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Abstract: With the advent of the Internet of Things, collection and process-

ing of large datasets on embedded systems become increasingly important.

Therefore, to enable embedded processors with more data processing capa-

bilities, this paper presents a MapReduce-based multiprocessor system-on-

chip (MPSoC) for providing efficient architectural supports to MapReduce

parallel programming paradigm. We implement the proposed MPSoC in

cycle-accurate SystemC and evaluate its performance using a set of repre-

sentative MapReduce applications. Results show that the proposed MPSoC

can achieve up to 2.1× overall performance improvement over the current

general purpose multicore processors in typical MapReduce applications.
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1 Introduction

With the advent of the Internet of Things, embedded devices tend to be more

intelligent, making collection and processing of large datasets on embedded

systems become increasingly important. Consequently, the demand for embedded

processors that can provide more such capabilities under stringent cost and power

constraints has greatly increased. Traditionally, application-specific integrated

circuit (ASIC) is the common solution used to address such performance/energy

challenge. However, with respect to programmable solutions, ASIC lacks reus-

ability across different application domains, and significantly increases the overall

design time and cost. Thus, a recent industry trend to address this design challenge

is the use of programmable multiprocessor system-on-chip (MPSoC) [1, 2]. This

solution, promising especially for its flexibility, is able to cover a wider spectrum of

application domains and provide appealing time-to-market. In addition, it enables

significant design space by allowing both coarse-grained thread-level parallelism

and fine-grained instruction-level acceleration for achieving promising perform-

ance/energy tradeoffs.

However, due to the difficulties of parallel programming, managing the con-

currency of MPSoC platforms is still not easy. Traditional parallel programming

models, such as message-passing and shared-memory threads, requires the pro-

grammer to manually create threads and synchronize them through messages or

locks, which is a very time-consuming and error-prone process. Although some

recent works propose tools to partition sequential C/C++ programs to parallel ones

[3, 4], developers still need to manually arrange the workload allocation and design

the underlying inter-processor communication infrastructure. Our prior work pro-

posed a software/hardware solution that can facilitate the MPSoC designer to

handle the inter-processor communication [5, 6, 7]. However, it still lacks a general

parallel programming model and a unified architecture which can help the designer

to explore the inherent concurrency of applications.

MapReduce is a successful programming framework created by Google for

processing large data sets on data centers [8]. The main advantage of MapReduce

framework is that it can greatly simplify parallel programming, and facilitate

processing of terabytes on large clusters. Therefore, due to its appealing capability

in parallel programming, a lot of research works have exploited the MapReduce

model on various chip-level parallel computing platforms. For example, Phoenix

[9], developed by Stanford University, is a shared-memory version of MapReduce

targeted for multi-core and multiprocessor systems. It uses shared-memory threads

to implement parallelism, and its runtime can schedule tasks dynamically across the

available processors for achieving load balance. In addition, MapReduce frame-
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works build on GPUs [10], Cell clusters [11], and FPGA [12] are also implemented

respectively.

Unlike the above works that exploit MapReduce model on commercial multi-

core processors, this work aims to ease the development of dataset processing

engines by applying the MapReduce model to customized MPSoC platforms. The

proposed solution still leverages the MapReduce programming model to specify

the concurrency at a high level, while the unique point is that a novel MPSoC

architecture is proposed to provide hardware supports to the MapReduce runtime,

including data scheduling, processing and merging. The proposed MPSoC uses

multiple simple RISC processing elements (PEs) to spawn parallel Map and Reduce

tasks. A hybrid shared-memory and message-passing on-chip communication

infrastructure is adopted to facilitate both data transfer and inter-PE control

messages. To demonstrate the effectiveness of the proposed architecture, we

compare it with a commercial multicore processor with Phoenix programming

model. Results show that our proposed architecture not only simplifies the MPSoC

programming significantly, but also achieves an appreciable performance speedup

than the general-purpose multicore processor.

The rest of this brief is organized as follows. Section 2 presents the proposed

MPSoC architecture, which is followed by the performance evaluation in Section 3.

Finally, we conclude the paper in section 4.

2 Hardware architecture

2.1 Architecture overview

Fig. 1 shows an architectural overview of the proposed MPSoC, which consists of

a cluster of PEs connected by a hierarchical interconnection fabric. This architec-

ture is designed based on the same principles of MapReduce model, and consists of

three main components: the front-end for splitting input data, multiple map-reduce

block-pipes (MRBP) for data processing, and the back-end for merging the

mapreduce results.

The front-end splitter is responsible for transferring the input data from the host

system to MapReduce subsystem, as well as scheduling the following MRBP.

