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Abstract: A Laguerre-based finite-difference time-domain (FDTD) method

for two dimensional anisotropic dispersive materials is proposed in this

paper. Taking advantage of the property of Laguerre polynomials, the nth

derivative of field components in Laguerre domain is deduced. The four

elements of the tensor permittivity ��" of the 2-D anisotropic dispersive media

can be unified into a general form in frequency domain. Then the general

relationship between electric fields and electric flux densities can be derived

in Laguerre domain. Using spatial interpolation of transition and central

difference scheme, the formulations are obtained. Two examples of wave

propagation in anisotropic magnetized plasma are used to validate the

efficiency of the proposed method.
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1 Introduction

The conventional finite-difference time-domain (FDTD) method [1] has been

proven to be an effective technique for the solution of numerous electromagnetic

problems. However, it is difficult to analyze multiscale structures with fine

structures such as thin slot, thin layer media and so on because of the Courant–

Friedrich–Levy (CFL) stability condition. To overcome this limitation, an uncondi-

tionally stable FDTD method has been proposed using weighted Laguerre poly-

nomials [2, 3, 4, 5]. Different from the conventional FDTD method, the spatial and

temporal variables can be separated in the Laguerre-based FDTD method. The

Laguerre-based FDTD method is a marching-on-in-order method and is more

efficient than the conventional FDTD method. Moreover, this method avoids the

numerical dispersion error, which is enlarging with the increase of the time-step

size when the ADI-FDTD [6, 7] and LOD-FDTD [8, 9] are used.

The conventional frequency-dependent FDTD formulation [10, 11] has been

widely used for dispersive materials such as plasmas, ferrite material, water, and so
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on. And it has been proved to be robust and efficient. Recently, Ha et al. introduced

a Laguerre frequency-dependent FDTD formulation for isotropic dispersive mate-

rials [12]. Using the time domain formulation of the electric susceptibility for

isotropic dispersive media, this method needs to perform the Laguerre transform of

the convolution operator. Using the property of convolution, Jung et al. fit the

fields, the flux densities, the permittivity and permeability of the medium with a

finite sum of orthonormal associated Laguerre basis functions in [13]. And this

method is used to analyze transient wave propagation in an arbitrary isotropic

dispersive media. Chen et al. introduced the auxiliary differential equation (ADE)

Laguerre-based FDTD method to simulate electromagnetic wave propagation in a

variety of isotropic dispersive media [14].

The relative electric permittivity of 2-D anisotropic dispersive media is a tensor

permittivity ��" [15], where ��" is a 2 � 2 matrix. The four elements of ��" are frequency-

dependent. If the above methods [12, 13, 14] are used, the deduced formulations

will be complicated. So far, only the first and second derivative of field components

in Laguerre domain is deduced [2, 12]. Using the first and second derivative of field

components in Laguerre domain, only 2-D formulations for anisotropic-medium

PML were derived [16]. The frequency-dependent formulations of anisotropic-

medium PML contain ðj!Þn (n � 3), and [16] is helpless when anisotropic

dispersive materials are involved in computational domain.

In this paper, efficient formulations are proposed to apply the Laguerre-based

FDTD method for transient wave propagation in 2-D anisotropic dispersive media.

In order to establish the relationship between electric fields and electric flux

densities in Laguerre domain, the nth derivative of field components in Laguerre

domain is deduced. Each element of the tensor permittivity ��" of anisotropic

dispersive media can be unified into the general form. And the relationship between

electric fields and electric flux densities is derived in frequency domain. Then

transforming frequency domain into time domain and using the nth derivative, the

relationship between electric fields and electric flux densities is derived in Laguerre

domain. Some electric fields are not available directly from the FDTD grid at this

moment, which must be interpolated from neighboring quantities [17]. Using

central difference scheme, the Laguerre-based FDTD formulations of 2-D ani-

sotropic dispersive media are deduced. To validate the efficiency of the proposed

method, two numerical examples are simulated. The efficiency of the proposed

method for 2-D anisotropic dispersive media simulation is verified from compar-

ison of the simulated results from the proposed method and that from the SO-FDTD

method [18], the RC-FDTD method [19, 20], the TRC-FDTD method [10, 17] and

theoretical method [21].

