
Clustering data according to
update frequency to reduce
garbage-collection overhead
in solid-state drives

Jaehyun Kim and Ilhoon Shina)

Department of Electronic Engineering, Seoul National University of Science &

Technology, Gongleung-Dong, Nowon-Gu, Seoul, 139–744, South Korea

a) ilhoon.shin@snut.ac.kr

Abstract: Garbage collection, which entails multiple page copies and a

block erase, is a major source of performance fluctuation and degradation

for NAND flash memory-based solid-state drives. This work aims to reduce

its overhead by generating a skewed distribution of valid pages over all the

blocks. Therefore, we propose classifying data as hot, warm, or cold

according to their update frequencies, and to cluster them into different

blocks. Our performance evaluation shows that the proposed scheme reduces

the total garbage-collection count up to 43.4%, compared to the original

page-mapping scheme, for an average performance improvement of up to

34.5% without any additional memory overhead.

Keywords: flash translation layer, NAND flash memory, garbage collec-

tion, hot/cold, update frequency

Classification: Storage technology

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse and R.
Panigrahy: Proc. of USENIX Annual Technical Conference (2008) 57.

[2] A. Kawaguchi, S. Nishioka and H. Motoda: Proc. of USENIX Annual
Technical Conference (1995) 155.

[3] A. Ban: United States Patent, No. 5,404,485 (1995).
[4] A. Ban: United States Patent, No. 5,937,425 (1999).
[5] J. Kim, J. M. Kim, S. Noh, S. L. Min and Y. Cho: IEEE Trans. Consum.

Electron. 48 (2002) 366. DOI:10.1109/TCE.2002.1010143
[6] S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. W. Park and H. J. Song: ACM

Trans. Embed. Comput. Syst. 6 (2007) 18. DOI:10.1145/1275986.1275990
[7] I. Shin and Y. Shin: IEICE Electron. Express 11 (2014) 20130942. DOI:

10.1587/elex.10.20130942
[8] I. Shin: IEICE Trans. Inf. & Syst. E97-D (2014) 2844. DOI:10.1587/transinf.

2014EDP7075
[9] I. Shin: IEEE Trans. Consum. Electron. 57 (2011) 1728. DOI:10.1109/TCE.

2011.6131147
[10] T. Jung, Y. Lee, J. Woo and I. Shin: Lecture Notes in Electrical Engineering

279 (2014) 141. DOI:10.1007/978-3-642-41674-3_21© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

1

LETTER IEICE Electronics Express, Vol.13, No.1, 1–8

http://dx.doi.org/10.1109/TCE.2002.1010143
http://dx.doi.org/10.1109/TCE.2002.1010143
http://dx.doi.org/10.1109/TCE.2002.1010143
http://dx.doi.org/10.1109/TCE.2002.1010143
http://dx.doi.org/10.1145/1275986.1275990
http://dx.doi.org/10.1145/1275986.1275990
http://dx.doi.org/10.1145/1275986.1275990
http://dx.doi.org/10.1587/elex.10.20130942
http://dx.doi.org/10.1587/elex.10.20130942
http://dx.doi.org/10.1587/elex.10.20130942
http://dx.doi.org/10.1587/elex.10.20130942
http://dx.doi.org/10.1587/elex.10.20130942
http://dx.doi.org/10.1587/transinf.2014EDP7075
http://dx.doi.org/10.1587/transinf.2014EDP7075
http://dx.doi.org/10.1587/transinf.2014EDP7075
http://dx.doi.org/10.1109/TCE.2011.6131147
http://dx.doi.org/10.1109/TCE.2011.6131147
http://dx.doi.org/10.1109/TCE.2011.6131147
http://dx.doi.org/10.1109/TCE.2011.6131147
http://dx.doi.org/10.1007/978-3-642-41674-3_21
http://dx.doi.org/10.1007/978-3-642-41674-3_21
http://dx.doi.org/10.1007/978-3-642-41674-3_21


[11] The OpenSSD Project: http://www.openssd-project.org/wiki/The_OpenSSD_
Project.

1 Introduction

Solid-state drives (SSDs) that use NAND flash memory as storage media have

advantages, such as high I/O operations per second (IOPS) and low energy

consumption, compared to hard-disk drives (HDDs). Thus, they are replacing

HDDs in various computing environments, including transaction-processing sys-

tems and laptop computers [1].

