
Bitmap discard operation for
the higher utilization of flash
memory storage

Seung-Ho Lim1a) and Woo Hyun Ahn2b)
1 Division of Computer and Electronic Systems Engineering, Hankuk University of

Foreign Studies, 89 Wangsan-ri, Mohyeon-Myeon, Yongin-si, Korea
2 Department of Computer Science, Kwangwoon University,

447–1 Wolgye-Dong, Nowon-Gu, Seoul, Korea

a) slim@hufs.ac.kr

b) whahn@kw.ac.kr, Corresponding Author

Abstract: NAND Flash memory storage is widely used in computing

systems. In General, there exists mismatch between logical address and

physical address in Flash storage, and these address translations are managed

by Flash Translation Layer (FTL). Due to its management, logically invalid

data is considered as physically valid at some parts in Flash device, which

causes additional overhead. The physically valid area being logically invalid

area can be invalidated by TRIM or discard command, however, too many

discard commands degrade throughput. In this paper, we propose a bitmap-

based discard operation which can decrease the number of runtime discard

commands. According to the proposed scheme, hundreds of separated region

can be discarded all at one bitmap-based discard command.

Keywords: NAND Flash, FTL, discard, bitmap

Classification: Storage technology

References

[1] A. Ban: U.S. Patent 5,937,425 (1997).
[2] F. Shu and N. Obr: Data set management commands proposal for ATA/ATAPI

Command Set-3. T13 Technical Committee, United States: At Attachment
(2013).

[3] A. Mathur, M. Cao and S. Bhattacharya: Proc. of the Linux Symposium (2007)
21.

[4] S.-H. Lim: IEICE Electron. Express 10 (2013) 20130339. DOI:10.1587/elex.
10.20130339

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse and R.
Panigraphy: USENIX ATC (2008) 57.

[6] M. Saxena and M. M. Swift: USENIX ATC (2010) 187.
[7] J. Kim, H. Kim, S. Lee and Y. Won: Intl. Workshop on SSPS (2010) 7.
[8] C. Hyun, J. Choi, D. Lee and S. H. Noh: ACM SOSP (2011) 11.16.
[9] N. Jeremic, G. Muhl, A. Busse and J. Richling: ACM SAC (2012) 1753.

[10] H. Son, Y. Lee, Y. Kim and J.-S. Kim: KIISE TCP 10 (2015) 52.
[11] Memory Technology Devices, Memory Technology Device Overview (2012)

http://www.linux-mtd.infradead.org/.
© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

1

LETTER IEICE Electronics Express, Vol.13, No.2, 1–10

http://dx.doi.org/10.1587/elex.10.20130339
http://dx.doi.org/10.1587/elex.10.20130339
http://dx.doi.org/10.1587/elex.10.20130339
http://dx.doi.org/10.1587/elex.10.20130339
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

[12] Samsung Electronics: Nand flash-memory datasheet (2011) http://www.
datasheetcatalog.com/samsungelectronic/41/.

[13] J. Katcher: PostMark: A New File System Benchmark, Technical Report
TR3022, Network Appliance Inc., Oct. (1997).

1 Introduction

NAND Flash-based devices, such as Solid State Drives (SSDs) and embedded

Multi-Media Controller (eMMC) cards, have reached the mainstream in storage

solutions. Inside the Flash device, due to its physical limitations, there is additional

internal overhead, such as mapping management between logical address and

physical address and Garbage Collection (GC). The Flash Translation Layer

(FTL) [1] is in charge of managing these issues. FTL is key software layer for

NAND flash memory, and most of NAND flash devices include FTL inside their

devices.

FTL provides logical address to host system and hides physical address,

whereas, host system has no idea about the real physical location of data. At

the view of Flash memory, some areas within it are considered as valid even if the

areas do not contain valid data any more. Even the host system thought that a data

is considered as invalid, FTL recognize the data is being valid. For instance, when a

file is deleted, file system deletes it by just deleting the metadata of the file, leaving

data area of the file alive. In this case, the data is considered as valid within flash

memory until the region is rewritten by file system. The physical area of logically

invalidated area can be invalidated by TRIM or discard command [2]. However, the

problem is that the discard command itself is another kind of overhead at the aspect

of IO subsystem and device driver, since the command also occupies bandwidth,

as well as it is sync operation. For instance in real systems, if Ext4 file system

[3] is set to support discard operation in Linux, a lot of discard commands are

generated between ongoing read and write requests, which, in turn, degrade

bandwidth at that moment.