2 Formulations

When anisotropic dispersive media is involved, both electric permittivity ε and

magnetic permeability μ are tensors, need to be transformed into the Laguerre

domain. Since magnetic permeability μ is similar to electric permittivity ε, only

electric permittivity is discussed in this paper.© IEICE 2016
DOI: 10.1587/elex.12.20151003
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2.1 The nth derivative of field components in Laguerre domain

An orthonormal set of basis functions f’0; ’1; ’2; ’3 . . .g can be defined as

’pð�t Þ ¼ e��t=2Lpð�t Þ. Here �t ¼ st and s is a positive time-scaling factor. Lpð�t Þ is the
Laguerre polynomial of order p, and LpðtÞ is defined by LpðtÞ ¼ et

p!

dp

dtp
ðtpe�tÞ

(p � 0; t � 0). It is noted that these functions are convergent to zero as t ! 1.

Hence arbitrary functions spanned by these basis functions are also absolutely

convergent to zero as t ! 1.

The first derivative of field components Uðr; tÞ with respect to t is [2]

@Uðr; tÞ
@t

¼ s
X1
p¼0

0:5UpðrÞ þ
Xp�1

k¼0;p>0
UkðrÞ

 !
’pðstÞ ð1Þ

where UpðrÞ and UkðrÞ are the pth and kth Laguerre basis coefficients.

The second derivative can be written as [12]:

@2Uðr; tÞ
@t2

¼ s2
X1
p¼0

0:25UpðrÞ þ
Xp�1

k¼0;p>0
ðp � kÞUkðrÞ

 !
’pðstÞ ð2Þ

The nth derivative of field components is deduced and can be written as:

@nUðr; tÞ
@tn

¼ sn
X1
p¼0

0:5nUpðrÞ þ
Xp�1

k¼0;p>0
Wp

n;kUkðrÞ
 !

’pðstÞ ð3Þ

where Wp
n;k is satisfied with the analogical relation, Wp

n;k ¼ Wp�1
n;k�1 (k � 1, p � 2).

If Wp
n;0 has been derived, Wp

n;k can also be obtained. Here

Wp
n;0 ¼ 0:5Wp

n�1;0 þ
Xp�1
k¼1

Wk
n�1;0 þ 0:5n�1 ðn � 1; p � 1Þ ð4Þ

In fact, equation (1) and (2) can be regarded as special case of (3). So they can

also be written as the form of equation (3).

2.2 The relationship between electric fields and electric flux

densities in Laguerre domain

In anisotropic dispersive media, the electric flux densities D are related to the

electric field E through the tensor permittivity ��" of the local tissue by the following

equation [15]:

Dð!Þ ¼ "0��"rð!ÞEð!Þ ð5Þ
where

��"rð!Þ ¼
"xxð!Þ "xyð!Þ
"yxð!Þ "yyð!Þ

" #

And the four elements of the tensor permittivity ��" can be unified into the

general form as:
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"disð!Þ ¼

XN2
n¼0

pnðj!Þn

XN1
m¼0

qmðj!Þm
ð6Þ

where "disð!Þ represents an element in four elements, ω represents angular

frequency, and pn, qm are known constants. According to (5), using the mathe-

matical conversion, we have

XR1
m¼0

qmxðj!ÞmDxð!Þ ¼ "0
XR2
n¼0

pnxðj!ÞnExð!Þ þ
XR3
n¼0

pnyðj!ÞnEyð!Þ
 !

ð7Þ

XT1
m¼0

qmyðj!ÞmDyð!Þ ¼ "0
XT2
n¼0

pnxðj!ÞnExð!Þ þ
XT3
n¼0

pnyðj!ÞnEyð!Þ
 !