Although NAND flash memory is similar to an HDD in that both of them are

non-volatile media, it has several unique characteristics. First, it is an electrically

programmable/erasable read-only memory that does not support an overwrite

operation. Once a cell is written, it cannot be re-written without first being erased.

Second, an erase unit is larger than a read/write unit. NAND flash memory consists

of multiple blocks that are an erase unit; a block consists of multiple pages that are

a read/write unit. Due to these unique features, traditional file systems that are

designed for HDDs do not work correctly on NAND flash memory. Thus, SSDs

employ intermediate firmware called the flash-translation layer (FTL) inside the

devices. The main role of the FTL is to export NAND flash memory like a standard

block device that consists of multiple sectors and supports the overwrite operation.

The FTL emulates the overwrite operation with an out-of-place update. On a

write request, it searches for clean pages and writes data to them. Thus, the location

of valid data changes on every write request; the FTL tracks the current location of

each logical address with a mapping table. According to the mapping granularity

between a logical address and its physical address, the FTL is classified as page

mapping [1, 2, 3], block mapping [4], and hybrid mapping [5, 6, 7, 8]. The page-

mapping FTL uses NAND pages as a mapping unit and delivers better performance

than the other schemes. The weakness is large memory consumption owing to the

small mapping unit. Thus, high-end SSDs that have a large amount of memory and

require high performance generally employ the page-mapping FTL [1]. This work

also focuses on the page-mapping scheme.

In the page-mapping FTL, write requests are served by finding clean pages and

writing data to the found pages. Thus, the response time is quite short, as long as

sufficient clean pages exist. However, if clean pages are lacking, we need to

perform a garbage collection to reclaim the clean pages. First, we select a victim

block and copy the valid pages from the victim block to an extra clean block. Then,

the victim block is erased and changed to a new extra block. The previous extra

block becomes a new working block to serve write requests. This garbage

collection is a major source of performance fluctuation and degradation because

it entails a costly block erase and multiple page copies. Reducing its overhead is

critical to improving the overall performance of SSDs.

To reduce the garbage-collection latency, we use the greedy scheme [2], which

selects the most invalidated block as the victim. For example, if the victim block is

fully invalidated, the garbage-collection latency is the same as the block erase

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

2

IEICE Electronics Express, Vol.13, No.1, 1–8

http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project
http://www.openssd-project.org/wiki/The_OpenSSD_Project


latency, because copying valid pages is unnecessary. Choosing the most invalidated

block is also effective for reducing the garbage-collection frequency, because the

number of reclaimed clean pages is inversely proportional to the number of valid

pages in the victim block. However, if the valid pages are evenly distributed among

the blocks, the advantage of the greedy scheme is restricted.

To maximize the effect of the greedy scheme and reduce the garbage-collection

overhead, the proposed scheme uses multiple working blocks to cluster hot data,

warm data, and cold data. The remainder of our paper proceeds as follows.

Section 2 discusses previous work. Section 3 presents our proposed algorithm

and Section 4 evaluates its performance. Section 5 presents our conclusions.

2 Related work

Previous studies to skew the invalidation ratio have tried to separate rarely updated

data from the others [9, 10]. The hot/cold clustering scheme regards the valid data

of the victim block as cold data, because they have not been updated for a long time

[9]. To separate these cold data from the others, two working blocks—a hot block

and a cold block—are used. The hot block accommodates data from write requests,

and the valid data of the victim block are moved to the cold block, instead of the

extra block during the garbage collection. Thus, the cold data are separated from the

others. This method delivers better performance than the original page-mapping

scheme. However, it is limited in that the write request data are mixed in the hot

block regardless of their update frequency, and the real hot data that are frequently

updated are not separated from the infrequently updated ones.

The double hot/cold clustering scheme [10] upgrades the hot/cold clustering

scheme by regarding the first-written data as cold data because the first-written data

tend to be cold. It uses two working blocks; the first-written data are moved to the

cold block, together with the valid data of the victim blocks. The updated data are

written to the hot block. This double hot/cold clustering scheme demonstrates a

better performance than the hot/cold clustering scheme. However, the real hot data

are still not separated from infrequently updated data, and the first-written hot data

are mixed with cold data in the cold block, which increases the invalidation ratio of

the cold blocks.

3 Proposed data-clustering scheme

In order to separate data with different update frequencies, this work proposes a

new hot/cold clustering scheme that classifies data into three groups—hot, warm,

and cold—according to their update frequencies. Whereas existing schemes only

separate rarely updated data from the others, the proposed scheme also separates the

frequently updated data, to further skew the invalidation ratio over all the blocks.