Depending on the architectural configurations, it transfers the data to the global

memory, dispatches small data blocks to each MRBP, and then triggers the

Fig. 1. Architecture overview of proposed MPSoC.
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subsequent MRBP to start. MRBP is the kernel processing element of the

architecture, which consists of a map-reduce pair connected by a shared AHB

bus. According to the MapReduce model, it processes the input raw data into

hkey; valuesi pairs. Finally, after getting the results from each MRBP, the back-end

subsystem starts to collect the separated hkey; valuesi pairs to be a single entity and

returns the final results.

For achieving fast block data transfer and easy implementation, the proposed

architecture uses multiple AHB bus fabrics to connect the three components.

Meanwhile, in order to relieve the data traffic on the bus, we separate the inter-

processor control messages from the mapreduce data streams, and use another

lightweight inter-processor connection to pass the control messages among the PEs.

In the following subsections, the detailed architecture and data flow of the three

subsystems will be explained.

2.2 Front-end subsystem

Fig. 2 describes the detailed architecture of the front-end subsystem, which consists

of a splitter PE, a global memory and the data buffers of MRBP. The splitter PE is

the kernel of this subsystem, which works as a direct memory access (DMA), as

well as a central scheduler to control the MRBP. It is designed using our application

specific instruction-set processor (ASIP) framework [5], whereby a communication

module is integrated with a RISC PE to handle the data movement and inter-

processor messages. As described in the blue dash lines, the splitter fetches the data

from the host system and temporarily stores the data into the global memory. Then,

depending on the architectural configuration, e.g., the number of MRBP, input data

size, and data buffer size, the splitter further divides the input data into small blocks

and dispatches these data blocks to the data buffer of MRBP. Finally, as described

in the red dash lines, the splitter directly triggers the MRBR to start via inter-

processor messages.

In the front-end subsystem, the data movement, shown in the blue dash lines,

goes though the traditional AHB bus. To relieve the traffic contention of the shared

bus and achieve fast inter-processor communication, the control messages, shown

in red dash lines, are passed via a lightweight point-to-point on-chip connection.

Another tradeoff in the design is to use a single splitter or multiple splitters to boost

the data dispatch. In this paper, we adopt the single splitter solution, because the

Fig. 2. Front-end subsystem: architecture and data flow.
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dispatch process takes much less time than the following map task. Thus, as long as

there aren’t too many MRBPs, a single splitter is enough to let all MRBPs start

almost simultaneously. The splitter will dispatch data to MRBP whenever there is

data buffer available.

2.3 MapReduce block-pipe

MRBP is the kernel data processing element of the architecture, which translates

the input raw data into hkey; valuesi pairs. As shown in Fig. 3(a), each MRBP

consists of a map PE, a reduce PE and two ping-pong buffers, which are connected

by a shared AHB bus. The ping-pong buffer structure is used to facilitate the data

exchange between the map PE and the reduce PE. Moreover, the map PE and the

reduce PE are also connected by the inter-processor communication network for

passing control messages. As long as there is data available in the data buffer, either

buffer 1 or buffer 2, the map PE is triggered by the front-end splitter to start

processing. When map process finishes, reduce PE is triggered to further polish

the data in the same buffer. Meanwhile, new data can be transferred into the other

data buffer for map processing. In this way, the map and reduce PEs can work

simultaneously in a block-pipe manner to improve the throughput.

Fig. 3(b) shows the MapReduce processing flow with a word count example.

According to the MapReduce model, the map PE first processes the raw data to be

intermediate hkey; valuei pairs, and the reduce PE further polishes the intermediate

hkey; valuei pairs to be sorted hkey; valuesi pairs. Both map and reduce programs

are user-defined depending on the target algorithms. The RISC cores (map PE and

reduce PE) in the architecture provide a basic programmable platform for executing

the map and reduce functions. In addition, designers can use our ASIP method-

ology [5] to further boost the map and reduce programs by exploring instruction-

level accelerations.

2.4 Back-end subsystem

In the back-end subsystem, the reduced hkey; valuesi pairs from all MRBPs (in the

data buffers) are merged together into the global memory. In order to improve

the throughput of merge processing, this design adopts a two-layered merge

scheme. All MRBPs are equally divided into several groups and every merge

(a) (b)

Fig. 3. (a) Architecture of a MapReduce block-pipe, (b) word count
example using MapReduce model.
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engine in the 1st layer takes over a specific MRBP group. In the 2nd layer, there is

an additional merge engine that further combines all results from the 1st layer.