ð8Þ

where R1, R2, and R3 represent the maximum derivative of Dxð!Þ, Exð!Þ, and Eyð!Þ
in frequency domain after conversion. And qmx, pnx, and pny in (7) are known

constants after mathematical conversion, which can be obtained from "xxð!Þ and
"xyð!Þ. The definition of Ti is similar to Ri ði ¼ 1; 2; 3Þ. The qmy, pnx, and pny in (8)

are similar to qmx, pnx, and pny in (7).

Using Laguerre basis functions, the electric field E and electric flux densities D

can be represented in Laguerre domain as a sum of Laguerre basis functions scaled

by Laguerre basis coefficients and as follows:

Eiðr; tÞ ¼
X1
p¼0

Ep
i ðrÞ’pðstÞ ði ¼ x; yÞ ð9Þ

Diðr; tÞ ¼
X1
p¼0

Dp
i ðrÞ’pðstÞ ði ¼ x; yÞ ð10Þ

With the transition relationship from frequency domain to time domain

(j! ! @=@t), (7)–(8) can be converted to time domain. Then inserting (3) into it,

we have

X1
p¼0

Dp
x ðrÞ’pðstÞ ¼

X1
p¼0

 
"0

XR2

n¼0
pnxs

n0:5nEp
x ðrÞ þ

XR2

n¼1
pnxs

n
Xp�1

k¼0;p>0
Wp

n;kE
k
xðrÞ

 !
’pðstÞ

þ "0
XR3

n¼0
pnys

n0:5nEp
y ðrÞ þ

XR3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yðrÞ

 !
’pðstÞ ð11Þ

�
XR1

m¼1
qmxs

m
Xp�1

k¼0;p>0
Wp

n;kD
k
xðrÞ’pðstÞ

!,XR1

m¼0
qmxs

m0:5m
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X1
p¼0

Dp
yðrÞ’pðstÞ ¼

X1
p¼0

 
"0

XT2
n¼0

pnxs
n0:5nEp

x ðrÞ þ
XT2
n¼1

pnxs
n
Xp�1

k¼0;p>0
Wp

n;kE
k
xðrÞ

 !
’pðstÞ

þ "0
XT3
n¼0

pnys
n0:5nEp

y ðrÞ þ
XT3
n¼1

pnys
n
Xp�1

k¼0;p>0
Wp

n;kE
k
yðrÞ

 !
’pðstÞ ð12Þ

�
XT1
m¼1

qmys
m
Xp�1

k¼0;p>0
Wp

n;kDkðrÞjy’pðstÞ
!,XT1

m¼0
qmys

m0:5m

2.3 Spatial interpolation of transition

The spatial discretization is performed on a space node. Electric flux density

Dxði; jÞ is located at space node ði þ 0:5; jÞ. When the relationship between Dxði; jÞ
and Exði; jÞ, Eyði; jÞ is established in Laguerre domain, we need to know Ex, Ey

located at space node ði þ 0:5; jÞ. But in fact Eyði; jÞ is located at space node

ði; j þ 0:5Þ. Here the spatial interpolation of field adjacent nodes [17] is adopted:

Eyjiþ0:5;j ¼ 0:25ðEyji;jþ0:5 þ Eyjiþ1;jþ0:5 þ Eyji;j�0:5 þ Eyjiþ1;j�0:5Þ ð13Þ
Similarly, Dyði; jÞ requires the use of Exji;jþ0:5, and Eyji;jþ0:5. Using the same

method, we have

Exji;jþ0:5 ¼ 0:25ðExjiþ0:5;j þ Exji�0:5;j þ Exjiþ0:5;jþ1 þ Exji�0:5;jþ1Þ ð14Þ

2.4 Mathematical formulation of Laguerre-based FDTD method for

anisotropic dispersive media

The Laguerre-based FDTD formulations of 2-D anisotropic dispersive media are

deduced in this section. For simplicity, only the permittivity (electric susceptibility)

for 2-D TEz case is discussed in this paper. With anisotropic dispersive media, the

Maxwell’s equations and constitution relation are:

@Dx

@t
¼ @Hz

@y
� @Hy

@z
� Jx ð15Þ

@Dy

@t
¼ @Hx

@z
� @Hz

@x
� Jy ð16Þ

�0
@Hz

@t
¼ @Ex

@y
� @Ey

@x
ð17Þ

Dð!Þ ¼ "0��"rð!ÞEð!Þ ð18Þ
Inserting (3) into (15)–(18), multiplying both sides of the equations by ’qð�t Þ

and integrating over �t ¼ ½0;1Þ, only the temporal coefficients of order q remain.