In this paper, we propose a bitmap-based discard operation for higher NAND

flash storage utilization by reducing the number of runtime discard commands. In

the bitmap-based scheme, the discarded area is represented as a bitmap. In the

bitmap, one bit represents one page in the Flash storage, which is similar to data

bitmap in Ext4 file system layout. The advantages of bitmap-based scheme are

two; the first is that it can reduce discard commands dramatically by using bitmap

information. The second is that several distant discard regions can be invalidated

with one discard command. According to the proposed scheme, hundreds of

separated region can be discarded all at one discard command.

2 Background

In this section, the background information for Flash memory is described, and the

standard command structure of ATA TRIM command, i.e., discard command is

explained.
© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

2

IEICE Electronics Express, Vol.13, No.2, 1–10

http://www.datasheetcatalog.com/samsungelectronic/41/
http://www.datasheetcatalog.com/samsungelectronic/41/
http://www.datasheetcatalog.com/samsungelectronic/41/

NAND flash memory is array of memory cells, and the bundle of memory cells

called Page is the unit of read or program (write). Likewise, bundle of several pages

called Block is the unit of erase. The read and program command are related with

data transfer between host and Flash device, while, the erase command has no data

transfer between host and Flash device. Typically, the size of one Page is 4KB and

doubles as manufacturing process advances and a Block is composed of 64 or 128

Pages. The erase operation for each cell should be preceded by program operation.

The role of FTL is address translation between logical address of file system and

physical address of flash memory itself. FTL performs out-of-place updates which

in turn help to hide the erase operation. If the number of free pages is insufficient

for write operations, free pages should be made by GC, where GC is the process

that makes available free region by selecting one block, moving data of valid pages

to other region, and erasing the block. GC makes available free region for later

write requests. During GC operation, valid data should be copied from victim block

to available other region. The GC efficiency is getting higher as the number of

data to be copied is getting smaller. The detailed management of FTL is described

in [4].

According to the specification of recently released ATA 13 [2], discard

command consists of requests of invalided logical region specified by LBA and

range, which means that the logical region from LBA to (LBA+range) is requested
to be invalidated so the requested area can be deleted physically. According to the

specification, one or more (LBA+range) discarded range can be aggregated in one

discard command, as shown in the Fig. 1. Typically one sector-command can have

up to 64 discard regions. When the discard command is transferred from host to

flash device, FTL updates its mapping table with the address received from host.

The procedure of invalidation for the requested region within FTL is as follows. At

first, FTL finds its logical addresses ranging from LBA to (LBA+range), and sets

the corresponding physical address of the requested logical address as invalid, i.e.,

0xFFFFFFFF for example.

Although the number of entries to be invalidated for one discard command can

be more than one, as the specification notes, the aggregation of the regions would

not be properly done as just that the specification ordered in real system imple-

mentation such as Linux device driver, which is maybe from the command

generation and timing issues between file system operations and block layer

operations, as well as the notation format of discard region. For example, if there

are a lot of distinct discard regions having single block, is makes many entries of

discard command. It in turn generates many discard commands. Moreover, discard

Fig. 1. The legacy discard command operations.

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

3

IEICE Electronics Express, Vol.13, No.2, 1–10

command itself is sync operation, so it gives more overhead of ongoing data

transfer commands. The bitmap-based discard region expression is suitable for

aggregation of distinct discard regions, so the discard command format is re-

designed as a bitmap manner in this paper to aggregate distinct discard regions

efficiently. Although there are several previous works for TRIM technique to

support operating system levels or flash device levels [6, 7, 8, 9, 10], there were

little work for re-designing TRIM, i.e., discard, request format for higher discard

usage. The proposed bitmap-based discard command scheme is enhanced version

of original discard command specification in the aspect of how to aggregate the

dispersed discard regions.

3 Bitmap-based discard management

To reduce generating discard commands during run-time, we consider bitmap-

based expression for the discarded region and transferring the discard-bitmap

information within discard commands. The overall bitmap-based discard manage-

ment is described in Fig. 2. To show its feasibility, the bitmap-discard management

system is designed with the Ext4 file system [3], however, other file systems also

can be applied similarly, since key point is how to generate discard bitmap

information to aggregate the dispersed discard regions.