The update frequency is evaluated by an update interval, which is the elapsed time

since the last write.

Fig. 1 illustrates how the update frequency is evaluated and data types are

dynamically transitioned. On a write request, if the update interval is shorter than a

predefined threshold, the requested data are regarded as hot. If the update interval is

longer than the threshold, the data are evaluated as warm because they have a long

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

3

IEICE Electronics Express, Vol.13, No.1, 1–8



update frequency. Like the existing schemes, the valid data of the victim block are

regarded as cold at the garbage collection because they have not been updated since

they were last written. Finally, for the first-written data that do not have an update

interval, evaluating the update frequency is deferred until they are updated, or

evaluated as cold at the garbage collection. Consequently, data types dynamically

change according to their update interval.

In the data-type transition, the cold data cannot be changed to hot because the

cold-data updates are all long updates. The time from when the cold data were last

written to when they were evaluated as cold at the garbage collection is longer than

the threshold. Thus, the updates of cold data are always long updates.

After evaluating the update frequency, we cluster heterogeneous data into

different blocks to skew the invalidation ratio. For this purpose, the proposed

scheme maintains four working blocks—hot, warm, cold, and unclassified. The

updated data are written to the hot block or to the warm block according to the

evaluation result, and the first-written data are clustered to the unclassified block.

The valid data of the victim blocks are copied to the cold block at the garbage

collection. If one of these working blocks becomes full, a clean block is allocated.

If there is no clean block, garbage collection is initiated to reclaim one.

Meanwhile, in order to calculate an accurate update interval, the last update

time should be recorded in the page-mapping table, which leads to an increase in

the page-mapping table size and, as a result, memory consumption. To avoid this

overhead, this work uses an approximated update interval: the distance between the

page index where the data were most recently written, and the current clean page

index where the data will be written.

For example, as seen in Fig. 2, if sector 0 (S0) was last written to page index 0

(P0) of the previous hot block and the clean page index of the current hot block is

P1, then the update interval—the distance between the two indexes—is five, where

a block consists of four pages. If this distance is shorter than the threshold, updated

data are written to the clean page index (P1) of the current hot block; otherwise,

they are written to the clean page index of the warm block. The update interval for

the warm and unclassified data is similarly calculated.

Fig. 1. Data-type transitions from when the data are first written

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

4

IEICE Electronics Express, Vol.13, No.1, 1–8



4 Performance evaluation

To evaluate the effect of the proposed scheme, we used an OpenSSD board called

Jasmine [11]. The Jasmine board embeds the original page-mapping FTL that uses

the greedy replacement scheme; implementing other FTL schemes is also possible.

Thus, we implemented the proposed scheme, as well as the existing hot/cold

clustering schemes in the board for a performance comparison. In the proposed

scheme, the number of pages in a block is used for the threshold that distinguishes

between a short update and a long update.

Table I shows the Jasmine board configuration. It consists of an Indilinx

Barefoot SSD controller, including a 16/32-bit ARM7TDMI-S RISC microproc-

essor, 96KB SRAM, 64MB SDRAM, and 64GB NAND flash memory. The

NAND flash memory comprises eight NAND flash banks, each of which is 8GB

in capacity. A physical page is 4KB in size, and eight pages compose a single

clustered page, which is the mapping unit between the logical address space and the

physical address space. A clustered block includes 128 pages. A SATA 2.0 host

interface (3Gbps) is supported for data transmission between the host computer and

the board.

Using the Diskmon tool, we collected two I/O traces from PCs that were

installing programs, updating Windows, browsing the Internet, editing documents,

etc. We named the trace file using the operating system name and the partition size.

For example, the winXP_59GB trace was collected in the 59GB partition where

Windows XP was installed. Table II shows the detailed information of the traces.