Substituting electric fields of spatial interpolation, magnetic fields and electric flux

densities’ temporal coefficients of order q into electric fields, and using central

difference scheme, the electric fields of order q are obtained, which are related to

magnetic fields and electric flux densities. Then using central difference scheme in

magnetic fields and electric flux densities, the following discrete space equations

are obtained:
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� �C
H

y ji;j�1Eq
x ji;j�1 � �C

H

y ji;jEq
x ji;jþ1 þ �C

H

y ji;j þ �C
H

y ji;j�1 þ

XR2

n¼0
pnxs

n0:5n

�C
E

y ji;j �
XR1

m¼0
qmxs

m0:5m

0
BBBB@

1
CCCCAEq

x ji;j

þ �C
H

x ji;j þ
0:25

XR3

n¼0
pnys

n0:5n

�C
E

y ji;j �
XR1

m¼0
qmxs

m0:5m

0
BBBB@

1
CCCCAEq

yjiþ1;j � �C
H

x ji;j �
0:25

XR3

n¼0
pnys

n0:5n

�C
E

y ji;j �
XR1

m¼0
qmxs

m0:5m

0
BBBB@

1
CCCCAEq

yji;j

� �C
H

x ji;j�1 �
0:25

XR3

n¼0
pnys

n0:5n

�C
E

y ji;j
XR1

m¼0
qmxs

m0:5m

0
BBBB@

1
CCCCAEq

yjiþ1;j�1 þ �C
H

x ji;j�1 þ
0:25

XR3

n¼0
pnys

n0:5n

�C
E

y ji;j
XR1

m¼0
qmxs

m0:5m

0
BBBB@

1
CCCCAEq

yji;j�1

¼ � 2

s"0 �C
E

y ji;j
Jqx ji;j �

2

"0 �C
E

y ji;j
Xq�1

k¼0;q>0
Dk

xji;j � 2
Xq�1

k¼0;q>0
Hk

z ji;j �
Xq�1

k¼0;q>0
Hk

z ji;j�1
 !