When Ext4 file system is formatted, the layout of file system is divided by

several groups according to the capacity of the file system, and each group has

layout shown in the Fig. 2. In the Ext4 file system group layout, there exists bitmap

information for data block used, called Data Bitmap. In the Data bitmap, one bit is

set to 1 when the corresponding data block is used, or vice versa. For simple

description, let us assume that a file system block is match with a Flash memory

page. The data bitmap can be used for discarding of the unused blocks, i.e., page,

with opposite values, which means that every unused block in the file system can be

invalidated in Flash devices. Thus, in the bitmap-based discard system, we generate

discard information called discard bitmap with opposite values of data bitmap. For

each file system group, there exist one discard bitmap in corresponding with one

data bitmap. Thus, if the size of discard bitmap is 4KB, it represents 32768 pages

Fig. 2. Discard bitmap structure and its management.

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

4

IEICE Electronics Express, Vol.13, No.2, 1–10

to be checked as discarded or not. Ideally, maximum 32768 logical pages can be

invalidated with one discard command, and hundreds of dispersed discarded

regions can be aggregated in one discard bitmap in average.

The discard bitmap information is managed by Discard_Bitmap_Info structure,

which contains the GroupNumber, NumberofUnusedBit, Prev, and Next pointer.

The GroupNumber and NumberofUnusedBit represent group number of the discard

bitmap and number of unused blocks in this group, respectively. The Prev and

Next pointers are used for linked list management of Discard_Bitmap_Info. When a

file is deleted, the corresponding blocks is cleared in data bitmap. Likewise, the

corresponding bit is set to 1 in discard bitmap and the corresponding Discard_Bit-

map_Info is updated. If the group is set to have checked bits, the Discard_Bit-

map_Info is added at the end of the linked list of existing Discard_Bitmap_Info list.

The linked list maintains possible discard bitmaps for discard command operations.

In general in Ext4, discarded regions are generated after a file is deleted, and these

regions are sent to flash device during the Ext4 journal commit operation as bitmap-

discard commands. During the journal commit operation, discard bitmap informa-

tion having discard regions is made to discard command and issued to lower layer.

When discard command is issued, the discard bitmap information is encapsulation

in the command and transferred from host to Flash device. Since the current

targeted discard bitmap is pointed by CurDiscardTargetGroup, the CurDiscard-

Fig. 3. Bitmap-based discard command transfer and invalidation of the
discard area in FTL.

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

5

IEICE Electronics Express, Vol.13, No.2, 1–10

TargetGroup points to next discard_bitmap_Info in the linked list, which will be

transferred in next round of discard command after the current targeted discard

bitmap is transferred.

The bitmap-based discard command transferring and the related invalidation for

the requested discard region within Flash device is described in Fig. 3. As shown

in the figure, the bitmap-based discard command contains payload data which

represents discard bitmap and its starting logical address. When flash device

receives the command having payload data, it does invalidation jobs with the

requested invalidation data. The invalidation procedure mainly can be done by only

updating the mapping table of FTL within Flash device otherwise command has

additional issue indicated. Since almost Flash device manages FTL’s mapping table

in DRAM memory inside it, the invalidation of discard region can be done by just

memory operations within the Flash device, but is not related with Flash operations

such as reading, programming or erasing some pages or blocks. Thus, for almost

all discard commands, FTL just invalidates by setting invalid mark, such as

0xFFFFFFFF, to the map of requested region, which reside in main memory.