Table I. Jasmine board configuration

Configuration Jasmine Board

SSD controller Indilinx Barefoot

Microprocessor ARM7TDMI-S RISC

SRAM 96KB

SDRAM 64MB

SATA 2.0 Host Interface (3Gbps)

NAND capacity 64GB

Number of banks 8

Physical page size 4KB

Clustered page size 32KB

Pages per block 128

Fig. 2. Example of calculating the update interval for hot data

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

5

IEICE Electronics Express, Vol.13, No.1, 1–8



To evaluate the performance of each FTL scheme, we replayed the traces in

the Jasmine board and measured the total elapsed time. Before performing each

experiment, the board was initialized in a factory mode, which erased all the NAND

blocks and cleaned up the mapping table to eliminate the influences of the previous

experiments. For an explicit comparison, we normalized the elapsed time for each

FTL scheme, when the result of the original page-mapping scheme was scaled to

one. Fig. 3 shows the result. In the legend, hot/cold denotes the existing hot/cold

clustering scheme that regards valid pages of victim blocks as cold and separates

them from the others [9]. Double hot/cold denotes the scheme that upgrades the

hot/cold scheme by regarding the first written data as cold [10].

As seen in the figure, the proposed scheme delivers the best performance for

both traces. Compared to the original page-mapping scheme, it reduces the total

elapsed time by 34.5% in winXP_55GB and by 20.0% in winXP_59GB. The

improvement to the hot/cold scheme is 16.1% and 10.7%, respectively. Compared

to the double hot/cold scheme, our scheme reduces the elapsed time by 7.6% and

7.0%, respectively. The result indicates that classifying data into hot, warm, and

cold by the update frequency and separating them from each other is effective for

improving the performance.

Figs. 4 and 5 explain the reasons for the performance improvements. Fig. 4

depicts the changes in the valid page rate of the victim blocks according to time in

both traces. The X-axis is the sequence of write requests, namely time, and the

Y-axis is the valid page rate of victim blocks at the garbage collections. Since the

amount of valid data over all the blocks increases as time goes by, the number of

valid pages in the victim blocks also increases. This means that the overhead of

the garbage collection is increased, as the SSDs have more valid data. However,

the proposed scheme slows the increase of the valid page ratio by skewing the

distribution of valid data over the blocks. At the end of the trace-replaying period,

Table II. Trace information

Trace
Partition
Size

Total bytes
read

Total bytes
written

winXP_55GB 55GB 147GB 153GB

winXP_59GB 59GB 239GB 467GB

Fig. 3. Total elapsed time of each FTL scheme, when the original page-
mapping result is scaled to one.

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

6

IEICE Electronics Express, Vol.13, No.1, 1–8



its valid page ratio reaches 25.7% in winXP_55GB and 30.9% in winXP_59GB,

whereas that of the original page-mapping scheme is 45.2% and 41.8%, respec-

tively.

The reduction of the valid page rate of the victim blocks results in reducing the

garbage-collection frequency as well as the garbage-collection latency, because

the number of reclaimed pages is inversely proportional to the valid page ratio of

the victim blocks. Fig. 5 depicts the normalized total garbage-collection count of

each scheme, when the result of the original page-mapping scheme is scaled to one.

Thus, we observe that the proposed scheme reduces the garbage-collection count

compared to the original page-mapping scheme by 43.4% in winXP_55GB and by

17.3% in winXP_59GB. The improvements to the double hot/cold scheme, which

is the second best, are 5.9% and 4.1%, respectively. These reductions to the

garbage-collection count and the garbage-collection latency led to the overall

performance improvement.

5 Conclusion

In order to generate a skewed validation ratio over the blocks and thus reduce the

garbage-collection overhead of SSDs, this work proposed classifying data into hot,

warm, and cold according to their update frequencies, and clustering them into

(a) winXP_55GB (b) winXP_59GB

Fig. 4. Valid page rate of victim blocks according to time

Fig. 5. Total garbage-collection count of each FTL scheme, when the
result of the original page-mapping result is scaled to one.

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

7

IEICE Electronics Express, Vol.13, No.1, 1–8



different blocks. To evaluate the update frequency without additional memory

overhead, an update interval that was the distance to the last-written index was

used.

The performance evaluation conducted on an OpenSSD board showed that the

proposed scheme reduced the total elapsed time by 34.5%, compared to the original

page-mapping scheme, and by 7.6% compared to the existing hot/cold clustering

schemes. The improvement was achieved by reducing the garbage-collection

overhead. The reduced validation ratio of the victim blocks led to a reduction in

both the garbage-collection latency and its frequency.

Acknowledgments

This work was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science

and Technology (NRF-2013R1A1A2011586).

© IEICE 2016
DOI: 10.1587/elex.12.20150984
Received November 19, 2015
Accepted November 27, 2015
Publicized December 16, 2015
Copyedited January 10, 2016

8

IEICE Electronics Express, Vol.13, No.1, 1–8