�
 XR2

n¼1
pnxs

n
Xp�1

k¼0;p>0
Wp

n;kE
k
x ji;j �

1

"0

XR1

m¼1
qmxs

m
Xp�1

k¼0;p>0
Wp

n;kD
k
xji;j þ 0:25

XR3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yji;j

þ 0:25
XR3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yjiþ1;j þ 0:25

XR3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yji;j�1

þ 0:25
XR3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yjiþ1;j�1

!,XR1

m¼0
qmxs

m0:5m= �C
E

y ji;j ð19Þ

� �C
H

x ji�1;jEq
yji�1;j � �C

H

x ji;jEq
yjiþ1;j þ �C

H

x ji;j þ �C
H

x ji�1;j þ

XT3
n¼0

pnys
n0:5n

XT1
m¼0

qmys
m0:5m= �C

E

x ji;j

0
BBBB@

1
CCCCAEq

yji;j

þ �C
H

y ji;j þ
0:25

XT2
n¼0

pnxs
n0:5n

�C
E

x ji;j �
XT1
m¼0

qmys
m0:5m

0
BBBB@

1
CCCCAEq

x ji;jþ1 � �C
H

y ji;j �
0:25

XT2
n¼0

pnxs
n0:5n

�C
E

x ji;j �
XT1
m¼0

qmys
m0:5m

0
BBBB@

1
CCCCAEq

x ji;j

� �C
H

y ji�1;j �
0:25

XT2
n¼0

pnxs
n0:5n

�C
E

x ji;j
XT1
m¼0

qmys
m0:5m

0
BBBB@

1
CCCCAEq

x ji�1;jþ1 þ �C
H

y ji�1;j þ
0:25

XT2
n¼0

pnxs
n0:5n

�C
E

x ji;j
XT1
m¼0

qmys
m0:5m

0
BBBB@

1
CCCCAEq

x ji�1;j

¼ � 2

s"0 �C
E

x ji;j
Jqy ji;j �

2

"0 �C
E

x ji;j
Xq�1

k¼0;q>0
Dk

yji;j � 2
Xq�1

k¼0;q>0
Hk

z ji�1;j �
Xq�1

k¼0;q>0
Hk

z ji;j
 !

�
 XT3

n¼1
pnys

n
Xp�1

k¼0;p>0
Wp

n;kE
k
yji;j �

1

"0

XT1
m¼1

qmys
m
Xp�1

k¼0;p>0
Wp

n;kD
k
yji;j þ 0:25

XT2
n¼1

pnxs
n
Xp�1

k¼0;p>0
Wp

n;kE
k
x ji;j

þ 0:25
XT2
n¼1

pnxs
n
Xp�1

k¼0;p>0
Wp

n;kE
k
x ji;jþ1 þ 0:25

XT2
n¼1

pnxs
n
Xp�1

k¼0;p>0
Wp

n;kE
k
x ji�1;j

þ 0:25
XT2
n¼1

pnxs
n
Xp�1

k¼0;p>0
Wp

n;kE
k
x ji�1;jþ1

!,XT1
m¼0

qmys
m0:5m= �C

E

x ji;j ð20Þ
© IEICE 2016
DOI: 10.1587/elex.12.20151003
Received November 26, 2015
Accepted December 7, 2015
Publicized December 22, 2015
Copyedited October 10, 2016

