multiple rows to improve

the performance. Experimental results show that the proposed design can obtain

higher performance for most of the tested matrices, and improve the utilization of

the memory bandwidth up to 13:0�, compared with the previous works imple-

mented on the Convey platforms and Tesla S1070 GPU platform.
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Fig. 8. Comparison of memory bandwidth utilization
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