Updating the mapping table may differ from FTLs since FTLs have different

mapping management algorithm each other. However, main theme is similar, so the

invalidation scheme can be applied in similar manner. In our system, we consider

FTL having page-level mapping table management [4], since our implementation is

based on page-level mapping management FTL. Generally, mapping table for page-

level FTL is a large index-based table, where each entry of the table represents

physical address of the corresponding logical address. For instance, if the size of

page is 4KB, each entry of the mapping table indicates 4KB physical page of

corresponding logical address. Therefore the mapping table can be described at the

right bottom in the Fig. 3, in which each entry of the mapping table contains

physical address of the corresponding logical index value. With this mapping table,

the invalidating algorithm is as follows. FTL identifies discarded logical address

along with the LBA offset and discard bitmap information by checking bit by bit

value. In the discard-bitmap information, one bit represents one logical page

address, so if a bit is checked, i.e., set to 1, the corresponding logical address is

willing to be invalidated by the host. If a bit is set to 1, FTL finds the table entry

with the logical address, and updates its entry values as invalid by setting

0xFFFFFFFF. As shown in the Fig. 3, the logical address in the page-level

mapping table is invalidated for each set bit. If we look into the discard bitmap

information in the figure, the first LBA range from bit 2 to bit 5 is requested to be

Table I. File systems’ IO configurations with Postmark

Conf. 1 Conf. 2 Conf. 3 Conf. 4

Base files 10000 10000 5000 2000

of Transactions 1000000 200000 10000 20000

File Size 10KB–50KB 50K–100KB 100KB–512KB 512KB–1MB

User Block Size Read = 512 bytes, Write = 512 bytes

Biases Read/Append = 5, Create/Delete = 5

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

6

IEICE Electronics Express, Vol.13, No.2, 1–10

invalid, so the corresponding table entries are invalid by setting invalidation value.

The next three bits are not requested, so the next three table entries are not

invalidated. After that, next five consecutive LBA range is requested to be invalid,

so the corresponding table entries are set to be invalidated, and so on. As a result,

the invalidated physical regions are considered as that these do not have valid data,

so these areas will be used for possible free area at later use. Also, the area will not

be copied as valid during GC.

4 Evaluation

The bitmap-based discard management scheme is simulated in Flash device

simulator with FTL and NAND simulated device driver in Linux MTD layer

[11]. For the evaluation, we have setup simulation environment with simple

embedded system evaluation board with NAND simulator whose physical charac-

teristics is referenced from Samsung datasheet [12]. We have compared the impact

of bitmap discard operations with legacy discard command and non-discard system

by generating file system IO operations with create/read/write/delete, as IO

request distribution varies with Postmark benchmark [13], which is used for 4

different configurations, as described in Table I. In the workload generation, the file

size increases and number of IOs decreases, as number of configuration increases.

The ranges of file size and number of IOs can represent web or email server,

documentation, common works, and multimedia workloads, for conf. 1, 2, 3, and 4,

respectively.

For each benchmark configuration, we have three types of experiments with

regards to no discard, legacy discard commands, and bitmap discard commands.

The no discard means discard commands are not used, and the legacy discard

means discard commands are generated as aggregated manner up to 64, as indicated

in the specification. The bitmap discard is the scheme proposed in this paper.

During the experiments, flash internal performance metrics such as GC count, the

number of page copies per GC, and write amplification are estimated, and the

results are depicted in Fig. 4. The GC count and the number of page copies per

GC are the meaning as the names represent, and write amplification represents the

ratio between the amount of logical writes and physical writes, which implies how

much the internal overhead is generated.

At first, the number of GC occurred during benchmark tracing is dramatically

reduced when for both legacy discard and discard bitmap commands are used, as

shown in Fig. 4(a). It implies that discard command itself makes more free flash

blocks at running time than no discard, by invalidating many of whole the blocks.

For the number of page copies per GC, we can identify that no discard gives best

result than others. It seems like discard commands give more overhead than no

discard for this metric. However, it is the result as we expected to have more page

copies overhead for discard commands. Since GC is rarely occurred for both of

legacy discard and bitmap discard, these may have more possibilities to have more

valid pages than no discard when GC is performed. Although the number of valid

page copies per GC is larger, overall valid page copies during system runtime is

less for discard commands, which can be identified by result for write amplification.

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

7

IEICE Electronics Express, Vol.13, No.2, 1–10

Since write amplification represents internal overhead factor by showing the ratio

between the amount of host’s logical request and the amount of internal writes, it is

better to give lower value. As shown in the Fig. 4(c), discard command schemes

give lower write amplification than no discard, which means discard command

schemes give lower internal overhead than no discard.