7

IEICE Electronics Express, Vol.13, No.19, 1–12



Hq
z ji;j ¼ �C

H

y ji;jðEq
x ji;jþ1 � Eq

x ji;jÞ � �C
H

x ji;j;kðEq
yjiþ1;j � Eq

yji;jÞ � 2
Xq�1

k¼0;q>0
Hk

z ji;j ð21Þ

Dq
x ji;j ¼

 
"0

 XR2

n¼0
pnxs

n0:5nEq
x ji;j þ

XR2

n¼1
pnxs

n
Xq�1

k¼0;q>0
Wp

n;kE
k
x ji;j þ 0:25

XR3

n¼0
pnys

n0:5nEq
yji;j

þ 0:25
XR3

n¼1
pnys

n
Xq�1

k¼0;q>0
Wp

n;kE
k
yji;j þ 0:25

XR3

n¼0
pnys

n0:5nEq
yjiþ1;j þ 0:25

XR3

n¼1
pnys

n
Xq�1

k¼0;q>0
Wp

n;kE
k
yjiþ1;j

þ 0:25
XR3

n¼0
pnys

n0:5nEq
yji;j�1 þ 0:25

XR3

n¼1
pnys

n
Xq�1

k¼0;q>0
Wp

n;kE
k
yji;j�1 þ 0:25

XR3

n¼0
pnys

n0:5nEq
yjiþ1;j�1

þ 0:25
XR3

n¼1
pnys

n
Xq�1

k¼0;q>0
Wp

n;kE
k
yjiþ1;j�1

!
�
XR1

m¼1
qmxs

m
Xq�1

k¼0;q>0
Wp

n;kD
k
xji;j

!,XR1

m¼0
qmxs

m0:5m ð22Þ

Dq
yji;j ¼

 
"0

 XT3
n¼0

pnys
n0:5nEq

yji;j þ
XT3
n¼1

pnys
n
Xq�1

k¼0;q>0
Wp

n;kE
k
yji;j þ 0:25

XT2
n¼0

pnxs
n0:5nEq

x ji;j

þ 0:25
XT2
n¼1

pnxs
n
Xq�1

k¼0;q>0
Wp

n;kE
k
x ji;j þ 0:25

XT2
n¼0

pnxs
n0:5nEq

x ji;jþ1 þ 0:25
XT2
n¼1

pnxs
n
Xq�1

k¼0;q>0
Wp

n;kE
k
x ji;jþ1

þ 0:25
XT2
n¼0

pnxs
n0:5nEq

x ji�1;j þ 0:25
XT2
n¼1

pnxs
n
Xq�1

k¼0;q>0
Wp

n;kE
k
x ji�1;j þ 0:25

XT2
n¼0

pnxs
n0:5nEq

x ji�1;jþ1

þ 0:25
XT2
n¼1

pnxs
n
Xq�1

k¼0;q>0
Wp

n;kE
k
x ji�1;jþ1

!
�
XT1
m¼1

qmys
m
Xq�1

k¼0;q>0
Wp

n;kD
k
yji;j

!,XT1
m¼0

qmys
m0:5m ð23Þ

where �C
E

x ji;j ¼
2

s"0� �xi
, �C

E

y ji;j ¼
2

s"0� �yj
, �C

H

x ji;j ¼
2

s�0�xi
, �C

H

y ji;j ¼
2

s�0�yj
. Here

�xi and �yj are the lengths of the cell edge where the electric fields are located. ��xi

and � �yj are the distances between the center nodes where the magnetic fields are

located.
It is noted that ði; jÞ is not a real position but an array index of each field

variable in the above difference equations. From (19)–(20), it can also be found

that each electric field variable is related to the six adjacent electric fields.

Therefore, each row has seven nonzero terms. The magnetic fields and electric

flux densities are known because their orders are lower than those of the electric

fields. With reference to Chung et al. [2], equations (19)–(20) can be written as a

matrix equation form. The electric fields are obtained from solving the matrix

equation. In addition, the relationship between magnetic fields and electric fields is

performed from (21). The relationship between electric flux densities and electric

fields is performed from (22)–(23). Using (21)–(23), (19)–(20) enable recursive

calculation of Laguerre coefficients using previous coefficients for electromagnetic

waves.

3 Numerical demonstrations

In this section, two examples are presented to demonstrate the efficiency of the

proposed method.
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3.1 Example A:

A one-dimensional plane wave traveling in anisotropic plasma with collisions is

discussed here, whose direction is parallel to z axes shown as Fig. 1. The well

known tensor permittivity ��" is expressed as [22]:

��"rð!Þ ¼
"xxð!Þ j"xyð!Þ

�j"yxð!Þ "yyð!Þ

�����
����� ð24Þ

where

"xxð!Þ ¼ "yyð!Þ ¼ 1 �

�
!p

!

�2�
1 � j

�

!

�
�
1 � j

�

!

�2

�
�
!b

!

�2
ð25Þ

j"xyð!Þ ¼ j"yxð!Þ ¼
j

�
!p

!

�2�!b

!

�
�
1 � j

v

!

�2

�
�
!b

!

�2
ð26Þ

where v is the electron collision frequency, !p is the plasma frequency, and !b is

the electron cyclotron frequency.

A plane wave traveled in a magnetized collision plasma slab with a thickness

of 1.5 cm, and the transmission and reflection coefficients of left-hand circular

polarization wave and right-hand circular polarization wave were computed [22].