Fig. 4(a) shows an example with four MRBPs, Merge 1 handles MRBP 1&2 and

Merge 2 handles MRBP 3&4. Both Merge 1 and Merge 2 store their results into

the global memory, and an additional Merge PE, in this example the Merge 3,

further combines the results and obtains the final result. This two-layered merge

scheme is implemented by using the multilayer AHB fabric, where the data buffers

are private slaves to their first-layer merge PE, and the global memory is shared by

all merge PEs. In addition, all the merge PEs are also connected via the global inter-

processor communication network for passing control messages.

Fig. 4(b) shows a detailed data scheme of this subsystem. As explained in

section 2.2, the splitting in front-end is very fast, and thus results from different

MRBPs arrive almost simultaneously. However, compared with splitting, merging

is more time-consuming. Therefore, using multiple merge engines to accelerate this

process is necessary to keep the block-pipe working smoothly. It is noted that the

processing time of the 2nd layer grows slightly when the results from the 1st layer

accumulate. However, this does not affect the normal working of block-pipes, since

the results from MRBP have been buffered in the global memory already. More-

over, depending on the target algorithms and data size, designers may tune the

architecture with more merging layers for acceleration.

3 Implementation and results

3.1 System setup

The proposed MPSoC is implemented using our ASIP-based MPSoC design

methodology [5], which tackles the hybrid shared-memory and message-passing

architecture, the distributed interprocessor communication mechanism and the

(a)

(b)

Fig. 4. Back-end subsystem: (a) architecture and (b) data scheme.
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ASIP design method. The full system is modeled in cycle-accurate systemC and the

simulation is carried out using Synopsys Platform Architect. As listed in Table I,

we evaluate 4 applications that have been implemented using the MapReduce

programming model [9]. For comparison, we also implement the these benchmarks

on Xilinx ZYNQ platform (ARM A9 dual-core processor) with Phoenix MapRe-

duce framework. In addition, a single-thread implementation is also evaluated as a

baseline reference. Table II lists the detailed architecture configurations.

3.2 Performance evaluation

Fig. 5 depicts the performance evaluation of 4 different tasks in terms of execution

time. For each task, we use different data sizes (50MB, 100MB, 200MB, 500MB,

and 1GB). We measure three architecture configurations, which are single-core,

dual-core with Phoenix MapReduce framework and the proposed MPSoC, respec-

tively. As shown in Fig. 5, using the proposed MPSoC leads to a better perform-

ance than the other two architectures. Moreover, as the data size increases, the

gained performance achieved by the proposed MPSoC also increases, which shows

its potential capability in dealing with big datasets. Fig. 6 further shows the

normalized execution time of 1GB dataset. As shown, the proposed MPSoC is

1:7� to 3:0� faster than the single-thread implementation, while it is 1:5� to 2:1�
faster than the dual-core phoenix implementation.

Table I. The application used in this study

Description Data Sets

Word Count
Determine frequency of words in
a file

50MB, 100MB, 200MB,
500MB, 1GB

String Match
Search file with keys for an
encrypted word

50MB, 100MB, 200MB,
500MB, 1GB

Linear
Regresion

Compute the best fit line for a
set of points

50MB, 100MB, 200MB,
500MB, 1GB

Histogram
Determine frequency of each
RGB component in a set of
images

50MB, 100MB, 200MB,
500MB, 1GB

Table II. Processor architecture characteristics

ZYNQ Proposed

Processor ARM A9 Customized MPSoC

Num. of Cores 2 4 blockpipe

L1 Cache 32KB & 32KB None

L2 Cache 512KB None

On-chip memory 256KB 128KB

Frequency 667MHz 667MHz
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4 Conclusion

This paper proposes a MPSoC which provides architectural supports to the

processing of large dataset using MapReduce parallel programming model. The

proposed architecture uses multiple mapreduce block-pipes to spawn parallel Map

and Reduce tasks, and adopts a two-layered merge scheme to improve the process-

ing throughput. Moreover, a hybrid shared-memory and message-passing on-chip

communication infrastructure is adopted, where the shared-memory scheme facil-

itates the data transfer between PEs, and the message-passing scheme is used for

task scheduling. In the case study of a four-blockpipe MPSoC, we implement four

typical mapreduce applications, and up to 2:1� speedup is achieved when com-

pared with a commercial general-purpose multicore processor. In the future work,

(a) (b)

(c) (d)

Fig. 5. Execution time for different applications.

Fig. 6. Speedup for different applications using 1GB dataset.
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we would like to implement more realistic applications on this embedded MPSoC,

and exploit distributed processing network built on top of this MPSoC.
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