If we compare two discard schemes for the metrics of the number of valid page

copies per GC and write amplification, these give similar results. It is also

reasonable results as we expected. Since the overall requested discard ranges from

benchmarks might be similar for both discard schemes with the same benchmark

traces, so the invaliding regions within Flash device are similar. Among the results,

the bitmap-based discard scheme has slightly worse than that of legacy discard

scheme for write amplification factor, even though it is depreciable difference. In

our opinion, the results are from the differences for the amount of invalid area per

discard command and some timing issues. That is, the bitmap discard has larger

discarded regions than legacy discard for each discard command, however, there is

some timing issue for generating discard command and transferring from host to

Flash device. In order to include more discard regions in one command for the

bitmap-based discard scheme, it is required more gap between commands than that

of legacy scheme. As a result, write amplification factor would decrease. However,

the decrease is so much since timing delay is so much to give critical to give crucial

degrading of write amplification.

To show the advantages of bitmap discard over legacy discard, we counted the

number of discard commands during benchmark tracing. The number of discard

commands generated during each configuration of benchmark is depicted in Fig. 5.

Also, the estimated number of discard blocks, average number of discard ranges

per discard command, and average number of discard blocks per command are

summarized in Table II. As shown in the figure, the bitmap discard scheme could

reduce the generation of discard commands largely for Conf. 1 and 2 of Postmark

benchmark traces, and the discard commands are also reduced for Conf. 3 about

half, while bitmap discard generated slightly more commands than legacy discard

for Conf. 4. Since there are a lot of dense file operations for small and mid-sized

file operations, the bitmap discard can aggregate dispersed discard regions much

greatly than legacy discard, which results in much reduced discard commands

generation as shown in the figure for Conf. 1, 2, and 3. On the contrary, as the

discard range for each discarded region increase, the ability of aggregation for

bitmap discard is getting lower, which results in more command generations,

however the gap between these two is not significant and tolerable in comparison

(a) # of Garbage Collection (b) # of Copies per GC (c) Write Amplification

Fig. 4. Flash internal performance metrics and results

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

8

IEICE Electronics Express, Vol.13, No.2, 1–10

with the great reduction of former results. As s summary, bitmap discard can

aggregate more dispersed discard regions than legacy discard, which would re-

sult in throughput increase. Although the overall throughput for normal read and

write operations are not experimented, we could guess that the throughput increase

in proportional to decrease of the number of ongoing discard commands. For

the future work, the throughput gains with bitmap-discard command will be

investigated.

5 Conclusions

When NAND Flash memory is used for storage device, there is mismatch between

logical address and physical address, even at some situation, logically invalid data

is considered as physically valid in Flash device. The physical valid area and

logical invalid area can be invalidated by TRIM or discard command, however, too

many discard command itself degrades write throughput. We propose a bitmap-

based discard operation for higher NAND flash storage utilization, which can

decrease the number of runtime discard commands. In the bitmap-based scheme,

the discarded area is represented as a bitmap and transferred via discard command

by modifying the interface specification so that it could aggregate a lot of LBA

Range Entries to one command. Thus, one discard command can invalid a lot

of scattered discarded region. At the experimental results, we showed that the

Table II. The estimated number of discard blocks, average number of
discard ranges per discard command, and average number of
discard blocks per command are summarized.

Total # of Dis.
Blocks

Avg. # of Dis.
Ranges per Cmd.

Avg. # of Dis.
Blocks per Cmd.

Legacy Bitmap Legacy Bitmap Legacy Bitmap

Conf. 1 385507 364710 64 322 2254 10727

Conf. 2 1429324 1433431 64 347 2320 12625

Conf. 3 3202362 3227040 64 102 6202 9966

Conf. 4 1985790 1940750 64 49 9379 6971

Fig. 5. The estimated number of discard commands comparison
between legacy discard and bitmap discard during each
Postmark benchmark trace.

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

9

IEICE Electronics Express, Vol.13, No.2, 1–10

proposed bitmap-based discard operations could decrease the number of ongoing

discard commands over the legacy discard command operation. The throughput

gains with bitmap-discard command will be investigated for the further work.

Acknowledgments

This research was supported by Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of Science,

ICT & Future Planning (No. 2015R1A5A7036384).

© IEICE 2016
DOI: 10.1587/elex.12.20150976
Received November 17, 2015
Accepted December 8, 2015
Publicized December 22, 2015
Copyedited January 25, 2016

10

IEICE Electronics Express, Vol.13, No.2, 1–10