The Mur’s 1st-order absorbing boundary conditions are used to truncate the

computational domain. The plasma parameters are !p ¼ 2� � 28:7 � 109 rad/s,

!b ¼ 1:0 � 1011 rad/s, and v ¼ 20GHz. A Gaussian-derivative pulse is used as

an incident electric current profile:

JðtÞ ¼ exp � t � Tc
Td

� �2
 !

sinð2�fcðt � TcÞÞ ð27Þ

where Td ¼ 1=ð2fcÞ, Tc ¼ 3Td and fc ¼ 3GHz. Here, we choose Tf ¼ 2 ns,

s ¼ 1:8 � 1010 and NL ¼ 350 [2]. The problem is simulated with the proposed

method. In order to obtain the good results, we choose the cell size of 0.1mm, the

time step (Δt) of 0.167 ps. And the transmission and reflection coefficients are

calculated with the fast Fourier transform (FFT) technique. Fig. 2 and Fig. 3

Fig. 1. Calculated geometry.
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display the magnitudes of the reflection coefficients and transmission coefficients of

the left-hand and right-hand circular polarization wave, respectively. To provide a

benchmark for comparison, this problem is also solved using theoretical algorithm

[21]. As we can see in Fig. 2 and Fig. 3, the results computed from the proposed

FDTD method exhibit good agreement with those from the analytical solutions in

frequency domain.

3.2 Example B:

As shown in Fig. 4, a 2-D parallel plate waveguide with the size of

50mm � 12mm is calculated with the proposed Laguerre-based FDTD method.

The parameters of the anisotropic plasma are the same as example A and its

thickness is 10mm. The Mur’s 1st-order absorbing boundary conditions are also

used to truncate the computational domain. To limit numerical dispersion, a fine

grid division with the cell size of 0:1mm � 0:1mm is applied to SO-FDTD, RC-

FDTD and the TRC-FDTD methods.

The electric field at points P computed by SO-FDTD, RC-FDTD, TRC-FDTD

and the proposed methods is monitored and graphed in Fig. 5. It is clear that the

calculated field by the proposed method is in good agreement with that by other

(a) (b)

Fig. 3. Numerical results of right-hand circular polarization wave. (a)
Reflection coefficient magnitude versus frequency; (b) trans-
mission coefficient magnitude versus frequency.

(a) (b)

Fig. 2. Numerical results of left-hand circular polarization wave. (a)
Reflection coefficient magnitude versus frequency; (b) trans-
mission coefficient magnitude versus frequency.
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three methods. Table I shows the comparison of the computing time of these

methods. It can be seen that the time usage of the proposed method is only about

6.0% of the time usage of SO-FDTD, about 6.3% of the time usage of RC-FDTD,

and about 6.1% of the time usage of TRC-FDTD. But the memory requirement of

the proposed method is larger than other methods. It can also be seen that the

memory requirement of the proposed method is about 15.4 times of the memory

requirement of SO-FDTD, about 19.4 times of the memory requirement of RC-

FDTD, and about 17.0 times of the memory requirement of TRC-FDTD. It should

be noted that all calculations in this paper have been performed on a Celeron (R)

Dual-Core CPU T3000 1.80GHz machine with 2G RAM.

Fig. 4. 2-D parallel plate waveguide with anisotropic plasma.
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)

 SO-FDTD
 RC-FDTD
 TRC-FDTD
 proposed method

Fig. 5. Electric field calculated from the proposed method and three
FDTD methods.

Table I. Comparison of computation time for the 2-D waveguide

Method Δt (ps) Meshing size
Marching

steps
Memory CPU Time (s)

SO-FDTD 0.167 500 � 120 12000 9.2M 290.4

RC-FDTD 0.167 500 � 120 12000 7.3M 272.8

TRC-FDTD 0.167 500 � 120 12000 8.3M 283.6

Proposed method 1 500 � 120 150 141.5M 17.3
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4 Conclusions

The nth derivative of field components in Laguerre domain is deduced for wave

propagation in anisotropic dispersive materials in this paper. The relationship

between electric fields and electric flux densities is established in the Laguerre

domain. A new electric field matrix equation for 2-D anisotropic dispersive

materials is obtained. Then expansion coefficients of the electromagnetic field

components can be derived for each order. Compared with the results of the other

methods in two structures, the accuracy of the proposed formulation is verified. It is

also demonstrated that the CPU time is greatly saved when the proposed method is

used. This method is unconditional stable and the solution is independent of the

time discretization, and can be used in multiscale structures with fine structure in

anisotropic dispersive materials.
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